用户名: 密码: 验证码:
微小卫星及其编队轨道与姿态一体化确定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主状态确定是卫星控制的基本前提和基础。对于成本和重量有严格限制的微小卫星,星上敏感器资源及其性能往往有限,如何充分利用有限的敏感器资源、完成自主状态确定任务、改善卫星轨道与姿态确定的精度,进而提高微小卫星功能密度,已成为当前航天领域的热点和难点问题。本学位论文以微小卫星及其编队轨道与姿态等状态确定为研究背景,对单星自主状态确定、卫星编队相对/绝对状态估计等相关问题进行深入研究,具体内容如下:
     为充分利用地磁场测量数据中包含的轨道与姿态信息,在基于地磁场测量的卫星轨道与姿态独立确定方法基础上,采用轨道与姿态确定串并联混合的耦合确定模式,提出了基于磁强计的卫星轨道与姿态耦合确定方法。该方法在初始误差较大时采用先定轨后定姿的串联模式确保系统收敛性,待串联策略收敛后采用基于地磁场矢量的姿轨并联确定模式提高系统估计精度,同时基于新息序列设计鲁棒卡尔曼滤波算法,通过自适应调整滤波器的增益矩阵来降低轨道与姿态耦合确定时滤波误差的相互影响。仿真结果表明了该方法在提高系统鲁棒性和估计精度等方面的有效性。
     考虑卫星在轨运动以及敏感器测量等方面轨道与姿态相互耦合的特性,在建立卫星轨道与姿态耦合动力学模型和敏感器测量模型的基础上,提出了基于多速率滤波算法的卫星轨道与姿态一体化确定方法,并采用局部可观测性理论以及可观测性矩阵条件数和奇异值分解等对系统的可观测性及可观测度进行分析,从理论方面论述了轨道姿态一体化确定的可行性。为避免由于采用一体化确定模式导致滤波维数增加,进而导致计算量过大的问题,引入长短周期不同时刻点分别采用Schmidt-EKF和统一滤波算法的多速率滤波思想,在保证确定精度的前提下有效地降低了计算量。
     针对从星上敏感器测量主星上多个点光源方向矢量的测量模式,提出了基于高斯二阶卡尔曼滤波算法的编队卫星相对位置与姿态一体化确定方法。针对应用中由于待估计特征点与质心不重合等问题,建立考虑特征点质心偏移的相对运动状态方程,设计了基于乘性四元数的UKF算法,提出了考虑非质心影响的相对位置与姿态估计方法,并采用Fisher信息矩阵和误差方差矩阵的迹分析了星间相对距离、点光源数目及其分布情况等对估计精度的影响。为基于视觉的卫星编队相对状态估计系统的设计及应用奠定基础。
     针对具有磁强计、陀螺及视觉敏感器等配置的编队成员卫星绝对轨道与姿态确定问题,在基于磁强计/陀螺的姿轨一体化确定算法和基于视觉测量的编队相对状态一体化确定算法的基础上,设计联邦滤波和两步滤波两种分散式滤波算法,提出了考虑相对测量信息的编队卫星绝对轨道与姿态一体化确定方法。在保证高精度绝对状态确定的同时,提高了系统的可靠性和容错能力。针对从星磁强计故障情况,提出了先主星后从星的串联确定策略,并设计了基于球形采样的UKF算法,实现编队双星的绝对状态估计。在双星磁强计都故障时,分析了依靠星间相对测量进行编队卫星绝对轨道确定的可行性。为绝对轨道与姿态测量信息有限时的编队卫星轨道与姿态确定提供了一条可行的解决途径。
Autonomous state determination is the basis of satellite control. Due to the strictlimits of weight and cost, there are always few sensors on small satellite. So how to makefull use of the limited sensor resource to accomplish orbit and attitude determination,improve determination accuracy, and then improve the functional density of smallsatellite has become a hot and difficult problem in the field of aerospace. Under thebackground of orbit and attitude determination for small satellite and formation, thisdissertation focuses on autonomous state determination for single satellite andrelative/absolute state determination for formation satellite. The major contents of thisdissertation consist of the following parts.
     To make full use of earth magnetic field measurement data, an orbit and attitudecoupled determination method is proposed based on traditional separate processing mode,which combines sequential and parallel modes for orbit and attitude determination. Wheninitial estimation error is large, orbit and attitude are sequentially determined in thesequential mode to ensure the convergence. Then they are synchronously determined inthe parallel mode both using earth magnetic field vector measurement when theestimation error becomes small enough, which improves the estimation accuracy.Meanwhile, an innovation-based robust Kalman filter is designed to reduce the influencebetween the orbit and attitude determination systems through adjusting the Kalman gain,which improves the determination accuracy and enhances the robustness of the system.
     Considering the coupling between orbit and attitude from satellite motion andsensor measurement, coupled dynamic model and measurement model are established,and a multi-rate-based integrated orbit and attitude determination algorithm is proposed.System observability is analysed based on local observability theory, and degree ofobservability is analysed through condition number and singular value decomposition ofobservability matrix, which can verify the feasibility in theory for integrated orbit andattitude determination. In order to avoid the large computation induced by the increase ofsystem dimension, a multi-rate filter is introduced. At the short-period sampling time, aSchmidt-EKF is adopted to estimate attitude and propagate orbit. While at the long-period sampling time, a unified Kalman filter is used to estimate orbit and attitudesimultaneously. Simulation results indicate that this method can reduce computation loadeffectively with guarantee of estimation accuracy.
     Regarding to deputy sensor measuring direction vectors of different beacons onchief, a Gauss second-order Kalman filter is proposed to determine the relative positionand attitude for formation satellite. For relative state estimation of the point apart from the center of mass on deputy, a coupled relative translational and rotational dynamics isestablished, and an UKF algorithm is proposed to estimate relative position and attitude.Besides, the influence of relative distance, number of beacons and their distribution onestimation accuracy is analysed through the traces of the Fisher information matrix anderror covariance matrix. These can lay the foundation for vision-based relative statemeasurement system design and application for formation satellite.
     For the absolute state determination of formation satellite with magnetometer, gyroand relative measurement, federated filter and two-step filter are designed respectively toestimate the absolute orbit and attitude of formation satellite based on integrated orbitand attitude determination method for single satellite and relative state estimation methodfor formation satellite, both of which improve the reliability and fault tolerance undercondition of guarantee of estimation accuracy. State estimation with sensor failure is alsoinvestigated. When deputy magnetometer fails, a chief and deputy state sequentialdetermination scheme is proposed based on a spherical sampled UKF, thus thecomputation load is reduced. In view of the magnetometer failure of both satellites, thefeasibility of absolute orbit determination only based on relative measurement is analysed.These researches can provide a viable approach for absolute orbit and attitudedetermination of formation satellite with limited measurement.
引文
1S. Nozette, P. Rustan, and L. P. Pleasance, et al. The Clementine Mission to theMoon: Scientifis Overview. Science.1994,266(5192):1835~1839
    2B. H. Foing, D. J. Heather, and M. Almeida, et al. The Science Goals of ESA’sSMART-1Mission to the Moon. Earth, Moon and Planets.2001,85-86(0):523~531
    3G. D. Racca, A. Marini, and L Stagnaro, et al. SMART-1Mission Description andDevelopment Status. Planetary and Space Science.2002,50(14-15):1323~1337
    4Y.Tsuruda, T. Hanada, and J. Van der Ha. Transactions of Space Technology Japan.2009,7(ists26): Tf_7~Tf_12
    5Y. Mimasu, J. Van der Ha. Attitude Determination Concept for QSAT. Transactionsof Space Technology Japan.2009,7(ists26): Pd_63~Pd_68
    6Y. Mimasu, J. Van der Ha. Attitude Determination by Magnetometer and Gyrosduring Eclipse. AIAA/AAS Astrodynamics Specialist Conference and Exhibit,Hawaii,2008
    7H. Heidt, J. Puig-Suari, and A. Moore, et al. CubeSat: A New Generation ofPicosatellite for Education and Industry Low-Cost Space Experimentation.Preceedings of the15thAnnual AIAA/USU Small Satellite. Logan, UT,2000
    8S. S. Ose. Attitude Determination for the Norwegian Student Satellite nCube.Master’s Thesis. Norwegian University of Science and Technology.2004:1~4
    9D. Hall. Optical CubeSat Discrimination. Preceedings of2008AMOS TechnicalConference. Maui, Hawaii,2008
    10C. O. Asma, J. Naviaux, and G. Kerschen, et al. Orbital Dynamics Characteristics ofa QB50CubeSat Performing Atmospheric Re-Entty. AIAA Atmospheric FlightMechanics Conference, Toronto, Ontario Canada,2010
    11潘科炎.航天器的自主导航技术.航天控制.1994(2):18~27
    12J. C. Yoon, B. S. Lee and K. H. Choi. Spacecraft Orbit Determination Using GPSNavigation Solutions. Aerospace Science and Technology.2000,4(3):215~221
    13W. Enderle, Y. Feng and N. Zhou. Orbit Determination of FedSat Based on GPSReceiver Position Solutions-First Results.6thInternational Symposium of SatelliteNavigation Technology and Applications, Melbourne, Australia,2003:22~25
    14W. P. Birmingham, B. L. Miller and W. L. Stein. Experimental Results of Using theGPS for LandSat-4Onboard Navigation. Navigation.1983,30(3):244~251
    15O. Montenbruck, B. Mortier and S. Mostert. A Miniature GPS Receiver for PreciseOrbit Determination of the SUNSAT2004Micro-Satellite. Proceedings of the2004National Technical Meeting of the Institute of Navigation. Dan Diego, CA,2004:636~642
    16M. J. Unwin, M. K. Oldfield and S. Purivigraipong. Orbital Demonstration of a NewSpace GPS Receiver for Orbit and Attitude Determination. International Workshopon Aerospace Applications of the Global Positioning System, Breckenridge,Colorado,2000
    17C. Reigber, P. Schwintzer and K. H. Neumayer, et al. The CHAMP-Only EarthGravity Field Model EIGEN-2. Advances in Space Research.2003,31(8):1883~1888
    18A. C. Long, D. Leung and D. Folta, ea al. Autonomous Navigation of High-EarthSatellites Using Celestial Objects and Doppler Measurements. AIAA/AASAstrodynamics Specialist Conference, Denver, CO, United States,2000:14~17
    19X. Ning, J. Fang. Autonomous Celestial Navigation Method for LEO SatelliteBased on Unscented Kalman Filter and Information Fusion. Aerospace Science andTechnology.2007,11(2-3):222~228
    20X. Ning, J. Fang. Spacecraft Autonomous Navigation Using Unscented ParticleFilter-Based Celestial/Doppler Information Fusion. Measurement Science andTechnology.2008,19(9):1~8
    21李琳琳,孙辉先.一种卫星天文自主定轨定姿方法研究.空间科学学报.2003,23(2):127~134
    22R. Gounley, R. White, and E. Gai. Autonomous Satellite Navigation by StellarRefraction. Journal of Guidance, Control, and Dynamic.1984,17(2):129~134
    23周凤岐,赵黎平,周军.基于星光大气折射的卫星自主轨道确定.宇航学报.2002,23(4):20~23
    24李琳琳,孙辉先.基于星敏感器的星光折射卫星自主导航方法研究.系统工程与电子技术.2004,26(3):353~357
    25唐琼.基于星光折射航天器自主轨道确定.西北工业大学硕士学位论文.2007:31~48
    26T. J. Chester, S. A. Butman. Navigation Using X-Ray Pulsar.The Telecommun. andData acquisition Rept.1981:22~25
    27K. S. Wood. Navigation Studies Utilizing the NRL-801Experiment and the ARGOSSatellite. Proceedings of SPIE.1993,1940:105~116
    28K. S. Wood, J. R. Determan and P. S. Ray, et al. Using the Unconventional StellarAspect (USA) Experiment on ARGOS to Determine Atmospheric Parameters by X-Ray Occultation. Proceedings of SPIE.2002,4485:258~265
    29K. S. Wood, G. Fritz, and P. Hertz, et al. The USA Experiment on the ARGOSSatellite: A Low Cost Instrument for Timing X-Ray Binaries. Proceedings of SPIE.1994,2280:19~30
    30D. J. Pines. X-Ray Source-Based Navigation for Autonomous PositionDetermination Programme. DARRA/TTO,571-218-4339, USA,2004
    31S. I. Sheikh, R. W. Hellings and R. A. Matzner. High-Order Pulsar Timing forNavigation. Proceedings of thr63rdAnnual Meeting of the Institute of Navigation.Cambridge, MA,2007:432~443
    32S. I. Sheikh, D. J. Pines and P. S. Ray, et al. Spacecraft Navigation Using X-RayPulsars. Journal of Guidance, Control, and Dynamics.2006,29(1):49~63
    33S. I. Sheikh, D. J. Pines. Recursive Estimation of Spacecraft Position Using X-rayPulsar Time of Arrival Measuremnets. Proceedings of thr61stAnnual Meeting ofthe Institute of Navigation. Cambridge, MA,2005:464~475
    34G. Shorshi, I. Y. Bar-Itzhack. Satellite Autonomous Navigation and OrbitDetermination Using Magnetometers. Proceedings of the31stIEEE Conference onDecision and Control. Tucson, AZ,1992,1:542~548
    35S. Kim, J. Chun. Satellite Orbit Determination Using a Magnetometer-BasedBootstrap Filter. Proceedings of the American Control Conference. Chicago, IL,USA,2000,2:792~793
    36董昆,周军,葛致磊.基于地磁场的新型导航方法.研究火力与指挥控制.2009,34(3):153~155
    37M. Wiegand. Autonomous Satellite Navigation via Kalman Filtering ofMagnetometer Data. Acta Astronautica,1996,38(4-8):395~403
    38Y. J. Cheon. Unscented Filtering Approach to Magnetometer-Only OrbitDetermination. International Conference on Control, Automation and systems(ICCAS), Gyeongju, Korea,2003
    39K. M. Roh, S. Y. Park and K. H. Choi. Orbit Determination Using the GeomagneticField Measurement via the Unscented Kalman Filter. Journal of Spacecraft andRockets.2007,44(1):246~253
    40M. L. Psiaki. Autonomous Orbit and Magnetic Field Determination UsingMagnetometer and Star Sensor Data. Journal of Guidance, Control, and Dynamics.1995,18(3):584~592
    41M. L. Psiaki. Autonomous Low-Earth-Orbit Determination from Magnetometer andSun Sensor Data. Journal of Guidance, Control, and Dynamics.1999,22(2):296~304
    42H. Jung, M. L. Psiaki. Tests of Magnetometer/Sun-Sensor Orbit DeterminationUsing Flight Data. Journal of Guidance, Control, and Dynamics.2002,25(3):582~590
    43H. Basil, M. R. Ananthasayanam and S. N. Puri. Adaptive Kalman Filter Tuning inIntegrated of Low-Cost MEMS-INS/GPS. AIAA Guidance, Navigation, andControl Conference and Exhibit, Providence, Rhode Island,2004
    44J. Ali, J. Fang. SINS/ANS/GPS Integration Using Federated Kalman Filter Based onOptimized Information-Sharing Coefficients. AIAA Guidance, Navigation, andControl Conference and Exhibit, San Francisco, California,2005
    45钱勇.高精度三轴稳定卫星姿态确定和控制系统研究.西北工业大学博士学位论文.2002:3~4
    46李东.皮卫星姿态确定与控制技术研究.中国科学院博士学位论文.2005:9~10
    47J. C. Springmann, J. W. Cutler and H. Bahcivan. Magnetic Sensor Calibration andResidual Dipole Characterization for Application to Nanosatellites. AIAA/AASAstrodynamics Specialist Conference, Toronto, Canada,2010
    48M. Abdelrahman, S. Y. Park. Spacecraft Nonlinear Estimation and Control UsingMagnetic Measurements and Actuation: A Modified State-Dependent RiccatiEquation Approach. AIAA Guidance, Navigation, and Control Conference, Toronto,Canada,2010
    49T. Inamori, N. Sako and S. Nakasuka. Strategy of Magnetometer Calibration forNano-Satellite Missions and In-Orbit Performance. AIAA Guidance, Navigation,and Control Conference, Toronto, Canada,2010
    50Y. Oshman, F. Dellus. Fast Estimation of Spacecraft Angular Velocity UsingSequential Measurements of a Single Directional Vector. Journal of Spacecraft andRockets.2003,40(2):237~247
    51M. L. Psiaki, Y. Oshman. Spacecraft Attitude Rate Estimation from GeomagneticField Measurements. Journal of Guidance, Control and Dynamics.2003,26(2):244~252
    52T. E. Humphreys, M. L. Psiaki and E. M. Klatt, et al. Magnetometer-Based Attitudeand Rate Estimation for Spacecraft with Wire Booms. Journal of Guidance, Control,and Dynamics.2005,28(4):584~593
    53S. Yoshikawa, T. Nishiyama. Attitude Determination of Rotating Spacecraft byMagnetic Sensors. Sice Annual Confrence2007, Kagawa University, Japan,2007
    54S. Yoshikawa, T. Nishiyama. Attitude Determination of Rotating Spacecraft byMagnetometers and Rate Sensors. AIAA Guidance, Navigation and ControlConference and Exhibit, Honolulu, Hawaii,2008
    55C. S. Hart. Satellite Attitude Determination Using Magnetometer Data Only.47thAIAA Aerospace Sciences Meeting Including the New Horizons Forum andAerospace Exposition, Orlando, Florida,2009
    56R. D. Forno, F. Reali and S. Bristot, et al. Autonomous Navigation of MegSat1:Attitude, Sensor Bias and Scale Factor Estimation by EKF and Magnetometer-OnlyMeasurement.22ndAIAA International Communications Satellite SystemsConference&Exhibit, Monterey, California,2004
    57P. Tortora, Y. Oshman and F. Santoni. Spacecraft Angular Rate Estimation fromMagnetometer Data Only Using an Analytic Predictor. Journal of Guidance, Controland Dynamics.2004,27(3):365~373
    58J. C té, Jean de Lafontaine. Magnetic-Only Orbit and Attitude Estimation Using theSquare-Root Unscented Kalman Filter: Appilication to the Proba-2Spacecraft.AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu,Hawaii,2008
    59A. M. Sabatini. Quaternion-Based Extended Kalman Filter for DeterminingOrientation by Inertial and Magnetic Sensing. IEEE Transactions on BiomedicalEngineering.2006,53(7):1346~1356
    60K. L. Lai, J. L. Crassidis and R. B. Harman. Real-Time Attitude-Independent GyroCalibration from Three-Axis Magnetometer Measurements. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Providence, Rhode Island,2004
    61G. F. Ma, X. Y. Jiang. Unscented Kalman Filter for Spacecraft Attitude Estimationand Calibration Using Magnetometer Measurements. Proceedings of the FourthInternational Conference on Machine Learning and Cybernetics. Guangzhou,2005:506~511
    62M. D. Shuster, S. D. Oh. Three-Axis Attitude Determination from VectorObservations. Journal of Guidance, Control, and Dynamics.1981,4(1):70~77
    63G. Wahba. A Least-Squares Estimate of Satellite Attitude. SIAM Review.1965,7(3):409~409
    64J. R. Wertz. Spacecraft Attitude Determination and Control. Boston, MA: KluwerAcademic Publishers.1978:426~428
    65F. L. Markley. Attitude Determination Using Vector Observations and the SingularValue Decomposition. The Journal of Astronautical Sciences.1988,36(3):245~258
    66F. L. Markely. Attitude Determination Using Vector Observations: A Fast OptimalMatrix Algorithm. Journal of the Astronautical Sciences.1993,41(2):261~280
    67E. J. Lefferts, F. L. Markley and M. D. Shuster. Kalman filtering for SpacecraftAttitude Estimation. Journal of Guidance, Control, and Dynamics.1982,5(5):417~429
    68I. Y. Bar-itzhack, J. Reiner. Recursive Attitude Determination From VectorObservations: Direction Cosine Matrix Identification. Journal of Guidance, Control,and Dynamics.1984,7(1):51~56
    69Y. Oshman, F. L. Markley. Minimal-Parameter Attitude Matrix Estimation FromVector Observations. Journal of Guidance, Control, and Dynamics.1998,21(4):595~602
    70Y. Oshman, F. L. Markley. Sequential Attitude and Attitude-Rate Estimation UsingIntegrated-Rate Parameters. Journal of Guidance, Control, and Dynamics.1999,22(3):385~394
    71H. Schaub, J. L. Junkins. Stereographic Orientation Parameters for AttitudeDynamics: A Generalization of the Rodrigues Parameters. Journal of theAstronauticl Science.1996,44(1):1~20
    72M. Idan. Estimation of Rodrigues Parameters from Vector Observations. IEEETransactions on Aerospace and Electronic Systems.1996,32(2):578~585
    73R. Zanetti, R. H. Bishop. Quaternion Estimation and Norm Constrained KalmanFiltering. AIAA/AAS Astroadynamics Specialist Conference and Exhibit. Keystone,Colorado,2006
    74A. J. Calise. Enforcing an Algebraic Constraint in Extended Kalman Filter Design.AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head,South Carolina,2007
    75D. Choukroun, I. Y. Bar-Itzhack and Y. Ohsman. Novel Quaternion Kalman Filter.IEEE Transaction on Aerospace and Electronic Systems.2006,42(1):174~190
    76F. L. Markley. Attitude Error Representations for Kalman Filtering. Journal ofGuidance, Control and Dynamics.2003,63(2):311~317
    77M. E. Pittelkau. Rotation Vector Attitude Estimation. Journal of Guidance, Controland Dynamics.2003,26(6):855~860
    78M. D. Shuster. Constraint in Attitude Estimation. Part I: Constrained Estimation.Journal of the Astronautical Sciences.2003,51(1):51~74
    79M. D. Shuster. Constraint in Attitude Estimation. Part II: Unconstrained Estimation.Journal of the Astronautical Sciences.2003,51(1):75~101
    80J. L. Crassidis, F. L. Markley. Minimum Model Error Approach for AttitudeEstimation. Journal of Guidance, Control and Dynamics.1997,20(6):1241~1247
    81J. L. Crassidis, F. L. Markley. Predictive Filtering for Attitude Estimation withoutRate Sensors. Journal of Guidance, Control, and Dynamics.1997,20(3):522~527
    82Y. Oshman, A. Carmi. Attitude Estimation from Vector Observations UsingGenetic-Algorithm-Embedded Quaternion Particle Filter. Journal of Guidance,Control, and Dynamics.2006,29(4):879~891
    83Y. Oshman, A. Carmi. Fast Particle Filtering for Attitude and Angular-RateEstimation from Vector Observations. Journal of Guidance, Control, and Dynamics.2009,32(1):70~78
    84J. K. Thienel, R. M. Sanner. A Coupled Nonlinear Spacecraft Attitude Controllerand Observer with an Unknown Constant Gyro Bias and Gyro Noise. IEEETransactions on Automatic Control.2003,48(11):2011~2015
    85J. K. Thienel, R. M. Sanner. Hubble Space Telescope Angular Velocity EstimationDuring the Robotic Servicing Mission. Journal of Guidance, Control, andDynamics.2007,30(1):29~34
    86P. W. Chodas. Combined Satellite Attitude and Orbit Determination with Dynamiccoupling. AIAA/AAS Astrodynamics Conference, San Diego, CA,1982
    87G. B. Sincarsin, P. C. Hughes. Gravitational Orbit-Attitude Coupling for Very LargeSpacecraft. AIAA/AAS Astrodynamics Conference, San Diego, CA,1982
    88S. Sgubini, P. Teofilatto. Attitude-Orbit Dynamical Coupling in Tethered Systems.6thInternational Conference on Dynamics and Control of Systems and Structures inSpace, Cinque Terre, Liguria, Italy,2004
    89S. Gaulocher, C. Pittet and J. P. Chrétien. Six-DOF Formation Flying Modeling andControl with an Application to Space Interferometry.6thInternational ESAConference on Guidance, Navigation and Control Systems, Loutraki, Greece,2005
    90K. Y. Lian, L. S. Wang and L. C. Fu. Controllability of Spacecraft Systems in aCentral Gravitational Field. IEEE Transactions on Automatic Control.1994,39(12):2426~2441
    91H. Pan, H. Wong and V. Kapila. Output Feedback Control for Spacecraft withCoupled Translation and Attitude Dynamics.43rdIEEE Conference on Decision andControl, Atlantis, Paradise Island, Bahamas,2004
    92彭东亮,荆武兴,徐世杰.停靠阶段姿态轨道耦合动力学与控制研究.飞行力学.2002,20(1):33~37
    93S. R. Ploen, F. Y. Hadaegh and D. P. Scharf. Rigid Body Equations of Motion forModeling and Control of Spacecraft Formations–Part1: Absolute Equations ofMotion. Proceeding of the2004American Control Conference, Boston, USA,2004,4:3646~3653
    94邹晖,陈万春,殷兴良.几何代数及其在飞行力学中的应用.飞行力学.2004,22(4):60~64
    95方茹,曹喜滨,张锦绣.几何代数及其在摄动Kepler问题中的应用.哈尔滨工业大学学报.2008,40(2):282~286
    96W. Clifford. Preliminary Sketch of Biquaternions. Proc. London Math. Soc.,1873,4:381~395
    97M. Chasles. Note Sur Les Propriétés Générales du Système de Deux CorpsSemblables Entr'eux et Placés D'une Manière Quelconque Dans L'espace; et Sur leDéplacement Fini ou Infiniment Petit D'un Corps Dolide Libre, Férussac, Bulletindes Sciences Mathématiques,1830,14:321~326
    98武元新.对偶四元数导航算法与非线性高斯滤波研究.国防科学技术大学博士学位论文.2005:13~43
    99王峰.在轨服务航天器对目标逼近过程动力学与控制研究.哈尔滨工业大学博士学位论文.2009:56~76
    100崔本杰.基于对偶四元数的航天器相对导航方法研究.哈尔滨工业大学硕士学位论文.2009:73~106
    101L Li, H. Sun. A method of Astronomical Autonomous Orbit and AttitudeDeterminations for Satellites. Chinese Astronomy and Astrophysics.2003,27(4):481~489
    102C. Kühl. Combined Earth/Star Sensor for Attitude and Orbit Determination ofGeostationary Satellites. Dissertation, University Stuttgart,2005:89~108
    103B. P. Morton, K. Koprubasi and M. L. Thein. Attitude Determination and OrbitalEstimation Using Earth Position and Magnetic Field Vector Measurements.Proceeding of the American Control Conference. Boston, MA, USA,2004,5:4084~4089
    104J. K. Thienel, R. R. Harman and I. Y. Bar-Itzhack, et al. Results of theMagnetometer Navigation (MAGNAV) Inflight Experiment. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Providence, Rhode Island,2004
    105C. A. Wright, E. G. Lightsey. An Autonomous6Degrees of Freedom NavigationSystem for A Maneuverable Pico-Satellite Rendezvous Mission. AIAA Guidance,Navigation, and Control Conference, Toronto, Ontario Canada,2010
    106M. Abdelrahman, S. Y. Park. Simultaneous spacecraft attitude and orbit estimationusing magnetic field vector measurements. Aerospace Science and Technology.2011,15(8):653~669
    107J. D. Wolfe, J. L. Speyer and S. Hwang, et al. Estimation of Relative SatellitePosition Using Transformed Differential Carrier-Phase GPS Measurements. Journalof Guidance, Control, and Dynamics.2007,30(5):1217~1227
    108T. Ebinuma. Precision Spacecraft Rendezvous Using Global Positioning System: anIntegrated Hardware Approach. Dissertation, University of Texas, Austin,2002
    109F. D. Busse. Precise Formation State Estimation in Low Earth Orbit Using CarrierDifferential GPS. Dissertation, Stanford University, Stanford,2003
    110S. Leung, O. Montenbruck. Real-Time Navigation of Formation-Flying SpacecraftUsing Global-Positining-System Measurements. Journal of Guidance, Control, andDynamics.2005,28(2):226~235
    111G. H. Purcell, D. Kuang and S. Lichten, et al. Autonomous Formation Flyer (AFF)Sensor Technology Development. Proceeding of the21st Annual AAS Guidance andControl Conference, Breckenridge, CO, United States,1998:463~481
    112M. Aung, G. H. Purcell. Autonomous Formation Flying Sensor for the StarLightMission. The Interplanetary Network Progress Report.2002:1~15
    113杏建军,郗晓宁,王威,高玉东.星间相对测量在三星编队中的应用.空间科学学报.2003,23(4):286~293
    114吴云华.编队飞行卫星相对姿态确定与控制方法研究.哈尔滨工业大学硕士学位论文.2006:11~40
    115林来兴.空间交会对接技术.国防工业出版社.1995:60~211
    116N. G. Creamer, G. C. Gilbreath. Optical Communication and Navigation UsingModulating Retroreflectors. Journal of Guidance, Control and Dynamics.2004,27(1):100~106
    117周文勇,袁建军,罗建军.对异面椭圆轨道目标航天器饶飞的相对导航算法.西北工业大学学报.2007,25(2):210~214
    118杨文博,李英波,张小伟,施常勇,朱庆华.基于Unscented滤波的伴飞卫星自主相对导航滤波器.上海航天.2009,26(2):45~49
    119雪丹.航天器编队的相对轨道确定方法研究.哈尔滨工业大学博士学位论文.2007:36~57
    120T. A. Clarke, J. F. Fryer and X. Wang. The Principle Point and CCD Cameras.Photogrammetric Record.1998,16(92):293~312
    121R. Lancaster, C. I. Underwood. The SNAP-1Machine Vision System.12thAIAA/USU Annual Conference on Small Satellites, Logan, UT,2000
    122K. K. Gunnam, D. C. Hughes and J. L. Junkins, et al. A Vision-Based DSPEmbedded Navigation Sensor. IEEE Sensors Journal.2002,2(5):428~442
    123李立涛,杨旭,李顺利.针对非合作目标的中距离相对导航方法.吉林大学学报(工学版).2008,34(4):986~990
    124杨昌翠,岳晓奎.主从式编队卫星相对导航方法研究.计算机仿真.2008,25(12):46~48
    125楚瑞.基于GPS/激光雷达的编队卫星相对导航研究.电子科技.2008,21(7):53~56
    126T. L. Song, J. L. Speyer. The Modified Extended Kalman Filter and ParameterIdentification in Linear System. Automatica.1986,22(1):59~75
    127J. Sasindek, Q. Wang and R. Johnson, et al. UAV Navigation Based on ParallelExtended Kalman Filter. AIAA Guidance, Navigation and Control ConferenceDenver, Colorado,2000
    128P. J. Huxel. Navigation Algorithms and Observability Analysis for Formation FlyingMissions. Dissertation, The University of Texas, Austin.2006:37~49
    129S. James. Pose and Motion Estimation from Vision Using Dual Quaternion BasedExtended Kalman Filtering. Dissertation, The University of Tennessee, Knoxville.1997:54~74
    130C. D. Karlgaard, H. Schaub. Huber-Based Divided Difference Filtering. Journal ofGuidance, Control, and Dynamics.2007,30(3):885~891
    131C. T. Chao, C. C. Teng. A Fuzzy Neural Network Based Extended Klamn Filter.International Journal of System Science.1996,27(3):333~339
    132M. C. Algrain, J. Saniie. Interlaced Kalman Filtering of3D Angular Motion Basedon Euler’s Nonlinear Equations. IEEE Transations on Aerospace and ElectronicSystems.1994,30(1):175~185
    133郭雪姣.非线性滤波算法研究及其在卫星高精度定轨中的应用.国防科学技术大学硕士学位论文.2010:2~6
    134曲从善,许化龙,谭营.非线性贝叶斯滤波算法综述.电光与控制.2008,15(8):64~71
    135S. J. Julier. The Scaled Unscented Transformation. Proceedings of the AmericanControl Conference. Anchorage,2002:4555~4559
    136J. Carpenter, P. Clifford and P. Fearnhead. Improved Particle Filter for NonlinearProblems. IEE Proceedings on Radar, Sonar and Navigation.1999,146(1):2~7
    137G. Zames. Feedback and Optimal Sensitivity: Model Reference Transformations,Multiplicative Semi-norms, and Approximate Inverses. IEEE Transactions onAutomatic Control.1981,26(2):301~320
    138S. M. Rami, D. A. Brent and C. George. Stochastic Interpretation of H∞andRobust Estimation. Proceedings of the33rdConference on Decision and Control.Cambridge, MA,1994,4:3943~3948
    139R. K. Mehra. Approaches to Adaptive Filtering. IEEE Transactions on AutomaticControl.1972,17(5):693~698
    140P. Maybeck. Stochastic Models, Estimation and Control. New York: AcademicPress.1982
    141S. Gao, Y. Zhong and W. Li. Robust Adaptive Filtering Method for SINS/SARIntegrated Navigation System. Aerospace Science and Technology.2010,15(6):425~430
    142黄晓瑞,崔平远,崔祜涛. GPS/INS组合导航系统自适应滤波算法与仿真研究.飞行力学.2001,19(2):69~72
    143李洪波,杨军锋.自适应Kalman滤波在多传感器数据融合中的应用.国外电子测量技术.2006,25(6):69~71
    144H. E. Soken, C. Hajiyev. Pico Satellite Attitude Estimation via Robust UnscentedKalman Filter in the Presence of Measurement Faults. ISA Transactions.2010,49(3):249~256
    145C. Hide, T. Moore and M. Smith. Adaptive Kalman Filtering Algorithms forIntegrating GPS and Low Cost INS. Position Location and Navigation Symposium.2004:227~233
    146C. Hajiyev. Adaptive Filtration Algorithm with the Filter Gain Correction Applied toIntegrated INS/Rader Altimeter. Proceedings of the Institution of MechanicalEngineers, Part G: Journal of Aerospace Engineering.2007,221(5):847~855
    147S. C. Douglas. Introduction to Adaptive Filters. Boca Raton: CRC Press LLC,1999:1~20
    148K. H. Kim, J. G. Lee, and C. G. Park. Adaptive Two-Stage Kalman Filter in thePresence of Unknown Random Bias. International Journal of Adaptive Control andSignal Processing.2006,20(7):305~319
    149刘暾,赵钧.空间飞行器动力学.哈尔滨工业大学出版社.2003:153~162
    150章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社.1998:39~70,180~184
    151Y. Geng, J. Wang. Adaptive Estimation of Multiple Fading Factors in Kalman Filteror Navigation Applications. GPS Solutions.2008,12(4):273~279
    152T. P. McGarty. Stochastic Systems and State Estimation.1st Edition. New York,John Wiley&Sons Inc,1974
    153J. J. Deyst, C. F. Price. Conditions for Asymptotic Stability of the DiscreteMinimum-Variance Linear Estimator. IEEE Transactions on Automatic Control.1968,13(6):702~705
    154K. H. Kim, J. G. Lee and C. G. Park. The Stability Analysis of the Adaptive Two-Stage Kalman Filter. International Journal of Adaptive Control and SignalProcessing.2007,21(10):856~870
    155J. Xu, Y. Jing, and G. M. Dimirovski, et al. Two-Stage Unscented Kalman Filter forNonlinear Systems in the Presence of Unknown Random Bias.2008AmericanControl Conference, Westin Seattle Hotel, Seattle, Washington, USA,2008
    156C. W. Park, J. P. How and L. Capots. Sensing Technologies for Formation FlyingSpacecraft in LEO using CDGPS and An Interspacecraft Communications System.Navigation.2002,49(1):45~60
    157P. Ferguson, J. How. Decentralized Estimation Algorithms for Formaton FlyingSpacecraft. Proceedings of the AIAA Guidance, Navigation, and ControlConference.2003:1~29
    158R. Hermann, A. K. Krener. Nonlinear Controllability and Observability. IEEETransactions on Automatic Control.1977,22(5):728~740
    159D. Goshen-Meskin, I. Y. Bar-Itzhack. Observability Analysis of Piece-WiseConstant Systems. I: Theory. IEEE Transactions on Aerospace and ElectronicSystems.1992,28(4):1056~1067
    160J. R. Yim, J. L. Grassidis and J. L. Junkins. Autonomous Orbit Navigation ofInterplanetary Spacecraft. AIAA/AAS Astrodynamis Specialist Conference, Denver,CO,2000:53~61
    161Z. Chen. Local Observability and Its Application to Multiple MeasurementEstimation. IEEE Transactions on Industrial Electronics.1991,38(6):491~496
    162E. J. Lefferts, F. L. Markley and M. D. Shuster. Kalman Filtering for SpacecraftAttitude Estimation. Journal of Guidance, Control and Dynamics.1982,5(5):417~429
    163K.T. Alfriend, S.R. Vadali and P. Gurfil, et al. Spacecraft Formation Flying–Dynamics, Control and Navigation. Elsevier’s Science&Technology Publisher.2010:1~11
    164R. G. Zenick, K. Kohlhepp. GPS Micro Navigation and Communication System forClusters of Micro and Nanosatellites. IEEE Proceedings of Aerospace Conference.Solana Beach, CA,2001,5:2515~2522
    165Y. Wu, X. Cao and D. Xue. Autonomous Relative Navigation for Formation FlyingSatellites.1st International Symposium on Systems and Control in Aerospace andAstronautics, Harbin, China,2006:332~337
    166S. G. Kim, J. L. Crassidis and Y.Cheng, et al. Kalman Filtering for RelativeSpacecraft Attitude and Position Estimation. Journal of Guidance, Control, andDynamics,2007,30(1):133~143
    167J. L.Crassidis, R. Alonso, and J. L. Junkins. Optimal Attitude and PositionDetermination From Line-of-Sight Measurements. The Journal of the AstronauticalSciences,2000,48(2-3):891~896
    168Y. Cheng, J. L. Crassidis and F. L. Markley. Attitude Estimation for Large Field-of-View Sensors. Journal of the Astronautical Sciences.2006,54(3-4):433~448
    169S. Segal, P. Gurfil. Effect of Kinematic Rotation-Translation Coupling on RelativeSpacecraft Translational dynamics. Journal of Guidance, Control, and Dynamics.2009,32(3):1045~1050
    170D. Sun, J. L. Crassidis. Observability Analysis of Six-Degree-of-FreedomConfiguration Determination Using Vector Observations. Journal of Guidance,Control, and Dynamics.2002,25(6):1149~1157
    171H. W. Sorenson. Parameter Estimation, Principles and Problems. Marcel Dekker.New York.1980
    172N. A. Carlson. Federated Filter for Fault-Tolerant Integrated Navigation Systems.IEEE Proceedings of Position Location and Navigation Symposium.1988:110~119
    173N. A. Carlson. Federated Filter for Computer-Efficient, Near-Optimal GPSIntegration. IEEE Proceedings of Position Location and Navigation Symposium.1996:306~314
    174S. J. Julier, J. K. Uhlmann. Reduced Sigma Point Filters for the Propagation ofMeans and Covariances through Transformations. Proceedings of the AmericanControl Conference. Anchorage,2002:887~892
    175S. J. Julier. The Spherical Simplex Unscented Transformation. Proceedings of theAmerican Control Conference. Denver, Colorado,2003:2430~2434
    176L. Blackmore, F. Y. Hadaegh. Necessary and Sufficient Conditions for AttitudeEstimation in Fractionated Spacecraft Systems. AIAA Guidance, Navigation, andControl Conference, Chicago, lllinois,2009
    177K. Thomas. Linear System. PrenticeHall. Inc., Englewood Cliffs, NJ.1980
    178F. L. Markley. Autonomous Navigation Using Landmark and Intersatellite Data.AIAA/AAS Astrodynamics Conference, Seattle, Washington,1984
    179J. R. Yim, J. L. Crassidis and J. L. Junkins. Autonomous Orbit Navigation of TwoSpacecraft System Using Relative Line of Sight Vector Measurements. AAS/AIAASpace Flight Mechanics Meeting, Maui, HI, American Astronomical Society,Washington, D.C.,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700