用户名: 密码: 验证码:
沉默核干细胞因子对食管癌细胞生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上食管癌发病率和病死率最高的国家,每年全世界新诊断的30万食管癌患者中1/2(16.72万)以上发生在中国。食管癌的浸润转移是引起食管癌患者死亡的主要原因,因此对食管癌发生发展、浸润转移机制的探讨已成为研究的热点之一。
     肿瘤的发生发展是多因素、多步骤、多阶段和多基因改变的过程,癌基因和抑癌基因是受累最多的两大类型,各种关键基因的改变是人类肿瘤形成和发展的基础。近年来发现核干细胞因子(nucleostemin,NS)基因是一种新的p53结合蛋白,参与干细胞和肿瘤细胞的增殖调控,能维持细胞的扩增并抑制其向成熟细胞分化。先后发现胃癌、肾癌、乳癌、膀胱癌等肿瘤组织中NS基因表达量与肿瘤的侵袭力呈正相关,NS可能是在细胞周期的S期末和G2期通过已知的肿瘤抑制基因p53发挥作用来调节干细胞和癌细胞的增殖状态,NS可能是干细胞和肿瘤细胞穿越G2/M关键点的特异性调控因子。
     表皮生长因子(epidermal growth factor,EGF)是近年来发现的在细胞增殖和分化中起重要作用的因子,可促进正常细胞的恶性转化及刺激肿瘤细胞的增殖。还与肿瘤浸润转移密切相关。研究表明EGF是通过细胞表面的表皮生长因子受体(epidermalgrowth factor receptor,EGFR)发挥其生物学效应。在许多肿瘤组织中均发现EGF及其受体EGFR的过表达且二者具有相关性。
     RNA干扰(RNAi)是多种生物体内由双链RNA介导同源mRNA降解的现象。在细胞中,长的dsRNA被类似RNaseIH的Dicer酶切割成21-26核苷酸的小干扰RNA(siRNA)。RNAi基因阻断的有效性和特异性使其可能成为疾病基因疗法的理想工具。
     作者拟联合检测食管癌组织中NS、EGF、EGFR的表达,构建针对NS基因的siRNA真核表达载体,转染食管癌EC9706细胞株,观察EC9706细胞生物学特性的变化及NS基因沉默对裸鼠移植瘤生长的影响。全文共分3部分,摘要分述如下。
     第一部分食管鳞状细胞癌组织中NS、EGF及EGFR的表达及其相互关系
     目的探讨食管鳞状细胞癌组织中NS、EGF及EGFR的表达及三者之间的关系。
     方法采集62例食管鳞状细胞癌组织及其相应的31例癌旁不典型增生组织和62例正常食管黏膜组织标本。62例食管鳞状细胞癌组织学分级Ⅰ级15例,Ⅱ级25例,Ⅲ级22例;淋巴结转移20例,无淋巴结转移组42例。浸润浅层7例,肿瘤浸润深度在黏膜层、黏膜下层或浅肌层;深层55例,肿瘤浸润深度在深肌层或纤维膜。分别采用免疫组织化学、原位杂交方法检测上述标本NS、EGF、EGFR蛋白及mRNA的表达情况,RT-PCR、Real-time PCR检测NS mRNA,并分析其与食管鳞状细胞癌临床病理参数的关系。
     结果
     1)免疫组织化学方法检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中NS蛋白阳性表达率分别为17.7%、41.9%和69.4%,3组间比较差异有统计学意义(P<0.05);原位杂交检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中NS mRNA阳性表达率分别为21.0%、25.8%和69.4%,3组间比较差异有统计学意义(P<0.05);RT-PCR检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中NS mRNA相对表达量依次为0.866±0.103、0.913±0.085、0.971±0.121,3组间比较差异有统计学意义(P<0.05);Real-time PCR检测结果显示:食管鳞状细胞癌组织、癌旁不典型增生组织和正常食管黏膜组织中NS mRNA表达水平分别为(4.53±2.16)、(3.09±2.28)和(2.10±2.34),3组间比较差异有统计学意义(P<0.05)。食管鳞状细胞癌组织中NS蛋白阳性表达率、NS mRNA阳性表达率及RT-PCR、Real-time PCR检测结果均显示:NS蛋白和NS mRNA的表达与患者的年龄、性别无关(P>0.05);与组织学分级、浸润深度和淋巴结转移有关(P<0.05)。组织学分级越差、浸润越深及有淋巴结转移者NS蛋白、NS mRNA阳性表达率及RT-PCR、Real-time PCR检测的NS mRNA表达水平越高。
     2)免疫组织化学方法检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中EGF蛋白的阳性表达率分别为27.4%、45.2%和69.4%,3组间比较差异有统计学意义(P<0.05)。原位杂交检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中EGF mRNA的阳性表达率分别为40.3%、48.3%和77.4%。3组间比较差异有统计学意义(P<0.05)。食管鳞状细胞癌组织中EGF蛋白阳性表达率、EGF mRNA阳性表达率与患者的年龄、性别无关(P>0.05);与组织学分级、浸润深度和淋巴结转移有关(P<0.05),组织学分级越差、浸润越深及有淋巴结转移者NS蛋白阳性表达率、EGF mRNA阳性表达率越高。
     3)免疫组织化学方法检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中EGFR蛋白的阳性表达率分别为14.5%、35.5%和71.0%,3组间比较差异有统计学意义(P<0.05)。原位杂交检测结果显示:正常食管黏膜组织、癌旁不典型增生组织和食管鳞状细胞癌组织中EGFR mRNA的阳性表达率分别为40.3%、48.3%和75.8%,3组间比较差异有统计学意义(P<0.05)。食管鳞状细胞癌组织中EGFR蛋白阳性表达率、EGFR mRNA阳性表达率与患者的年龄、性别无关(P>0.05);与组织学分级、浸润深度和淋巴结转移有关(P<0.05),组织学分级越差、浸润越深及有淋巴结转移者NS蛋白、EGFR mRNA阳性表达率越高。
     4)食管鳞状细胞癌组织中NS蛋白和EGF、EGFR蛋白的表达呈正相关,相关系数分别为0.545、0.731;食管鳞状细胞癌组织中NS mRNA和EGF mRNA、EGFRmRNA的表达呈正相关,相关系数分别为0.394、0.604。
     结论NS、EGF及EGFR的表达与食管鳞状细胞癌的发生发展密切相关,并且三者之间关系密切。
     第二部分pRNAT-U6.1-siNS干扰表达载体的构建及其对EC9706细胞生物学特性的影响
     目的构建针对NS基因的小干扰RNA(siRNA)真核表达载体,筛选出抑制效率最强的表达载体,探讨NS基因siRNA表达载体转染EC9706细胞后对其细胞生物学特性的影响。
     方法根据GenBank提供的NS基因AY825265 mRNA序列及siRNA设计原则设计siRNA,筛选得到126-144 nt,199-217 nt和487-505 nt 3个19 bp片段为靶序列;设计包含BamHI和XhoI酶切位点的3对靶向NS发卡样DNA寡核苷酸和一对随机对照发卡样DNA寡核苷酸,经过退火,将此序列克隆至载体pRNAT-U6.1中构建重组干扰表达载体;转化感受态细菌DH5α,提取质粒,应用PCR技术和测序方法鉴定重组克隆重组子。将构建好的4种siRNA表达载体转染EC9706细胞,同时设空载体对照组(转染pRNAT-U6.1空载体的细胞)及空白对照组(未转染的细胞),RT-PCR检测siRNA表达载体转染EC9706细胞后对NS mRNA的抑制作用,从而筛选出干扰效率最强的表达载体,并利用该载体转染EC9706细胞,应用Real-time PCR、原位杂交技术、Western blot和免疫细胞化学法分别检测干扰前后NS和EGFR mRNA及蛋白的表达的变化,进一步应用Boyden Chamber体外侵袭实验观察其对侵袭转移的影响,最后应用流式细胞术观察EC9706细胞周期和细胞凋亡的变化。
     结果
     1) siRNA发卡DNA的退火结果:siNS1、siNS2、siNS3和siC发卡样siRNA单链DNA寡核苷酸,退火后,电泳可见明亮条带,位于100bp下,约50-60bp处,与设计完全一致。
     2)克隆重组子鉴定结果:将转化菌落扩增后提取质粒,以空pRNAT-U6.1为阴性对照,使用pRNAT-U6.1插入鉴定引物进行扩增。空pRNAT-U6.1扩增产物为150 bp,阳性克隆由于插入约50 bp的发卡DNA片段,故扩增产物约为200 bp。所有3种针对NS和1个无关对照重组转化克隆都得到有阳性克隆,阳性重组子pRNAT-U6.1-siNS1、pRNAT-U6.1-siNS2、pRNAT-U6.1-siNS3和pRNAT-U6.1-siC插入片段测序的结果,与设计序列比较结果完全一致。
     3) RT-PCR方法分别测定各组EC9706细胞中NS mRNA表达水平显示:转染pRNAT-U6.1-siNS1、pRNAT-U6.1-siNS2和pRNAT-U6.1-siNS3的实验组细胞与3个对照组相比NS基因的mRNA表达水平明显降低,且pRNAT-U6.1-siNS2的沉默抑制作用强于pRNAT-U6.1-siNS1和pRNAT-U6.1-siNS3,几乎完全抑制,而3个对照组(无关siRNA对照组、空载体对照组和空白对照组)细胞中都存在较高水平NS mRNA表达。
     4)荧光定量PCR检测显示siRNA干预组NS mRNA水平为0.034±0.008;无关siRNA对照组为0.255±0.049;空白对照组为0.273±0.049;原位杂交法检测各组1000个细胞,siRNA干预组NS mRNA阳性表达细胞数20.8±22.5,无关siRNA对照组138.6±13.8,空白对照组137.6±9.9;免疫细胞化学法检测各组1000个细胞,siRNA干预组NS蛋白阳性表达细胞数60.8±33.5,无关siRNA对照组154.2±16.4,空白对照组154.0±17.2;siRNA干预组EC9706细胞NS mRNA和蛋白表达水平明显低于两个对照组(P<0.01)。
     5)荧光定量PCR检测显示siRNA干预组EGFR mRNA水平为0.071±0.017;无关siRNA对照组为0.094±0.030;空白对照组为0.102±0.030;原位杂交法检测各组1000个细胞,siRNA干预组EGFR mRNA阳性表达细胞数29.4±10.4,无关siRNA对照组64.6±14.9,空白对照组79.4±20.8;免疫细胞化学法检测各组1000个细胞,siRNA干预组EGFR蛋白阳性表达细胞数38.2±15.6,无关siRNA对照组92.6±29.2,空白对照组94.8±19.4;siRNA干预组EC9706细胞EGFR mRNA和蛋白表达水平明显低于2个对照组(P<0.01)。
     6) Boyden chamber体外侵袭实验结果:siRNA干预组穿越Matrigel胶的细胞数69.0±13.6,无关siRNA对照组为126.6±10.8,空白对照组119.4±20.9,与2对照组相比,siRNA干预组穿越Matrigel胶的细胞数减少(P<0.05)。
     7)流式细胞术结果显示干扰NS基因的表达能明显促使细胞静止在G0/G1期,并且能诱导细胞凋亡。
     结论成功构建了一组针对NS基因的siRNA表达载体,并筛选出最强的干扰表达载体,NS的下调能直接影响到EGFR的表达水平的下调,此外抑制NS的表达能降低EC9706细胞侵袭转移能力,并促使细胞周期静止在G0/G1期和诱导细胞凋亡。这些数据为后续利用该基因靶向治疗食管鳞状细胞癌提供理论依据。
     第三部分NS基因沉默对裸鼠移植瘤生长的抑制作用
     目的靶向NS基因的RNAi技术沉默EC9706细胞的NS表达,探讨将其接种裸鼠体内后对EC9706细胞的生长抑制作用。
     方法分别将转染pRNAT-U6.1-siNS2的EC9706细胞(siRNA干预组),转染pRNAT-U6.1-siC的EC9706细胞(无关siRNA对照组)和未转染的EC9706(空白对照组)种植到裸鼠皮下,每组5只,比较裸鼠成瘤大小。分别应用RT-PCR、原位杂交、Western-blot及免疫组织化学方法检测裸鼠肿瘤组织中NS、EGF及EGFR基因mRNA和蛋白的表达情况。
     结果3组细胞接种裸鼠背部皮下,经过5~10 d的成瘤潜伏期后,在其接种部位形成肉眼可见的肿瘤块,5周后3组裸鼠皮下均形成瘤体,成瘤率均为100%。5周后,空白对照组移植瘤大小为(1 806.40±77.75)mm~3,无关siRNA对照组为(1702.20±88.60)mm~3,siRNA干预组为(847.00±82.25)mm~3。RT-PCR、原位杂交、Western-blot及免疫组织化学方法检测裸鼠肿瘤组织中NS基因mRNA和蛋白的表达情况均显示,siRNA干预组NS基因的mRNA及蛋白表达均较两对照组降低(P<0.05),免疫组化和原位杂交显示siRNA干预组EGF和EGFR基因的mRNA及蛋白表达均较两对照组降低(P<0.05)。
     结论EC9706细胞NS基因沉默可抑制裸鼠移植瘤生长,降低裸鼠体内NS、EGF及EGFR基因的表达。NS基因沉默可能成为食管癌治疗的新策略。
China is a country with the highest morbidity and mortality of esophageal carcinoma in the world.Each year,300 thousand people develop esophageal carcinoma,while more than half of them are Chinese people(167.2 thousand).Most patients suffered from esophageal carcinoma die of tumor infiltration and metastasis.So how to control tumors, especially esophageal carcinoma,to develop,infiltration,and metastasis has been the hotspot.
     Tumorigenesis arises from the acquisition of multi-genetic alterations,combined with multiple factors and develops in consecutive progression.Oncogenes and tumor suppressor genes are the two kinds of genes most involved in tumorigenesis,among which the alterations of multiple key genes lie the basis to carcinogenesis.The production of nucleostemin gene,nucleostemin(NS),a novel p53 binding protein,is found to play a role in controlling the cell cycle progression in stem cells and malignant cells,predominantly maintain the cell proliferation and lead to the cell cycle withdrawal before maturation.NS gene expression is positively associated with tumor invasion,which has been confirmed in gastric cancer,renal cancer,breast cancer,and bladder cancer,etc.NS regulates the stem cell and malignant cell proliferation by p53 gene in the late S stage and G2 stage during the cell cycle.That's why NS is supposed to be the pivotal regulator specifically controlling the cell cycle from G2 to M.
     Epidermal growth factor(EGF) is another vital factor in the cell proliferation and differentiation,which participates in transforming the normal cell to the neoplastic cell,and stimulates malignant cell to overgrowth,and which contributes to the neoplastic infiltration and metastasis.The excessive expression of EGF,together with the epidermal growth factor receptor(EGFR) has been indentified in many neoplasms.
     RNA interference(RNAi) is the process of mRNA degradation that is induced by double-stranded RNA in a sequence-specific manner.RNAi has been observed in all eukaryotes,from yeast to mammals.In the eukaryotes,the long dsRNAs get processed into 21-26 nucleotide small interfering RNAs(siRNAs) by an RNaseⅢ-like enzyme called Dicer.The power and utility of RNAi for specifically silencing the expression of any gene for which sequence is available has driven its incredibly rapid adoption as a tool for gene research.To demonstrate the application of RNAi on neoplasm,especially esophageal carcinoma,we designed the present research.We detected the NS,EGF,and EGFR in malignant esophagus tissues,constructed the siRNA expression system targeting NS, transfected the vector to esophageal carcinoma cell lines(EC9706),and finally,assessed the NS,EGF,and EGFR in the malignant cells as well as examined the neoplasm growth in vivo in the nude mice inoculated with tumor cells.The following was the abstract of the full article.
     Part One Expressions of NS,EGF and EGFR in esophageal squamous cell carcinoma and their associations with malignancy
     Objective To demonstrate the expressions of NS,EGF and EGFR in esophageal squamous cell carcinoma(ESCC) and their associations with neoplastic progression.
     Methods Sixty-two ESCC specimens,thirty-one adjacent dysplasia specimens and sixty-two normal mucosa specimens were used for determination.Histologically,fifteen neoplastic lesions were stageⅠ,twenty-five were stageⅡ,and twenty-two were stageⅢ. On metastasis,twenty had lymph node metastasis,and the other forty-two had not. According to invasion depth,seven cases were superficial,confined to the mucosa, submucosa,and superficial muscularis propria;while other fifty-five were deep to muscularis propria or adventitia.Immunohistochemi-stry was adopted to determine NS, EGF and EGFR proteins,and in situ hybridization was applied to measure NS,EGF and EGFR mRNA.RT-PCR and Real-time PCR were used to examine the expression levels of NS mRNA.The correlations of these proteins and mRNA with ESCC clinical data were statistically analyzed.
     Results
     1) The NS was expressed more(69.4%) in ESCC than in the adjacent hyperplasia and normal mucosa(41.9%and 17.7%,respectively) by immunohistochemisty(P<0.05), and NS mRNA was more positively detected in ESCC(69.4%) than in the other two groups (25.8%and 21.0%,respectively,P<0.05) by in situ hybridization.The following RT-PCR and Real-time PCR further confirmed that NS mRNA level in ESCC were higher than the other groups(P<0.05).Correlation analysis revealed that NS and its mRNA were unrelated with age or gender(P>0.05),but positively related with the histological evaluation, invasion depth and the lymph node metastasis.
     2) More EGF protein was expressed in ESCC(69.4%) than in adjacent hyperplasia and normal mucosa(45.2%and 27.4%respectively,P<0.05),and the adjacent hyperplasia had more EGF than the normal mucosa(P<0.05).In situ hybridization demonstrated the similar results:EGF mRNA in ESCC was expressed the most(77.4%) among the three groups,and the adjacent hyperplasia was less than the ESCC but more than the normal tissue(45.2%vs.27.4%,P<0.05).It could not be confirmed that the EGF and its mRNA was associated with age or gender(P>0.05),but what has been confirmed was that they were related to the tumor malignancy as well as the NS and NS mRNA(P<0.05).
     3) EGFR and EGFR mRNA expression from the most to the least were ESCC(71.0% and 75.8%),adjacent hyperplasia(35.5%and 48.3%) and normal mucosa(14.5%and 40.3%)(P<0.05).EGFR and EGFR mRNA were not relative to the age or gender but to the tumor stages,invasion depth,and lymph node metastasis.
     4) The NS in neoplastic tissues was positively correlated with the EGF and EGFR, with the correlation coefficients were 0.545 and 0.731 respectively.And so did their mRNA, with the coefficients were 0.394 and 0.604 respectively.
     Conclusion NS,EGF and EGFR are closely related with the carcinogenesis and development of ESCC.
     Part Two The biobehaviour of the EC9706 cells transfected with the constructed siRNA expression system targeting against NS gene
     Objective To construct and select an effective eukaryotic expression system of short interfering RNA(siRNA) suppressing NS gene,and evaluate the biobehaviour of EC9706 cells transfected with this expression system.
     Methods The sequences of siRNA for NS were taken from GenBank,and three 19 bp oligonucleotides were selected as targeting sequences(accession numbers:AY825265 126-144 nt,199-217 nt and 487-505 nt).The three pairs of siRNA duplex for NS were inserted with BamHI and XhoI sites and a pair of nonspecific siRNA duplex was as control. After annealing,the designed oligonucleotides were cloned into plasmid pRNAT-U6.1 as the expression vector.The plasmid was transformed into the host E.coli DH5αand extracted for identification by PCR and sequencing.Transfected the four siRNA expression system to EC9706 cell line and set the empty vector as control and cells without transfection as blank control.The most effective siRNA expression system was selected by RT-PCR and transfected into the tumor cell line EC9706.The NS mRNA,EGFR mRNA and their proteins in the transfected EC9706 cells were detected by Real-time PCR,in situ hybridization and immunocytochemistry.The cell migration was examined by Boyden chamber assay.The cell cycle and apoptosis were assayed by flow cytometry.
     Results
     1) The bands of designed siRNA duplex of siNS1,siNS2,siNS3 and siC were visualized at 50-60 bp by gel electrophoresis,identical in size to the designed.
     2) The recombinant plasmids were extracted from the proliferated host and amplified. The empty vector was 150 bp and the recombinant plasmids were 200 bp,suggesting the 50 bp hairpin DNA oligonucleotides were inserted.The sequences of inserted fragments in the recombinant plasmid pRNAT-U6.1-siNS1,pRNAT-U6.1-siNS2,pRNAT-U6.1-siNS3 and pRNAT-U6.1-siC were identical to the designed sequences.
     3) RT-PCR showed that the NS mRNA was down-regulated in the cells transfected with pRNAT-U6.1-siNS1,pRNAT-U6.1-siNS2 and pRNAT-U6.1-siNS3,compared with the three control groups.The NS mRNA in cells transfected with pRNAT-U6.1-siNS2 was almost suppressed completely,with the least NS produced in all the transfected cells. Contrary to the cells transfected with pRNAT-U6.1-siNS1,pRNAT-U6.1-siNS2,and pRNAT-U6.1-siNS3,the cells transfectd with nonspecific siRNA plasmid,empty plasmid and blank cells produced high levels of NS mRNA.
     4) NS mRNAs in siRNA silencing group,nonspecific group and blank group were 0.034±0.008,0.255±0.049,0.273±0.049,respectively,by Real-time PCR.The in situ hybridization demonstrated that(2.08±2.25)%cells in siRNA silencing group expressed NS mRNA,(13.86±1.38)%cells in nonspecific siRNA group expressed NS mRNA and (13.76±0.99)%cells expressed NS mRNA in blank group.Immunocytochemistry detected the NS protein in(6.08±3.35)%cells of siRNA silencing group,in(15.42±1.64)%cells of nonspecific siRNA group and(15.40±1.72)%cells of blank control.The NS gene was significantly suppressed by siRNA,compared with the nonspecific group and the blank control group(P<0.01).
     5) EGFR mRNAs in siRNA silencing group,nonspecific group and blank group were 0.071±0.017,0.094±0.030 and 0.102±0.030 respectively,by Real-time PCR.The in situ hybridization demonstrated that(2.94±1.04)%cells in siRNA group expressed EGFR mRNA,(7.94±2.08)%cells in nonspecific siRNA group expressed EGFR mRNA and (6.46±1.49)%cells expressed EGFR mRNA in blank group,Immunocytochemistry detected the EGFR protein in(3.82±1.56)%cells of siRNA silencing group,in (9.26±2.92)%cells of nonspecific siRNA group and(9.48±1.94)%cells of blank control. The EGFR gene was significantly suppressed by siRNA,compared with the nonspecific group and the blank control group(P<0.01).
     6) The invasion test showed that less EC9706 cells with NS knocked down migrated across the Matrigel compared with the nonspecific siRNA cells and blank cells(69.0±13.6 vs.126.6±10.8 and 69.0±13.6 vs.119.4±20.9,respectively,P<0.05).
     7) The flow cytometry showed that NS suppression arrested the cell cycle in G0/G1 phase,and induced the cell apoptosis.
     Conclusion The NS specific siRNA expression system is established.The most effective expression system is selected and transfected into EC9706 cells.NS downregulation decreases the expression of EGFR and inhibites the aggression of EC9706. Furthermore,the NS suppression halts the cell cycle in G0/G1 phase and induces cell apoptosis.These data provide the foundation for the further gene therapy to esophageal cancer.
     Part Three The inhibition of siRNA-mediated NS gene silencing on the nude murine tumor xenograft model
     Objective To assess the inhibition of siRNA induced NS gene suppression on growth of EC9706 cells in the nude murine tumor xenograft model.
     Methods Inoculated the EC9706 cells transfected with pRNAT-U6.1-siNS2 to five nude mice in each group subcutaneously,injected pRNAT-U6.1-siC as nonspecific siRNA control,and untransfected cells as blank control.The volume of the xenograft was measured.RT-PCR,in situ hybridization and Western-blot were applied for detecting NS, EGF and EGFR mRNAs and their products.
     Results The tumors were visible five to ten days after inoculation,and five weeks later,the tumor xenografts were formed in all the animals.The volumes of tumor xenografts were(1806.40±77.75) mm~3 in blank group,(1702.20±88.60) mm~3 in nonspecific siRNA group,and(847.00±82.25) mm~3 in NS silencing group.Further assays showed that the targeted NS gene had been effectively inhibited and NS mRNA and protein had been knocked down in the NS specific siRNA group.The EGF mRNA and EGFR mRNA and proteins were also downregulated(P<0.05).
     Conclusion siRNA duplex targeting against NS delays the tumor xenograft growth, and reduces the expression of NS,EGF,and EGFR genes in the tumor xenograft models. The highly efficient siRNA mediated NS silence provides a novel gene analysis tool for therapeutic applications in malignant diseases.
引文
1 邹小农,陈万青,张思维,等.中国部分县1998~2002年食管癌发病与死亡.中国肿瘤,2007,16(3):142-146.
    2 张亚冰,赵立群,裘宋良,等.河南省林州市2004年与1980年食管癌前病变和食管癌患病率的比较研究.中华肿瘤预防杂志,2006,13(5):328-330.
    3 Tsai RY,McKay RD.A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells.Genes Dev,2002,16(23):2991-3003.
    4 Bernier J,Bonner J,Vermorken JB,et al.Consensus guidelines for the management of radiation dermatitis and coexisting acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the treatment of squamous cell carcinoma of the head and neck.Ann Oncol,2008,19:142-149.
    5 Fruehauf J.EGFR function and detection in cancer therapy.J Exp Ther Oncol,2006,5:231-246.
    6 Guo Z,Cai S,Fang R,et al.The synergistic effects of CXCR4 and EGFR on promoting EGF-mediated metastasis in ovarian cancer cells.Colloids Surf B Biointerfaces,2007,60(1):1-6.
    7 De Luca A,Carotenuto A,Rachiglio A,et al.The role of the EGFR signaling in tumor microenvironment.J Cell Physiol,2008,214(3):559-567.
    8 Ferrer-Soler L,Vazquez-Martin A,Brunet J,et al.An update of the mechanisms of resistance to EGFR-tyrosine kinase inhibitors in breast cancer:Gefitinib(Iressa)-induced changes in the expression and nucleo-cytoplasmic trafficking of HER-ligands.Int J Mol Med,2007,20(1):3-10.
    9 Reuter CW,Morgan MA,Eckardt A.Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck.Br J Cancer,2007,96(3):408-416.
    10 Goel S,Hidalgo M,Perez-Soler R..EGFR inhibitor-mediated apoptosis in solid tumors.J Exp Ther Oncol,2007,6(4):305-320.
    11 Adams J,Carder PJ,Banks RE.Vascular endothelial growth-factor(VEGF) in breast cancer:comparison of plasma,serum,and tissue VEGF and micro vessel density and effects of tamox-ifen.CancerRes,2000,60(11):2989-2994.
    12 Van Cutsem E.Integration of the anti-EGFR agent panitumumab into clinical practice in metastatic colorectal cancer.Clin Adv Hematol Oncol,2007,5(8):611-613.
    13 Press MF,Lenz HJ.EGFR,HER2 and VEGF pathways:validated targets for cancer treatment.Drugs,2007,67(14):2045-2075.
    14 Mimeault M,Pommery N,H(?)nichart JP.New advances on prostate carcinogenesis and therapies:involvement of EGF-EGFR transduction system.Growth Factors,2003,21(1):1-14.
    15 Ara(?)jo A,Ribeiro R,Azevedo I,et al.Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer-a review of the literature.Oncologist,2007,12(2):201-210.
    16 Edwin F,Wiepz GJ,Singh R,et al.A historical perspective of the EGF receptor and related systems.Methods Mol Biol,2006,327:1-24.
    17 Schindeh(u|¨)tte J,Fukumitsu H,Collombat P,et al.In vivo and in vitro tissue-specific expression of green fluorescent protein using the cre-lox system in mouse embryonic stem cells.Stem Cells,2005,23(1):10-15.
    18 Bernardi R,Pandolfi PP.The nucleolus:at the stem of immortality.Nat Med,2003,9(1):24-25.
    19 Phair RD,Misteli T.High mobility of proteins in the mammalian cell nucleus.Nature,2000,404(6778):604-609.
    20 Tsai RY,McKay RD.A multistep,GTP-driven mechanism controlling the dynamic cycling of nucleostemin.J Cell Biol,2005,168(2):179-184.
    21 刘冉录.Nucleostemin研究进展.天津医科大学学报,2007,13(1):132-134.
    22 Schindeh(u|¨)tte J,Fukumitsu H,Collombat P,et al.In vivo and in vitro tissue-specific expression of green fluorescent protein using the cre-lox system in mouse embryonic stem cells.Stem Cells,2005,23(1):10-15.
    23 Bernardi R,Pandolfi PP.The nucleolus:at the stem of immortality.Nat Med,2003,9(1):24-25.
    24 Kojima T,Kobayashi Y,Hirata Y.Epidermal growth factor(EGF).Nippon Rinsho,1995,53(Pt2):810-814.
    25 Carpenter G.EGF:new tricks for an old growth factor.Curr Opin Cell Biol,1993,5(2): 261-264.
    26 Dikic I.Mechanisms controlling EGF receptor endocytosis and degradation.Biochem Soc Trans,2003,31(Pt 6):1178-1181.
    27 Wiley HS,Shvartsman SY,Lauffenburger DA.Computational modeling of the EGF receptor system:a paradigm for systems biology.Trends Cell Biol,2003,13(1):43-50.
    28 Meert AP,Martin B,Delmotte P,et al.The role of EGF-R expression on patient survival in lung cancer:a systematic review with meta-analysis.Eur Respir J,2002,20(4):975-981.
    29 Murphy LC.Antiestrogen action and growth factor regulation.Breast Cancer Res Treat,1994,31(1):61-71.
    30 Ohnishi T.The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia.J Cancer Res Ther,2005,1(3):147-150.
    31 Song H,Xu Y.Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways.Cell Cycle,2007,6(13):1570-1573.
    32 Malaguarnera R,Vella V,Vigneri R,et al.p53 family proteins in thyroid cancer.Endocr Relat Cancer,2007,14(1):43-60.
    33 Hussain SP,Harris CC.p53 biological network:at the crossroads of the cellular-stress response pathway and molecular carcinogenesis.J Nippon Med Sch,2006,73(2):54-64.
    34 Ma HH,Pederson T.Depletion of the Nucleolar Protein Nucleostemin Causes G1 Cell Cycle Arrest via the p53 Pathway.Molecular Biology of the Cell,2007,18(7):2630-2635.
    35 Kamijo T,Weber JD,Zambetti G,et al.Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2.Proc Natl Acad Sci U S A,1998,95(14):8292-8297.
    36 Zhang Y,Xiong Y,Yarbrough WG.ARF promotes MDM2 degradation and stabilizes p53:ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.Cell,1998,92(6):725-734.
    37 Tao W,Levine AJ.P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2.Proc Natl Acad Sci U S A,1999,96(12):6937-6941.
    38 Blander G,Kipnis J,Leal JF,et al.Physical and functional interaction between p53 and the Werner's syndrome protein.J Biol Chem,1999,274(41):29463-29469.
    39 Sommers JA,Sharma S,Doherty KM,et al.p53 modulates RPA-dependent and RPA-independent WRN helicase activity.Cancer Res,2005,65(4):1223-1233.
    40 Cada Z,Boueek J,Dvorankov(?) B,et al.Nucleostemin expression in squamous cell carcinoma of the head and neck..Anticaneer Res,2007,27(5A):3279-3284.
    41 Fan Y,Liu Z,Zhao S,et al.Nucleostemin mRNA is expressed in both normal and malignant renal tissues,Br J Cancer,2006,94(11):1658-1662.
    42 Gasinska A,Kolodziejski L,Niemiec J,et,al.Clinieal significance of biological differences between cavitated and solid form of squamous cell lung cancer.Lung Cancer,2005,49(2):171-179.
    43 李玉林.病理学[M].第六版.北京:人民卫生出社,2004.113-117.
    44 Yamada A,Saito N,Kameoka S,et,at.Clinical significance of epidermal growth factor (EGF) expression in gastric cancer.Hepatogastroenterology,2007,54(76):1049-1052.
    45 吴飞翔,赵荫农,曹骥,等.EGF和EGFR在肝细胞癌中的表达及临床意义.肿瘤研究与临床,2005,17(2):96-99.
    46 赵荫农,曹骥,吴飞翔,等.EGF mRNA和EGFR mRNA在肝细胞癌组织中的表达及其意义,癌症,2004,23(7):762-766.
    1 Hammond SM,Bcrnstcin E,Bcach D,et al.An RNA-directcd nuclcase mediates post-transcriptional gene silencing in Drosophila cells.Nature,2000,404(6775):293-296
    2 Graham TL,Graham MY,Subramanian S,et al.RNAi silencing of genes for elicitation or biosynthesis of 5-deoxyisoflavonoids suppresses race-specific resistance and hypersensitive cell death in Phytophthora sojac infected tissues.Plant Physiol,2007,144:728-740.
    3 Fr(?)min C,Ezan F,Boisselicr P,et al.ERK2 but not ERK1 plays a key role in hcpatocytc replication:an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1null hepatocytcs.Hepatology,2007,45:1035-1045.
    4 Yuan J,Wang X,Zhang Y,et al.Mammalian Pol Ⅲ promoter H1 can transcribe shRNA inducing RNAi in chicken cells.Mol Biol Rep,2006,33:33-41.
    5 Yang JP,Fan W,Rogers C,et al.A novel RNAi library based on partially randomized consensus sequences of nuclear receptors:identifying the receptors involved in amyloid beta degradation.Genomics,2006,88:282-292.
    6 Moreb JS,Mohuczy D,Ostmark B,et al.RNAi-mediated knockdown of aldehyde dchydrogcnasc class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamidc.Cancer Chemother Pharmacol,2007,59:127-136.
    7 Nagira Y,Shimamura K,Hirai S,ct al.Identification and characterization of genes induced for anthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots using suppression subtractive hybridization,cDNA microarrays,and RNAi techniques.J Plant Res,2006,119:217-230.
    8 Dave RS.RNAi and tumor angiogcnesis:bridging the gap towards anti-cancer therapy?Leuk Res,2007,31:421-422.
    9 Liu G,Wong-Staal F,Li QX.Development of new RNAi therapeutics.Histol Histopathol,2007,22:211-217.
    10 Zhang Y,Boado RJ,Pardridge WM.In vivo knockdown of gcnc expression in brain cancer with intravenous RNAi in adult rats.J Gent Med,2003,5:1039-1045.
    11 Tummalapalli P,Spomar D,Gondi CS,et al.RNAi-mediated abrogation of cathepsin B and MMP-9 gone expression in a malignant meningioma cell line leads to decreased tumor growth,invasion and angiogenesis.Int J Oncol,2007,31:1039-1050.
    12 Kunigal S,Lakka SS,Gondi CS,et al.RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion,angiogenesis and growth..Int J Cancer,2007,121:2307-2316.
    13 Wang YH,Liu S,Zhang G,et al.Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo.Breast Cancer Res,2005,7:R 220-228.
    14 Gondi CS,Lakka SS,Dinh DH,et al.RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion,angiogenesis and tumor growth in gliomas.Oncogcne,2004,23:8486-8496.
    15 Kondraganti S,Gondi CS,McCutcheon I,et al.RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth.Int J Oncol,2006,28:1353-1360.
    16 Ke N,Zhou D,Chatterton JE.,et al.A new inducible RNAi xenografi model for assessing the staged tumor response to mTOR silencing.Exp Cell Rcs,2006,312:2726-2734.
    17 Huang WS,Wang JP,Wang T,et al.ShRNA-mediated gene silencing of beta-catenin inhibits growth of human colon cancer cells.World J Gastroenterol,2007,13:6581-6587.
    18 Soberer LJ,Frank R,Rossi JJ.Optimization and characterization of tRNA-shRNA expression constructs.Nucleic Acids Re,s,2007,35:2620-2628.
    19 Katoh T,Susa M,Suzuki T,et al.Simple and rapid synthesis of siRNA derived from in vitro transcribed shRNA.Nucleic Acids Res Suppl,2003,3:249-250.
    20 Seibler J,Kleinridders A,K(u|¨)ter-Luks B,et al.Reversible gene knockdown in mice using a tight,inducible shRNA expression system.Nucleic Acids Res,2007,35:e54.
    21 Grimm D,Kay MA.Therapeutic application of RNAi:is mRNA targeting finally ready for prime time? J Clin Invest,2007,117:3633-3641.
    22 Eki T,Ishihara T,Katsura I,et al.A genome-wide survey and systematic RNAi-based characterization of helicase-like genes in Caenorhabditis elegans.DNA Res,2007, 14:183-199.
    23 Jaubert-Possamai S,Le Trionnaire G,Bonhomme J,et al.Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum.BMC Biotechnol,2007,7:63.
    24 Castanotto D,Sakurai K,Lingeman R,et al.Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC.Nucleic Acids Res,2007,35:5154-5164.
    25 Lv W,Zhang C,Hao J.RNAi technology:a revolutionary tool for the colorectal cancer therapeutics.World J Gastroenterol,2006,12:4636-4639.
    26 Dallas A,Vlassov AV.RNAi:a novel antisense technology and its therapeutic potential.Med Sci Monit,2006,12:RA67-74.
    27 Bengert P,Dandekar T.Current efforts in the analysis of RNAi and RNAi target genes.Brief Bioinform,2005,6:72-85.
    28 Li LC,Okino ST,Zhao H,et al.Small dsRNAs induce transcriptional activation in human cells.Proc Natl Acad Sci USA,2006,103:17337-17342.
    29 Shih YW,Chen PS,Wu CH,et al.Alpha-chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-kappaB in human lung adenocarcinoma A549 cells.J Agric Food Chern,2007,55:11035-11043.
    30 Rajesh M,Mukhopadhyay P,Hask(?) G,et al.CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration.Br J Pharmacol,2008,153:347-357.
    31 Bernier J,Bonner J,Vermorken JB,et al.Consensus guidelines for the management of radiation dermatitis and coexisting acne-like rash in patients receiving radiotherapy plus EGFR inhibitors for the treatment of squamous cell carcinoma of the head and neck.Ann Oncol,2008,19:142-149.
    32 Fruehauf J.EGFR function and detection in cancer therapy.J Exp Ther Oncol,2006,5:231-246.
    33 郑学芝;刘桂莲;李丽;等.RNA干扰Nucleostemin基因对人食管癌Eca-109细胞株增殖影响的实验研究.肿瘤防治研究,2007,34(2):103-105.
    34 郑学芝;胡静;孙卫;等.Nucleostemin基因对人食管癌Eca-109细胞株转染条件优化的探索.牡丹江医学院学报,2007,28(2):3-5.
    1 Reddy PS,Burroughs KD,Hales LM,et al.Seneca Valley virus,a systemically deliverable oneolytie picornavirus,and the treatment of neuroendocrine cancers.J Natl Cancer Inst.2007;99(21):1623-1633.
    2 Yamini B,Yu X,Pytel P,et al.Adenovirally delivered tumor necrosis factor-alpha improves the antiglioma efficacy of concomitant radiation and temozolomide therapy.Clin Cancer Res.2007;13(20):6217-6223.
    3 Yang H,Minamishima YA,Yah Q,et al.pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2.Mol Cell.2007 Oct 12;28(1):15-27.
    4 Duan HF,Hu XW,Chen JL,et al.Antitumor activities of TEM8-Fc:an engineered antibody-like molecule targeting tumor endothelial marker 8.J Natl Cancer Inst.2007;99(20):1551-1555.
    5 May KF Jr,Lute K,Kocak E,et al.Immune competence of cancer-reactive T cells generated de novo in adult tumor-beating mice.Blood.2007 Jan 1;109(1):253-258.
    6 Lin YW,Nichols RA,Letterio JJ,et al.Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma.Blood.2006;107(6):2540-2543.
    7 Miura N,Yamamoto M,Fukutake M,et al.Anti-CD3 induces bi-phasic apoptosis in murine intestinal epithelial cells:possible involvement of the Fas/Fas ligand system in different T cell compartments.Int Immunol.2005;17(5):513-522.
    8 Orengo AM,Di Carlo E,Comes A,et al.Tumor cells engineered with IL-12 and IL-15 genes induce protective antibody responses in nude mice.J Immunol.2003;171(2):569-575.
    9 Cheung NK,Modak S.Oral(1—>3),(1—>4)-beta-D-glucan synergizes with antiganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma.Clin Cancer Res.2002;8(5):1217-1223.
    10 David K,Ollert MW,Vollmert C,et al.Human natural immunoglobulin M antibodies induce apoptosis of human neuroblastoma cells by binding to a Mr 260,000 antigen.Cancer Res.1999;59(15):3768-3775.
    1 Papayannopoulou T,Scadden DT.Stem-cell ecology and stem cells in motion.Blood,2008,111(8):3923-3930.
    2 Ruzanldna Y,Brown EJ.Relationships between stem cell exhaustion,turnout suppression and ageing.Br J Cancer,2007,97(9):1189-1193.
    3 Kondo T.Stem cell-like cancer cells in cancer cell lines.Cancer Biomark,2007,3(4-5):245-250.
    4 Kφbling M,Estrov Z.Adult stem cells for tissue repair a new therapeutic concept? N Engl J Meal,2003,349(6):570-582.
    5 岳保红,孙玲,赵小强,等.核干细胞因子基因在急性白血病细胞表达的检测和意义.中华检验医学杂志,2006,29(4):324-327.
    6 Steensma DP.The spectrum of molecular aberrations in myelodysplastic syndromes:in the shadow of acute myeloid leukemia.Haematologica,2007,92(6):723-727.
    7 Huntly B J,Gilliland DG.Leukaemia stem cells and the evolution of cancer-stem-cell research.Nat Rev,Cancer,2005,5(4):311-321.
    8 Lapidot T,Sirard C,Vormoor J,et al.A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.Nature,1994,367(6464):645-648.
    9 Ginestier C,Korkaya H,Dontu G,et al.The cancer stem cell:the breast cancer driver.Med Sci,2007,23(12):1133-1140.
    10 Ward RJ,Dirks PB.Cancer Stem Cells:At the Headwaters of Tumor Development.Annu Rev Pathol,2007,8(2):175-189.
    11 Tsai RY,McKay RD.A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells.Genes Dev,2002,16(23):2991-3003.
    12 Schindeh(u|¨)tte J,Fukumitsu H,Collombat P,et al.In vivo and in vitro tissue-specific expression of green fluorescent protein using the cre-lox system in mouse embryonic stem cells.Stem Cells,2005,23(1):10-15.
    13 Bernardi R,Pandolfi PP.The nucleolus:at the stem of immortality.Nat Med,2003,9(1):24-25.
    14 Phair RD,Misteli T.High mobility of proteins in the mammalian cell nucleus.Nature, 2000,404(6778):604-609.
    15 Tsai RY,McKay RD.A multistep,GTP-driven mechanism controlling the dynamic cycling of nucleostemin.J Cell Biol,2005,168(2):179-184.
    16 刘冉录.Nucleostemin研究进展.天津医科大学学报,2007,13(1):132-134.
    17 Meng L,Yasumoto H,Tsai RY.Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm.J Cell Sci,2006,119(Pt 24):5124-5136.
    18 刘秉乾,王广有,李沛寰,等.Nucleostemin基因在膀胱移行细胞癌中的表达及其意义.中华实验外科杂志,2004,21:120.
    19 刘秉乾,李沛寰,张彤,等.Nucleostemin基因在前列腺癌中的表达及其与血清中前列腺特异抗原的关系.中华实验外科杂志,2005,22:1019.
    20 Liu S J,Cai ZW,Liu YJ,et al.Role of nucleostemin in growth regulation of gastric cancer,liver cancer and other malignancies.World J Gastroenterol,2004,10(9):1246-1249.
    21 Lacina L,Smetana K Jr,Dvor(?)nkov(?) B,et al.Stromal fibroblasts from basal cell carcinoma affect phenotype of normal keratinocytes.Br J Dermatol,2007156(5):819-829.
    22 Estable C.International symposium on the nucleolus--its structure and function.Preface.Natl Cancer Inst Monogr.1966 Dec;23:ⅹⅴ-ⅹⅸ.
    23 Leung AK,Lamond AI.The dynamics of the nucleolus.Crit Rev Eukaryot Gene Expr,2003,13(1):39-54.
    24 Drayton S,Peters G.Immortalisation and transformation revisited.Curr Opin Genet Dev,2002,12(1):98-104.
    25 Du YC,Stillman B.Yphlp,an ORC-interacting protein:potential links between cell proliferation control,DNA replication,and ribosome biogenesis.Cell,2002,109(7):835-848.
    26 Michael D,Oren M.The p53 and Mdm2 families in cancer.Curr Opin Genet Dev,2002,12(1):53-59.
    27 Du X,Rao MR,Chen XQ,et al.The homologous putative GTPases Gmlp from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA.Mol Biol Cell,2006,17(1):460-474.
    28 Zhu Q,Yasumoto H,Tsai RY.Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability.Mol Cell Biol,2006,26(24):9279-9290.
    29 Kodama HA,Amagai Y,Koyama H,et al.A new preadipose cell line derived from newborn mouse calvaria can promote the proliferation of pluripotent hemopoietic stem cells in vitro.J Cell Physiol,1982,112(1):89-95.
    30 Meng L,Zhu Q,Tsai RY.Nucleolar trafficking of nucleostemin family proteins:common versus protein-specific mechanisms.Mol Cell Biol.2007 Dec;27(24):8670-82.
    31 Schwartz PH,Bryant P J,Fuja TJ,et al.Isolation and characterization of neural progenitor cells from post-mortem human cortex.,2003,74(6):838-851.
    32 钱晖,许文荣,王文兵,等.骨髓间充质干细胞和部分肿瘤细胞中Nucleostemin基因的表达.中国生物化学与分子生物学报,2005,21(1):8-13.
    33 Bhattacharya B,Miura T,Brandenberger R,et al.Gene expression in human embryonic stem cell lines:unique molecular signature.Blood,2004,103(8):2956-2964.
    34 Baddoo M,Hill K,Wilkinson R,et al.Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection.J Cell Biochem,2003,89(6):1235-1249.
    35 Schindeh(u|¨)tte J,Fukumitsu H,Collombat P,et al.In vivo and in vitro tissue-specific expression of green fluorescent protein using the cre-lox system in mouse embryonic stem cells.Stem Cells,2005,23(1):10-15.
    36 Yaghoobi MM,Mowla S J,Tiraihi T.Nucleostemin,a coordinator of self-renewal,is expressed in rat marrow stromal cells and turns off after induction of neural differentiation.Neurosci Lett,2005,390(2):81-86.
    37 Liu RL,Zhang ZH,Zhao WM,et al.Expression of nucleostemin in prostate cancer and its effect on the proliferation of PC-3 cells.Chin Med J,2008,121(4):299-304.
    38 Yang HX,Jin GL,Meng L,et al.Screening and identification of proteins interacting with nucleostemin.World J Gastroenterol,2005,11(31):4812-4814.
    39 张志宏,刘思金,吴长利,等.RNA干扰抑制膀胱肿瘤细胞BIU-87核干细胞因子基因表达对其增殖的影响.中华泌尿外科杂志,2006,27(4):22-25.
    40 郑学芝,刘桂莲,李丽,等.RNA干扰Nucleostemin基因对人食管癌Eca-109细胞株增殖影响的实验研究.肿瘤防治研究,2007,34(2):103-105.
    41 郑学芝,胡静,孙卫,等.Nucleostemin基因对人食管癌Eca-109细胞株转染条件优化的探索.牡丹江医学院学报,2007,28(2):3-5.
    42 孙丽秋,关世民,王智慧,等.Nucleostemin基因特异性RNA干扰对HeLa细胞体外增殖能力的影响.2005,26(1):4-8.
    43 蔡子微,刘思金,孙丽秋,等.Nucleostemin特异性RNA干扰对HeLa细胞体内外增殖能力的影响.中国病理生理杂志,2005,21(7):1331-1335.
    44 Bernatchez R,Belkacemi L,Rassart E,et al.Differential expression of membrane and soluble adenylyl cyclase isoforms in cytotrophoblast cells and syncytiotrophoblasts of human placenta.Placenta,2003,24(6):648-657.
    45 Chambers I,Colby D,Robertson M,et al.Functional expression cloning of Nanog,a pluripotency sustaining factor in embryonic stem cells.Cell,2003,113(5):643-655.
    46 Takagi S,McFadden ML,Humphreys RE,et al.Detection of 5-bromo-2-deoxyuridine (BrdUrd) incorporation with monoclonal anti-BrdUrd antibody after deoxyribonuclease treatment.Cytometry,1993,14(6):640-648.
    47 Blair A,Hogge DE,Sutherland HJ.Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR-.Blood,1998,92(11):4325-4335.
    48 Jafarnejad SM,Mowla S J,Matin MM.Knocking-down the expression of nucleostemin significantly decreases rate of proliferation of rat bone marrow stromal stem cells in an apparently p53-independent manner.Ohnishi T.The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia.Cell Prolif,2008,41(1):28-35.
    49 Song H,Xu Y.Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways.Cell Cycle,2007,6(13):1570-1573.
    50 Malaguarnera R,Vella V,Vigneri R,et al.p53 family proteins in thyroid cancer.Endocr Relat Cancer,2007,14(1):43-60.
    51 Hussain SP,Harris CC.p53 biological network:at the crossroads of the cellular-stress response pathway and molecular carcinogenesis.J Nippon Med Sch,2006,73(2):54-64.
    52 Ma HH,Pederson T.Depletion of the Nucleolar Protein Nucleostemin Causes G1 Cell Cycle Arrest via the p53 Pathway.Molecular Biology of the Cell,2007,18(7):2630-2635.
    53 Kamijo T,Weber JD,Zambetti G,et al.Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2.Proe Natl Acad Sci U S A,1998,95(14):8292-8297.
    54 Zhang Y,Xiong Y,Yarbrough WG.ARF promotes MDM2 degradation and stabilizes p53:ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.Cell,1998,92(6):725-734.
    55 Tao W,Levine AJ.P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2.Proe Natl Acad Sci U S A,1999,96(12):6937-6941.
    56 Blander G.Kipnis J,Leal JF,et al.Physical and functional interaction between p53 and the Werner's syndrome protein.J Biol Chem,1999,274(41):29463-29469.
    57 Sommers JA,Sharrna S,Doherty KM,et al.p53 modulates RPA-dependent and RPA-independent WRN helicase activity.Cancer Res,2005,65(4):1223-1233.
    58 Cada Z,Boucek J,Dvorankov(?) B,et al.Nucleostemin expression in squamous cell carcinoma of the head and neck..Anticancer Res,2007,27(5A):3279-3284.
    59 Zhang GY,Yin L,Li SL,et al.Expression of nucleostemin mRNA and protein in the esophageal squamous cell carcinoma.Zhonghua Zhong Liu Za Zhi,2008,30(2):125-128.
    60 Normile D.Cell proliferation.Common control for cancer,stem cells.Science,2002,298(5600):1869.
    61 Beckman C,Nichane M,De Clercq S,et al.Evolutionarily conserved role of nucleostemin:controlling proliferation of stem/progenitor cells during early vertebrate development.Mol Cell Biol,2006,26(24):9291-9301.
    62 Tsai RY.A molecular view of stem cell and cancer cell self-renewal.Int J Biochem Cell Biol,2004,36(4):684-694.
    63 Nevins JR.Toward an understanding of the functional complexity of the E2F and retinoblastoma families.Cell Growth Differ,1998,9(8):585-593.
    64 Dyson N.The regulation of E2F by pRB-family proteins.Genes Dev,1998,12(15):2245-2262.
    65 Swaminathan S.Nucleolar targeting runs on GTP cycles.Nat Cell Biol,2005,7(3):217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700