用户名: 密码: 验证码:
十屋断陷深层碎屑岩储层成岩作用定量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深层碎屑岩储层研究的最终目标是寻找次生孔隙发育带,不同沉积盆地的次生孔隙随深度的分布规律已成为现今油气田勘探的主要研究问题和内容。次生孔隙发育带的研究为寻找深层油气储量增添了极大的活力,促进了成岩作用的研究,在储层评价中的比重和地位也日益提高。本文试图应用成岩作用数值模拟方法,对十屋断陷进行成岩场分析、成岩相的预测,并通过十屋断陷深层储层的成岩作用、成岩相及沉积相对储层影响等方面进行系统的分析与研究,探讨碎屑岩储层异常高孔带的成因及影响因素,从而预测高孔带的分布。
     储层成岩作用数值模拟是储层定量评价的主要组成部分,本文首先介绍单项成岩作用过程模拟-镜质组反射率、甾烷异构化反应、黏土矿物转化、石英次生加大和机械压实等过程模拟,然后又进一步讨论了在单项成岩作用过程模拟的基础上发展起来的成岩作用过程综合模拟。过程综合模型将碎屑岩早成岩阶段~晚成岩阶段数值化为0~1的区间,在时空领域内由程序自动划分成岩阶段。
     应用模拟结果表明,十屋断陷深层的成岩作用分为早成岩、中成岩和晚成岩三个阶段,共五个亚期,即早成岩阶段A期,早成岩阶段B期,中成岩阶段A1期、A2期和中成岩阶段B期,主要发育早期压实胶结相、溶蚀相、溶蚀及部分再胶结相及紧密压实裂缝相四种成岩相。纵向上储层发育3个高孔带,其深度分别为400m~800m、1400m~2000m和2200m~2800m,主要分布在三角洲平原、三角洲前缘,泛滥平原、扇三角洲平原等相带。通过对储层高孔带形成的主控因素分析表明,第Ⅰ高孔带主要由大气水淋滤作用形成,第Ⅱ、Ⅲ高孔带主要由有机酸及黏土矿物脱酸性水的溶蚀作用形成。烃类早期侵入和石英颗粒黏土包壳对储层孔隙度的影响不明显。综合分析约束稀疏脉冲反演波阻抗剖面、砂地比、成岩相和沉积相,在平面上确定出高孔带发育区、较发育区。
The deep buried reservoir is the most important exploration area in the Shiwu depression, where the final aim of deep buried reservoir finds secondary pore growth zones. The distribution of secondary pore with deep in the different sedimentary basin has become the main quention and content of oil and gas exploration today. The researches of secondary pore growth zones provide more chances for looking for oil and gas reserves of deep buried reservoir and promote the researches of diagenesis. Thus, the study in evaluation of reservoir field is being more and more attracted people’s attention. We attempt to analysis diagenetic field and predict diagenetic facies by studies on diagenetic modeling. Then the secondary porosity genesis and its influencing factors are discussed and high porosity zones are predicted by the comprehensive studies on diagenesis, diagenetic facies and sedimentary facies of deep buried reservoir in the Shiwu depression.
     Diagenetic modeling is the most important part of the quantitative evaluation of reservoir. At first, we separately introduce uniterm diagenesis process oriented-vitrinite reflectance, the changing rules of sterane isomerization rate, clay mineral transformation, quartz overgrowth and mechanical compaction. Then aggregative diagenetic process oriented are discussed on the basis of the uniterm diagenesis process oriented. So all the diagenetic stage of clastic rock are numerical from zero to one, and voluntarily divided by computer in time and space.
     As the results of the diagenesis modeling researches show, the deep buried reservoirs in the Shiwu depression can be divided into the early diagenetic stages, the middle diagenetic stages and the late diagenetic stages, aggregately five subphases. that is to say: the early diagenetic phase A, the early diagenetic phase B, the middle diagenetic phase A1,A2 and the middle diagenetic phase B. It can be divided dominantly into four diagenetic facies, the early compaction and cementation, dissolution, dissolution and partial recementation, strong compaction and fractures diagenetic facies. Three high porosity zones are developed in the vertical orientation, which distributed in the formations from 400m to 800m,from 1400m to 2000m and from 2200m to 2800m.They almost occurre in the sandstones of delta plains, fan-delta plains, floodplains and fan-delta plains. According to the analysis of the factors of the high porosity zones formation, we believe that the first high porosity zone formed by dissolution of meteoric waters, the second and the third one formed by dissolution of organic acids and dehydration of clay minerals. Porosity isn’t obviously affected by early hydrocarbon invasion and clay rims. The areas developed favorable and the relatively favorable reservoirs of the high porosity zones are blocked out in the horizontal orientation by the comprehensive studies on constrained sparse spike inversion acoustic impedance map, sand strata ratio, diagenetic facies and sedimentary facies.
引文
[1] Surdam R C. Boese S W and Crossey L J. The chemistry of secondary porosity,In:lastic Diagenesis Am.Assoc.Pet.Geol.1984,Mem.37,127-150.
    [2] Shanmugam,G.Significance of secondary porosity in interpreting sandstone composition. AAPG Bulletin,1985,69:378-384
    [3] Bloch S.Robert H L,Linda B.Anomalously high porosity and permeability in deeply buried sandstone reservoirs:Origin and predictability.AAPG Bull,2002,86(2):301-328.
    [4]陆红,姚柏平,韦俊宝.松辽盆地东南隆起区十屋断陷南部储层特征[J].长春科技大学学报,1999,29(3):242~246.
    [5]王果寿.松辽盆地十屋-德惠地区沉积体系特征[J].石油与天然气地质,2001,22(4):331~336.
    [6]应凤祥,罗平,何东博,等.中国含油气盆地碎屑岩储集层成岩作用与成岩作用数值模拟.北京:石油工业出版社,2004,120~127.
    [7]庞雄奇.地质过程定量模拟.北京:石油工业出版社,2004,39~47.
    [8]张玉明,夏响华,卢兵力等著.松辽盆地南部低渗透油气田勘探技术[M].北京:石油工业出版社,2001,1~28.
    [9]余凯,候洪斌,郭念发等著.松辽盆地南部断陷层系石油天然气地质[J].北京:石油工业出版社,2002,235~241.
    [10]覃素华,袁智广,刘福春.松辽盆地十屋断陷油气成藏条件分析[J].天然气勘探与开发,2003,26(2):77~84.
    [11]应凤祥,何东博,龙玉梅,等.SY/T5477-2003.中华人民共和国石油天然气行业标准碎屑岩成岩阶段划分.北京:石油工业出版社,2003.
    [12]裘怿楠,薛叔浩,应凤祥.中国陆相油气储集层.北京:石油工业出版社,1997,147~217.
    [13]李思田,路风香,林畅松,等.中国东部及邻区中、新生代盆地演化及地球动力学背景,北京:中国地质大学出版社,1997,55~70.
    [14] Bloch S.Secondary porosity sandstones:significance,origin,relationship to subaerial unconformities,and effect on predrill reservoir quality prediction,In:M D Wilson,ed,Reservoir quality assessment and prediction in clastic rocks.SEPM Short Course 30,1994:137-159.
    [15] Anjos S M C,Ros L F,Souza R S,et al.Depositional and diagenetic controls on the reservoir quality of Lower Cretaceous Penděncia sandstones,Potiguar rift basin.Brazil AAPG Bull,2000,84(11):1719-1742.
    [16]石广仁.油气盆地数值模拟方法.北京:石油工业出版社,1994:12~20.
    [17]石广仁.油气盆地数值模拟方法.北京:石油工业出版社,1999,15~25.
    [18]石广仁.油气盆地数值模拟方法.北京:石油工业出版社,2004,16~30.
    [19]孟元林.成岩演化数值模拟[A].见:许怀先,陈丽华,万玉金等编。石油地质实验测试技术与应用[C].北京:石油工业出版社,2001,184~192.
    [20]孟元林等.储层成岩作用模拟与次生孔隙发育带预测方法研究[R].大庆石油学院秦皇岛分院,国家“十五”重大科技攻关项目,2003.
    [21]孟元林,吕延防.地温史和有机质成岩史的一维模拟[J].大庆石油学院学报,1989,13(2):1~6.
    [22] Domine F,Enguehard F.Kinetics of hexane pyrolysis at very high pressure-Application to geochemical modeling.Org.Geochem,1992,18(1),41-49.
    [23]姜峰,杜建国,王万青.高温高压模拟试验研究[J].沉积学报,1998,16(3):153~155.
    [24] Sweeny J J,Burham A K.Evaluation of a simple model of vitrinite reflectance based on chemical kinetics.AAPG Bull,1990,74:1559-1570.
    [25]宋党育,秦勇.镜质组反射率反演EASY_Ro数值模拟新方法[J].煤田地质与勘探,1998,26(3):15~17.
    [26]孟元林,肖丽华,等.黏土矿物转化的化学动力学模型及其应用[J].沉积学报,1996,l4(2):110~116.
    [27] Colten-Bradley V A.Role of pressure in smectite dehydration-effects on geopressure and smectite-to-illite transformation.AAPG Bull.,1987,71:1414-1427.
    [28] Mackenize A S,D Mckenice.Isomerization and aromatization of hydrocarbon in sedimentary basin formed by extension.Geo.Mag.,1983,120:417-470.
    [29] Walderhaug O.Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjφrn Field Northern North Sea.AAPG Bull,2000,84:1325-1339.
    [30] Walderhaug O.Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs.AAPG Bull,1996,80:731-745.
    [31]杨俊生,孟元林,张宏,等.石英胶结作用化学动力学模型及应用[J].石油实验地质,2002,24(4):372~376.
    [32] Byrnes A P.Empirical methods of reservoir quality prediction,In:Wilson W D,ed.Reservoir quality assessment and prediction in clastic rocks.SEPM Short Course,1994,30:10-21.
    [33]孙永传,李忠,李惠忠,刘耀宗,等.中国东部含油气断陷盆地的成岩作用.北京科学出版社,1996,17~19.
    [34]孟元林,牛嘉玉,肖丽华,等.歧北凹陷沙二段超压背景下的成岩场分析与储层孔隙度预测[J].沉积学报,2005,23(3).
    [35]孟元林,肖丽华,王粤川,高建军,周玥.储层质量评价方法研究.国家“十五”攻关项目,2005.
    [36]谢树艺.矢量分析与场论.北京:人民教育出版社,1979,25~30.
    [37]应凤祥,张继春,崔京钢.中国陆相碎屑岩储集层成岩演化序列标志及次生孔隙和油气分布预测.见:石油勘探开发科学研究院科技论文集.北京:石油工业出版社,1996.
    [38]黄飞,辛茂安.中华人民共和国石油天然气行业标准并陆相烃源岩地球化学评价方法(SY/T5735-1995)[S].北京:石油工业出版社,1996:1~19.
    [39]吕延防,赵传本,付广,等.东北地区中新生代地层划分对比研究,大庆石油学院,2005.
    [40] Dow W G.Kerogen Studies and geological interpretation.Journal of Geochemical Exploration,1977,7:79-99.
    [41]真柄钦次,陈立荷译.压实与流体运移[M].北京:石油工业出版社,1981,35~38.
    [42]肖丽华,张靖,孟元林,等.地热参数及边界条件探讨[J].大庆石油学院学报,1996,20(2):28~31.
    [43]王钧,黄尚瑶,黄歌山,等.中国地温分布的基本特征[M].北京:地震出版社,1990:1~20.
    [44]陈墨香.华北地热.北京:科学出版社,1988:11~12.
    [45] Xinong Xie,Jiu Jimmy Jiao,Zhonghua Tang,et al. Evolution of abnormally low pressure and its implications for the hydrocarbon system in the southeast uplift zone of Songliao basin,China.AAPG Bulletin.2003,87:99-119.
    [46]李义军.浅述次生孔隙的成因[J].西北地质.2002,35(1):65~69.
    [47]陈丽华,赵澄林,纪友亮,等.碎屑岩天然气储集层次生孔隙的三种成因机理[J].石油勘探与开发,1999,26(5):77~79.
    [48]朱国华.碎屑岩储集层孔隙的形成、演化和预测[J].沉积学报,1992,10(3).
    [49]朱抱荃,程中第,应凤祥.地层干酪根有机酸与储层次生孔隙的关系[J].石油实验地质,1996,18(2):206~215.
    [50]唐黎明.松辽盆地十屋断陷沉积特征与油气前景.吉林大学学报(地球科学版)[J].2002,32(4):345~347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700