用户名: 密码: 验证码:
华支睾吸虫成虫和囊蚴cDNA文库表达序列标签(EST)测序及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华支睾吸虫病是华支睾吸虫寄生在人类或者其他的哺乳动物肝胆管内而引起的一种重要的人兽共患寄生虫病,不仅给人类健康造成了威胁,而且对渔业生产造成了不小的经济损失。全世界约有3,500万人口感染此病,而在中国就高达1,200万左右。尽管华支睾吸虫自发现(1875年)以来已有130多年的历史,国内外众多学者对该病也做了大量的研究工作,然而至今仍未找到对该病的理想诊断抗原,华支睾吸虫病的感染率依旧呈现明显的上升趋势。目前,华支睾吸虫病的诊断仍主要采用漏诊率较高的粪便虫卵检查法,而免疫学诊断方法则因所使用抗原的非特异性或低敏感性而无法应用于临床的实际诊断中。因此,寻找高特异性及高敏感性的抗原以建立有效的免疫学诊断方法是目前控制该病广泛流行的有效可行手段。本实验通过构建成虫cDNA文库和利用已构建好的囊蚴文库进行表达序列标签(EST)测序分析,在分泌蛋白/膜蛋白和高表达蛋白中筛选出潜在的抗原,同时也为了获得华支睾吸虫整个转录组的信息,这就为进一步探索华支睾吸虫病的诊断抗原基因及保护性基因的深入研究提供了宝贵的材料与研究基础。我们希望本研究,能够加速华支睾吸虫的分子研究,并且能够发现华支睾吸虫病较好的诊断抗原。
Discovery of novel parasite genes by customary methods are tedious and time-consuming. In the current research field, large scale transcriptome sequencing identifying new genes might serve as little time and more information for various studies. Expressed sequence tags (ESTs) are fragments of mRNA sequences derived through single sequencing reactions performed on randomLy selected clones from cDNA libraries. To date, over 45million ESTs have been generated fromover 1,400 different species of eukaryotes.
     Adult C. sinensis were collected from infected dogs’bile duct in Jilin province which is epidemic area of Northeast China. The liver and gall bladder were obtained from this dog and bile ducts were perfused with normal saline after sniped off the edge of liver. C. sinensis adult would run out from bile ducts and would be collected after washed by RNase-free water. The collected C. sinensis adult and excysted metacercariae can be prepared for library construction.Total RNA of C. sinensis adult worm was extracted by Trizol reagent (Invitrogen, USA) and mRNA was further purified with Oligotex mRNA Purification Kit (QIAGEN, USA). A cDNA expression library from adult worms of C. sinensis was constructed with lambda ZAP-cDNA GigapackⅢGold Cloning Kit (Stratagene, USA). The first strand cDNA was synthesized by using MMLV reverse transcriptase. After the synthesis of the second strand, the cDNA were ligated with EcoRⅠa daptors to the blunt ends and digested with XhoⅠrestriction enzyme. Then, the cDNA were purified by CHROMA SPIN-400 kit and ligated with lambda ZAP Express vector (uni-ZAP XR), then packaged in vitro and amplified by transfecting into Escherichia coli XL1-Blue cells. The capacity and the recombination rate of the cDNA library were measured. After capacity measurement, the remnant cDNA library was entirely coated on the agar plates and amplified. The original C. sinensis adult library contained 1.5×106 pfu cDNA clones, the titer of amplified library reached 1.5×1010 pfu/mL, in which about 99% clones were recombinants and most of insert DNA fragments were 0.4~2.0 Kb. The library was then stored at -80°C with addition of DMSO.
     The cDNA libraries were converted into phagemid form by mass in vivo excision using helper phage and transfected into E. coli SOLR strain. The pellet of SOLR bacteria in fresh LB broth was preserved with ampicillin and 50% glycerol, and then was sequenced. The total cDNA sequences were read once from its 5’-end using T3 primer. Downstream of the sequencing reaction, a number of sophisticated bioinformatics pipelines have been developed that process the raw sequence read to remove low-quality sequence information and contaminating vector sequence. High-quality ESTs (>100 bp) were then assembled and clustered into contiguous sequences (contigs). The total clone of cDNA sequences is 41,541 ESTs(Of which C. sinensis adult sequences are 21,560 ESTs and metacercariae sequences are 19,981 ESTs). After vector sequences trimmed off and low quality sequences (<100 bp) removed, 37,442 ESTs (19,398 ESTs for adult and 18,044 ESTs for metacercariae) with an average length of 470 bases were recovered. Using Blast tools, unigenes comprising contigs and singletons were compared to the NCBI nonredundant (nr) protein and nucleotide (nt) databases for annotation, respectively. The cut-off value for sequence similarity was E < 10-5. Of these, only 1,441 unigenes (10.97%) were shared in two cDNA resources. This indicates that most genes related to developmental stages could be isolated form C. sinensis. The two BLAST methods demonstrated that the top three matched species of adult stage annotated were Schistosoma, Trichoderma and Plantago and of metacercariae annotated were Salicornia herbacea, Schistosoma and Trichoderma. On the whole, 3,545 clusters (27.00%) had homologies in Blastx NCBI Nr database and 3,703 clusters (28.20%) had matches with Blastn NCBI Nt database. Using these two databases, blast searches exhibited 5,882 clusters (44.80%) have no homologous sequences from other species, which possibly represents new genes for unknown functions of C. sinensis. For the sake of obtaining the maximum amount of functional information from the quickly collected genome sequences, all conserved clusters need to be assigned gene ontology (GO) classifications and 4,942 clusters could be assigned. Annotation of unigenes are used for GO classification including three categories:“cellular component,”“molecular function,”and“biological process.”KEGG(Kyoto Encyclopedia of Genes and Genomes) is a database for systematic analysis of gene function, which linked gene products information with cells metabolic pathways, predicted the function of these gene products and studied further the complex biological behavior. 1,470 unigenes (11.20% ) of C. sinensis two stages were assigned into specific pathways by the KEGG database. We utilize the tools named Signal P and TMHMM to screen the secretory or transmembrane proteins. There are 1,847 (14.07%) proteins included signal peptides/anchor and 1,464(11.15%)proteins included transmembrane domains from C. sinensis two stages. At last, we screened some important antigen such as Cysteine family, Calcium-binding EF-hand, Glutathione-S-transferase, Tropomyosin, Heat shock proteins, Annexin, antigen with tandem amino acid repeats. It should be pointed out that gene discovery of expressed sequence tags from C. sinensis isn’t totally secreted and trans-membrane protein-coding genes, also including highly expressed genes from interpro database.In addition, we compared some representative genes with Korean, Vietnam and other places in China which have published in NCBI and would like to find some distinction in different places.
     This study should facilitate a more fundamental understanding of the gene expression in C. sinensis and provide valuable data not only for geneome, annotation, gene discovery of C. sinensis but also for its biology, evolution, and the host-parasite interplay. This genomic approach is having significant impact on many aspects of C. sinensis research, with contributions to both understanding the pathophysiology of C. sinensis and the development of improved interventions for disease control included discovery of novel antigens, drug and vaccine targets. The present study lays foundations for further recombination of genes that encode high-reactionogenicity antigens, for antigen recombination through combined gene expression, for the discovery of sensitive and specific methods for immunological detection of Clonorchis sinensis, and for the development of effective vaccines against Clonorchis sinensis.
引文
[1]赵慰先.人体寄生虫学[M].北京:人民卫生出版社,1983:451–63.
    [2]Park GM, Yong TS. Geographical variation of the live ?uke, Clonorchis sinensis, from Korea and China based on the karyotypes, zymodeme and DNA sequences[J]. Southeast Asian J Trop Med Public Health, 2001, 32: 12–16.
    [3]Kaewkes S. Taxonomy and biology of live ?ukes[J]. Acta Trop, 2003, 88: 177–96.
    [4]卫生部疾病控制司.肠道寄生虫病防治手册[M].福州:福建教育出版社,1996:201–26.
    [5]World Health Organization. Control of foodborne trematode infections. World Health Organ Tech Rep Ser[C] Geneva:WHO, 1995, 849.
    [6]Verle P, Kongs A, De NV, et al. Prevalence of intestinal parasitic infections in northern Vietnam[J]. Trop Med Int Health, 2003, 8: 961–64.
    [7]Seah SK. Intestinal parasites in Chinese immigrants in a Canadian city[J]. J Trop Med Hyg, 1973, 76: 291–93.
    [8]Piekarski G. Medical parasitology[M]. Berlin: Springer Verlag, 1987: 363.
    [9]Choi BI, Han JK, Hong ST, et al. Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis[J].Clin Microbiol Rev, 2004, 17: 540–52.
    [10]Rim HJ. The current pathobiology and chemotherapy of clonorchiasis[J]. Korean J Parasitol, 1986, 24 (suppl): 1–141.
    [11]Hou PC. The pathology of Clonorchis sinensis infestation of the liver[J]. J Pathol Bacteriol, 1955, 70: 53–64.
    [12]Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma[J], Br J Surg, 2002, 89(8): 962-70.
    [13]李顺玉,申成华,崔春权,等.黑龙江省宁安市江南乡朝鲜族华支睾吸虫感染的流行病学调查[J].延边大学医学学报, 2000, 23(1): 53-54.
    [14]牛弘,刘岩琳,任力.哈尔滨地区朝鲜族乡华支睾吸虫感染情况调查[J].中华预防医学杂志, 2001, 35: 308.
    [15]Fang YY. Epidemiologic characteristics of Clonorchis sinensis in Guandong Province, China[J]. Southeast Asian J Trop Med Public Health, 1994, 25: 291–95.
    [16]余森海,许隆祺,蒋则孝,等.首次全国人体寄生虫分布调查的报告[J].中国寄生虫病学与寄生虫病杂志, 1994 ,12: 241–247.
    [17]潘波,方悦怡,史小楚,等.广东省第二次寄生虫分布调查[J].中国寄生虫病防治杂志, 1998, 11(4):246.
    [18]Yu SH, Masanori K, Li XM, et al. Epidemiological investigation on Clonorchis sinensis in human population in an area of south China[J]. Jap J Infect Dis, 2003, 56: 168–71.
    [19]Chen S, Chen S, Wu F, et al. Epidemiological survey of Clonorchis sinensis in the Yangxin County of Hubei Province of PR China[J]. Southeast Asian J Trop Med Public Health, 1997, 28 (suppl 1): 51–53.
    [20]叶建君,陈思礼,陈建设等.湖北省人体寄生虫分布复核调查[J].公共卫生与预防医学, 2002 , 13(5): 7-8.
    [21]王非吴赵永.吉林省榆树市延和乡华支睾吸虫病流行病学调查[J].中国人兽共患病杂志, 1998, 14: 88.
    [22]Li GQ, He XZ, Saidu K. Epidemiology and control of Clonorchis sinensis in China[J]. Southeast Asian J Trop Med Pub Health, 2001, 32 (suppl 2): 8–11.
    [23]吴军,阮彩文,崔惠儿等.鱼体华支睾吸虫囊蚴自然感染状态及保存液中存活情况[J].中国人兽共患病杂志, 2004, 20(2): 132-134.
    [24]王毅,曹金钟,祁妙等.天津市淡水鱼华支睾吸虫囊蚴感染情况调查[J].中国寄生虫病防治杂志, 2002, 15(6): 2.
    [25]Choi BI, Han JK. Other parasitic diseases. In: Okuda K, Mitchell DG, Itai Y, Ariyama J, eds. Hepatobiliary disease pathophysiology and imaging[M]. UK: Blackwell Science, 2001: 579–81.
    [26]黄慕嫦. 121例华枝睾吸虫感染者B超声像图观察分析[J].中国热带医学, 2001, 1(3): 286.
    [27]Lee KH, Hong ST, Han JK, et al. Experimental clonorchiasis in dogs: computer tomographic ?ndings before and after treatment[J].Radiology, 2003, 228: 131–38.
    [28]王仕伟刘展东.华支睾吸虫所致胆道梗阻的诊断和治疗[J].岭南现代临床外科, 2002, 2(2): 37-38.
    [29]谭敬辉,肖广辉,王敏君. B超在华支睾吸虫感染的诊断意义[J].黑龙江医药科学, 2001, 24(1): 94-95.
    [30]Lim JH. Oriental cholangiohepatitis: pathologic, clinical, and radiologic features[J]. Am JRoentgenol, 1991, 157: 1–8.
    [31]Liang CH, Hu JQ, Guan YH, et al. CT manifestations of clonorchiasis[J]. Chin J Radiol, 1995, 29: 172–74.
    [32]陈永兴,郑笑娟,黄雪兰.组织谐波频移成像在华支睾吸虫病的临床应用[J].中国人兽共患病杂志, 2001, 17(1): 114-115.
    [33]黄细霞,蔡文安,彭业恒等.三水市华支睾吸虫病流行病学及防治的研究[J].广东寄生虫学会年报, 1999, 12(1): 81-85.
    [34]Lee M, Chung YB, Lee SK, et al. The identification of a Clonorchis sinensis gene encoding an antigenic egg protein[J]. Parasitol Res, 2005, 95(3):224-226.
    [35]Rim HJ, Lyu KS, Lee JS, et al. Clinical evaluation of the therapeutic ef?cacy of praziquantel (Embay 8440) against Clonorchis sinensis infection in man[J]. Ann Trop Med Parasitol, 1981, 75: 27–33.
    [36]黄雄立.华支睾吸虫病68例分析[J].广州医药, 2001, 32(2): 49–50.
    [37]Wegner DH. The pro?le of the trematodicidal compound praziquantel[J]. Arzneimittelforschung, 1984, 34: 1132–36.
    [38]Bienvenido GY, Carlota DL, Gary HL, et al. Clinical study evaluating ef?cacy of praziquantel in clonorchiasis[J]. Antimicrob Agents Chemother, 1987, 31: 135–38.
    [39]Garrett ES, dos Santos CL, Jahncke ML. Public, animal, and environmental health implications of aquaculture[J]. Emerg Infect Dis, 1997, 3: 453–57.
    [40]方悦怡,潘波,张贤昌,等.广东省两次人体寄生虫分布调查对比分析[J].海峡预防医学杂志, 2000, 6(2):32–33.
    [41]Chen MG, Hua XJ, Wan ZR, et al. Praziquantel in 237 cases of Clonorchiasis sinensis[J]. Chin Med J (Engl), 1983, 96: 935–40.
    [42]Putney,S.D.,Herlihy,W.C., Schimmel, P. A new troponin T and cDNA clones for 13 different muscle proteins, found by shotgun sequencing[J]. Nature , 1983, 302: 718–21.
    [43]Adams,M.D., Kelley, J.M., Gocayne, J.D., et al. Complemen-tary DNA sequencing: expressed sequence tags and human genome project[J]. Science, 1991, 252: 1651–6.
    [44]Boguski, M. S., Lowe, T. M., Tol-stoshev, C. M. dbEST-database for‘‘expressed sequence tags’’[J]. Nat Genet, 1993, 4: 332–3.
    [45]Bernal, A., Ear, U., Kyrpides, N. Genomes OnLine Database (GOLD): a monitor ofgenome projects world-wide[J]. Nucleic Acids Res, 2001, 29: 126–7.
    [46]Ranjit, N., Jones, M. K., Stenzel, D. J., et al. A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy[J]. Int J Parasitol, 2006, 36: 701–10.
    [47]Parkinson, J., Anthony, A., Wasmuth, J., et al. PartiGene–constructing partial genomes[J]. Bioinformatics, 2004, 20: 1398–404.
    [48]Wasmuth, J. D., Blaxter, M. L. prot4EST: translating expressed sequence tags from neglected genomes[J]. BMC Bioinformatics, 2004, 5: 187.
    [49]Parkinson, J., Whitton, C., Schmid, R., et al. NEMBASE: a resource for parasitic nematode ESTs[J]. Nucleic Acids Res, 2004, 32: D427–30.
    [50]Wylie, T., Martin, J. C., Dante, M., et al. Nematode.net: a tool for navigating sequences from parasitic and free-living nematodes[J]. Nucleic Acids Res, 2004, 32: D423–6.
    [51]Wheeler, D. L., Church, D. M., Federhen, S., et al. Database resources of the National Center for Biotechnology[J]. Nucleic Acids Res, 2003, 31: 28–33.
    [52]Lee, Y., Tsai, J., Sunkara, S., et al. The TIGR Gene Indices: clustering and assembling EST and known genes and integration with eukaryotic genomes[J]. Nucleic Acids Res, 2005, 33: D71–4.
    [53]Peregrin-Alvarez, J.M., Yam, A., Sivakumar,G., et al. PartiGeneDB–collating partial genomes[J]. Nucleic Acids Res, 2005, 33: D303–7.
    [54]Parkinson, J., Blaxter, M. SimiTri–visualizing similarity relationships for groups of sequences[J]. Bioinformatics, 2003, 19: 390–5.
    [55]Kenyon, F., Welsh, M., Parkinson, J., et al. Expressed sequence tag survey of gene expression in the scab mite Psoroptes ovis–allergens, proteases and free-radical scavengers[J]. Parasitology, 2003, 126: 451–60.
    [56]Fernandez, C., Gregory, W. F., Loke, P., et al. Full-length enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences[J]. Mol Biochem Parasitol, 2002, 122: 171–80.
    [57] Luo, M., Dang, P., Guo, B. Z., et al. Generation of Expressed Sequence Tags (ESTs) for gene discovery and marker development in cultivated peanut[J]. Crop Sci, 2005, 45: 346–53.
    [58]Wong, C. E., Li, Y., Whitty, B. R., et al. Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap[J]. Plant Mol Biol, 2005, 58: 561–74.
    [59]Jenny, M. J., Ringwood, A. H., Lacy, E. R., et al. Potential indicators of stress response identified by expressed sequence tag analysis of hemocytes and embryos from the American oyster, Crassostrea virginica[J].Mar Biotechnol (NY), 2002, 4: 81–93.
    [60]Sturzenbaum, S., Parkinson, J., Blaxter, M., et al. The earthworm EST sequencing project[J]. Pedobiologia, 2003, 47: 447–51.
    [61]Li, L., Brunk, B. P., Kissinger, J. C., et al. Gene discovery in the apicomplexa as revealed by EST sequencing and assembly of a comparative gene database[J]. Genome Res, 2003, 13: 443–54.
    [62]Hughes, J., Longhorn, S. J., Papadopoulou,A., et al. Dense taxonomic EST sampling and its applications for molecular systema-tics of the Coleoptera (beetles) [J]. Mol Biol Evol, 2006, 23: 268–78.
    [63]Parkinson, J., Mitreva, M., Whitton, C., et al. A transcriptomic analysis of the phylum Nematoda[J]. Nat Genet, 2004, 36: 1259–67.
    [64]Ghedin, E.,Wang, S., Spiro, D., et al. Draft genomeof the filarial nematode parasite Brugia malayi[J]. Science, 2007, 317: 1756–60.
    [65]LoVerde, P. T., Hirai, H., Merrick, J. M., et al. Schistosoma mansoni genome project: an update[J].Parasitol Int, 2004, 53: 183–92.
    [66]Philippe, H., Lartillot, N., Brinkmann,H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia[J]. Mol Biol Evol, 2005, 22: 1246–53.
    [67]Peregrin-Alvarez, J. M., Parkinson, J. The global landscape of sequence diversity[J]. Genome Biol, 2007, 8: R238.
    [68]Zhang, Y., Eberhard, D. A., Frantz, G. D., et al. GEPIS–quantitative gene expression profiling in normal and cancer tissues[J]. Bioinformatics, 2004, 20: 2390–8.
    [69]Ferguson, D. A., Chiang, J. T., Richardson,J. A.,et al. EXPRESSION: an in silico tool to predict patterns of gene expression[J]. Gene Expr Patterns, 2005, 5: 619–28.
    [70]Stanton, J. A., Macgregor, A. B., Green,D. P. Identifying tissue-enriched gene expressionin mouse tissues using the NIH UniGene database[J]. Appl Bioinformatics, 2003, 2: S65–73.
    [71]Ramsey, J. S., Wilson, A. C., de Vos, M., et al. Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design[J]. BMC Genomics, 2007, 8: 423.
    [72]Gracey, A. Y., Fraser, E. J., Li, W., et al. Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate[J]. Proc Natl Acad Sci USA, 2004, 101: 16970–5.
    [73]Owen, J., Hedley, B., Svendsen, C., et al. Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus[J]. BMC Genomics, 2008, 9: 266.
    [74]Edwards, N. J. Novel peptide identification from tandem mass spectra using ESTs and sequence database compression[J].Mol Syst Biol, 2007, 3: 102.
    [75]Gupta,S.,Zink,D.,Korn,B.,et al. Genome wide identification and classification of alternative splicing based on EST data[J]. Bioinformatics, 2004, 20: 2579–85.
    [76]Ner-Gaon, H., Leviatan, N., Rubin, E., et al. Comparative cross-species alternative splicing in plants[J]. Plant Physiol, 2007, 144: 1632–41.
    [77]Panitz, F., Stengaard, H., Hornshoj, H.,et al. SNP mining porcine ESTs with MAVIANT, a novel tool for SNP evaluation and annotation[J]. Bioinformatics, 2007, 23: i387–91.
    [78]Tang, J., Vosman, B., Voorrips, R. E., et al. QualitySNP: a pipeline for detecting single nucleotide polymorphisms and insertions/deletions in EST data from diploid and polyploid species[J]. BMC Bioinformatics, 2006, 7: 438.
    [79]Huntley, D., Baldo, A., Johri, S, et al. SEAN: SNP prediction and display program utilizing EST sequence clusters[J]. Bioinformatics, 2006, 22: 495–6.
    [80]Ammini Parvathi, H. Sanath Kumar, B.Kenchanna Prakasha, et al. Clonorchis sinensis: Development and evaluation of a nested polymerase chain reaction (PCR) assay[J]. Experimental Parasitology, 2007, 291–295.
    [81]Thanh Hoa Le a,e, Nguyen Van De, David Blair, et al. Clonorchis sinensis and Opisthorchis viverrini: Development of a mitochondrial-based multiplex PCR for their identification and discrimination[J]. Experimental Parasitology, 2006, 109–114.
    [82]裴福全,钟肖芬,彭立胜,等.华支睾吸虫成虫总RNA的一步法提取与纯化[J].中国人兽共患病杂志, 2001, 17 (4): 83-84.
    [83]CoxR A. Structure and function of prokaryotic and eukaryotic ribosomes[J]. Prog Biophys Mol Biol, 1997, 32: 193.
    [84]李传明,石佑恩.日本血吸虫成虫RNA的快速分离纯化[J].实用寄生虫病杂志,1999, 54: 165.
    [85]Tenniswood MPR, Simpson AJG. The extraction, characterization and invitrotranslation of RNA froma dult Schistosoma mansoni[J]. Parasitology, 1982, 84: 253.
    [86]Cordingley JS, Turner MJ. Isolation and characterization of polysomes from Trypanosoma brucei[J]. Parasitology, 1980, 81: 537.
    [87]Jiang H, C.Y., Chen LQ, et al. Functional Annotation and Analysis of Expressed Sequence Tags from the Hepatopancreas of Mitten Crab(Eriocheir sinensis) [J]. Mar Biotechnol, 2009, 11(3): 317-326.
    [88]Kanehisa M, G.S. KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30.
    [89]Pak JH, K.D., Moon JH, et al. Differential gene expression profiling in human cholangiocarcinoma cells treated with Clonorchis sinensis excretory-secretory products[J]. Parasitol Res, 2009, 104(5): 1035-46.
    [90]Liu, y.s.. Biology of Clonorchis sinensis and prevention and treatment of Clonorchiasis[M]. Bei jing: Science Press, 1998.
    [91]Furmonaviciene R, S.H., Shakib F. Comparative molecular modelling identifies a common putative IgE epitope on cysteine protease allergens of diverse sources[J]. Clin Exp Allergy, 2000, 30(9): 1307-13.
    [92]Dalton JP, N.S., Stack C, et al. Fasciola hepatica cathepsin L-like proteases: biology, function, and potential in the development of first generation liver fluke vaccines[J]. Int J Parasitol, 2003, 33(11): 1173-81.
    [93]Roshy S, S.B., Moin K. Pericellular cathepsin B and malignant progression[J]. Cancer Metastasis Rev, 2003, 22(2-3): 271-86.
    [94]Sameni M, M.K., Sloane BF. Imaging proteolysis by living human breast cancer cells[J]. Neoplasia, 2000, 2(6): 496-504.
    [95]Ayuso R, G.G., Ibá?ez MD, et al. Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen[J]. J Allergy Clin Immunol, 2009, 124(1): 114-20.
    [96]Huang Y, Z.Z., Hu X, et al. A novel tegumental protein 31.8 kDa of Clonorchis sinensis: sequence analysis, expression, and immunolocalization[J]. Parasitol Res, 2007, 102(1): 77-81.
    [97]Luo QL, Q.Z., Zhou YD, et al. Application of signaling protein 14-3-3 and 26 kDa glutathione-S-transferase to serological diagnosis of Schistosomiasis japonica[J]. Acta Trop, 2009, 112(2): 91-6.
    [98]Hong SJ, L.J., Lee DH, et al. Molecular cloning and characterization of a mu-class glutathione S-transferase from Clonorchis sinensis[J]. Mol Biochem Parasitol, 2001, 115(1):69-75.
    [99]Hong SJ, K.T., Kang SY, et al. Clonorchis sinensis: immunolocalization of 26 kDa glutathione S-transferase in adult worms[J]. Exp Parasitol, 2002, 102(3-4): 191-3.
    [100]Kang SY, A.I., Park CY, et al. Clonorchis sinensis: molecular cloning and characterization of 28-kDa glutathione S-transferase[J]. Exp Parasitol, 2001, 97(4): 186-95.
    [101]Wu Z, W.D., Hu X, et al. Molecular cloning and characterization of cDNA encoding a novel cytosolic glutathione transferase from Clonorchis sinensis[J]. Parasitol Res, 2006, 98(6): 534-8.
    [102]Ayuso R, L.S., Tanaka L, et al. IgE antibody response to vertebrate meat proteins including tropomyosin[J]. Ann Allergy Asthma Immunol, 1999, 83(5): 399-405.
    [103]Jenkins RE, T.M., Gilvary NJ, et al. Tropomyosin implicated in host protective responses to microfilariae in onchocerciasis[J]. Proc Natl Acad Sci U S A, 1998, 95(13): 7550-5.
    [104]Valli LC, K.H., Cotrim PC, et al. Characterization of a clone from an adult worm cDNA library selected with anti-Schistosoma mansoni human antibodies dissociated from immune complexes: a preliminary report[J]. Rev Inst Med Trop Sao Paulo, 2007, 49(3): 187-9.
    [105]Bolhassani A, R.S.. Heat-shock proteins as powerful weapons in vaccine development[J]. Expert Rev Vaccines, 2008, 7(8): 1185-99.
    [106]Gao YJ, Y.H., Ding FX, et al. Annexin B1 at the host-parasite interface of the Taenia solium cysticercus: Secreted and associated with inflammatory reaction[J]. Acta Trop, 2007, 101(3): 192-9.
    [107]Braschi S, B.W., Wilson RA. Proteomic analysis of the schistosome tegument and its surface membranes[J]. Mem Inst Oswaldo Cruz, 2006, 101(suppl 1): 205-12.
    [108]Kim TI, C.P., Yoo WG, et al. Bile-induced genes in Clonorchis sinensis metacercariae[J]. Parasitol Res, 2008, 103(6): 1377-82.
    [109]Yong TS, Y.H., Park SJ, et al. Immunodiagnosis of clonorchiasis using a recombinant antigen[J]. Korean J Parasitol, 1998, 36(3): 183-90.
    [110]Kim TY, K.S., Ahn IY, et al. Molecular cloning and characterization of an antigenic protein with a repeating region from Clonorchis sinensis[J]. Korean J Parasitol, 2001, 39(1): 57-66.
    [111]Yang HJ, P.S., Im KI, et al. Identification of a Clonorchis sinensis gene encoding a vitellaria antigenic protein containing repetitive sequences[J]. Mol Biochem Parasitol, 2000, 111(1): 213-6.
    [112]Williams SJ, M.M., Gotley DC, et al. Two novel mucin genes down-regulated in colorectal cancer identified by differential display[J]. Cancer Res, 1999, 59(16): 4083-9.
    [113]Bar Dayan Y, V.A., Niv Y. Gallbladder mucin plays a role in gallstone formation[J]. Eur J Intern Med, 2004, 15(7): 411-414.
    [114]Yamato T, S.M., Watanabe Y, et al. Expression of MUC1 and MUC2 mucin core proteins and their messenger RNA in gall bladder carcinoma: an immunohistochemical and in situhybridization study[J]. J Pathol, 1999, 188(1): 30-7.
    [115]潘卫庆,汤林华.分子寄生虫学[M].上海:上海科学技术出版社, 2004: 407-408.
    [116]胡群山,菅复春,宁长申,等.隐孢子虫分类研究进展[J].中国病原生物学杂志, 2009,4(3): 226-231.
    [117]钟霞毛华明邓卫东. 18r RNA/r DNA为主的分子生物学技术在瘤胃原虫分类鉴定中的应用[J].饲料工业, 2007, 28(22):52-54.
    [118]Ji-Sook Lee, J.L., Soon-Jung Park, et al. Analysis of the genes expressed in Clonorchis sinensis adults using the expressed sequence tag approach[J]. Parasitol Res, 2003, 91: 283–289.
    [119]Cho PY, K.T., Whang SM, et al. Gene expression profile of Clonorchis sinensis metacercariae[J]. Parasitol Res., 2008, 102(2): 277-82.
    [120]Cho PY, L.M., Kim TI, et al. Expressed sequence tag analysis of adult Clonorchis sinensis, the Chinese liver fluke[J]. Parasitol Res, 2006, 99(5): 602-8.
    [121]Johnston DA, B.M., Degrave WM, et al. Genomics and the biology of parasites[J]. Bioessays, 1999, 21(2): 131-47.
    [122]Hubbard C, S.D., Rauch M, et al. The secretory carrier membrane protein family: structure and membrane topology[J]. Mol Biol Cell, 2000, 11(9): 2933-47.
    [123]Fernández-Chacón R, A.M., Janz R, et al. SCAMP1 function in endocytosis[J]. J Biol Chem, 2000, 275(17): 12752-6.
    [124]Skelly PJ, K.J., Cunningham J, et al. Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni[J]. J Biol Chem, 1994, 269(6): 4247-53.
    [125]Kim TI, C.P., Yoo WG, et al. Bile-induced genes in Clonorchis sinensis metacercariae[J]. Parasitol Res, 2008, 103(6): 1377-82.
    [126]胡松年.基因表达序列标签(EST)数据分析手册[M].杭州:浙江大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700