用户名: 密码: 验证码:
台西南海域天然气水合物含量估算及地球化学特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于南海北部陆坡区的台西南盆地是天然气水合物潜在分布区之一。水合物稳定带的研究对天然气水合物成矿与分布规律以及资源评价都具有重要意义,本文根据SO-177中德合作航次南海北部陆坡天然气水合物地质的调查资料,结合天然气水合物的相平衡条件和相应的压力-温度方程,计算了台西南盆地A区和B区的水合物稳定带厚度,并讨论了水合物稳定带厚度的分布特征。另外,对A区和B区天然气水合物中甲烷资源量进行了初步估算,估算结果为:A区甲烷资源含量为8.5739×1011~5.1443×1012 m3,B区为1.4518×1012~8.7111×1012 m3,A区和B区资源总量约2.3029×1012~13.8544×1012 m3。初步估算结果显示,台西南盆地天然气水合物甲烷资源量潜力巨大。
     利用台西南海区采集的垂直剖面分层水样,分析了南海台西南海区溶存甲烷的分布特征及其与甲烷渗漏的关系。海水中溶存甲烷垂直分布大体可分为六种类型,部分站位中底层海水中溶存甲烷浓度出现高浓度异常,另外,本文根据台西南盆地海底沉积物中孔隙水数据,对天然气水合物存在可能性大的站位离子浓度特征进行了分析,并推测出SMI(硫酸盐-甲烷界面)埋深,这些站位SMI埋深都小于50m,这都说明该区可能存在天然气水合物。
One of potential areas containing gas hydrate located in the continental slope of South China Sea is Taixi’nan basin. The study of the hydrate stability zone (HSZ) is of great significance in that it is beneficial to the research of the deposition and the distribution features of marine gas hydrate ore, and also to the resource assessment of the marine gas hydrate. On the basis of gas hydrate data from SO-177 cooperation voyage with China and Germany, we calculated the thickness of the gas hydrate stability zone of A and B; Furthermore, with the help of Geographic Information System (GIS) tools, we get the initial amount of methane in standard condition included in gas hydrate: 8.5739×1011~5.1443×1012 m3 for area A, 1.4518×1012~8.7111×1012 m3 for area B, and 2.3029×1012~13.8544×1012 m3 in all. The calculated results show that there is huge potential methane resource in Taixi’nan basin.
     Based on investigated data for the South China Sea, the paper analyzed dissolved methane in sea water and the relationship with methane seepages in the offshore area of southwest Taiwan, South China Sea. There are six styles about methane concentration profiles. The exceptionally high methane concentrations appeared in some stations in the bottom layes. In addition, the paper analyzed the geochemical data of the pore water of possibly high gas hydrate occurrence station where the SMI depth is speculated to less than 50m. The two evidence suggest the possible relation with existence of gas hydrate in this area.
引文
[1] Arthur C. Abnormally high CH4 concentrations in seawater at mid-depths on the continental slopes of the northern South China Sea. Terr Atmos Ocean Sci, 2006 (17(4)):951-959.
    [2] Bates T S, Kelly K C, Johnson J E. A reevaluation of the open ocean source of methane to the atmosphere. J Geophy Res, 1996 (101(D3)):6953-6961.
    [3] Berner R A. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geoherm Cosmochim Acta, 1980 (39): 489.
    [4] Borowski W S, Hoehler T M, Alperin M J. Significance of anaerobic methane oxidation in methane-rich sediments overlying the blake ridge gas hydrates. Paull C K, Matsumoto R, Wallace PJ et al. Proceedings of the Ocean Drilling Programme, Scientific results 164, College Station, Texas, Ocean Drilling Program, 2000:179-191.
    [5] Borowski W S, Paull C K, Ussler W.III. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate. Marine Geology, 1996 (24(7)):655-658.
    [6] Borowski W S, Paull C K, Ussler W.III. Global and local variations of interstitial sulfate gradients in deep-water continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 1999 (159(1-4)):131-154.
    [7] Briais B Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implication for the Teriary tectonics of Southeast Asia. J Geophys Res, 1993 (98(B4)):6299-6328.
    [8] Charlou J L Donval J P, Fouquet Y. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo Angola Basin. Chemical Geology, 2004 (205):405-425.
    [9] Charlou J L, Donval J P, Fouquet Y. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo Angola Basin. Chemical Geology, 2004 (205):405-425.
    [10] Charlou J L, Donval J P, Fouquet Y. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo-Angola Basin. Chemical Geology, 2004 (205):405-425.
    [11] Chow J, Lee J S, Sun R. Characteristics of the bottom simulating reflectors near mud diapers: offshore southwestern Taiwan. Geo-Marine Letters, 2000 (20): 3-9.
    [12] Cicerone R J, Oreml R S. Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles, 1998 (2): 299-327.
    [13] Clennell M B, Hovland M, Booth J S. Formation of natural gas hydrate in marine sediments1. Conceptual model of gas hydrate growth conditioned by host sediment properties. JGR, 1999 (104):22985-23002.
    [14] Collet T S, John L. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data// Paull C K, Mastsumoto R, Wallace P J, et al eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2000 (164):179-191.
    [15] Collet T S, John L. Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data// Paull C K, Mastsumoto R, Wallace P J, et al eds. Proceedings of the Ocean Drilling Program, Scientific Results, 2000 (164):179-191.
    [16] Collet T S. Gas hydrate resources of Northern Alaska. Bulletin of Canadian Petroleum Geology, 1997 (45(3)):317-338.
    [17] Crutzen P J. Methane’s sinks and sources. Nature, 1991 (23):89-96.
    [18] Cynar F J, Yayanos A A. The distribution of CH4 in the upper waters of southern California Bight. J Geophys Res, 1992 (97):11269-11285.
    [19] De Lange G J, Brumsack H J. Pore-water indications for the occurrence of gas hydrates in eastern Mediterranean mud dome structures. Proceedings of the Ocean Drilling Program, Scientific results: College Station, Texas, Ocean Drilling Program, 1998:129-138.
    [20] Dickens G R, Paull C K, Wallace P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997 (385):426-428.
    [21] Dillion W P, Danforth D R, Hutchinsonet R M. Evidence for faulting related to dissociation of gas hydrate and release of methane off the southeastern United States. Henriet J P , Mienert J Gas Hydrate-Relevance to World Margin Stability and Climate Change, The Geological Society, London, Special Publication 137, 1998:293-302.
    [22] Etheridge D M, Peama G I, Fraser P J. Changes in tropospheric methane between 1841 and 1978 from a high accumulation—rate Antarctic ice core. Tellus, 1992 (44B):282-294.
    [23] Faugeres J C, Mezerais M L, Stow D A W. Confourite drift types and their distribution in the North and South Atlantic Ocean Dasins. Sedimentary Geology, 1993 (82):189-203.
    [24] Ginsburg G D, Soloviev V A. Submarine gas hydrate. St..Petersburg : VNIIO Kenageologiya. 1998:167-170.
    [25] Gornitz V, Fung I. Poteneial distribution of methane hydrates in the world's oceans. Global Biogeochemical Cycles, 1994 (8):335-347.
    [26] Grant N J, Whiticar M J. Stable carbon isotopic evidence for methane oxidation in plumes above Hydrate Ridge, Cascadia Oregon Margin. Glob Biogeochem, 2002 (16):1124.
    [27] Handa Y P, Stupin D. Thermpdynamic properties and dissociation characteristics of methane and propane hydrates in 70-A-radius silica gel pores. J Phy chem, 1992 (96):8599-8603.
    [28] Hesselbo S P, Grocke D R, Jenkyns H C. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 2000 (406):392-395.
    [29] Hesselbo S P, Grocke D R, Jenkyns H C. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 2000 (406):392-395.
    [30] Holbrook W S, Hoskins H, Wood W T. Methane gas hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 1996 (273):1840-1843.
    [31] Houghton J. Climate Change.The IPCC Scientific Assessment. London:Cambridge University Press, 1990:35- 38.
    [32] Houghton J T, Ding Y, Griggs D J. Climate Change 2001: the Scientific Basis: Contribution of Working Group to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 2001:88l.
    [33] Huang Yongyang SUESS E, WU Nengyou. Geological settings and evidences of gas-hydrate occuring in the North-east Dongsha area of South China Sea. Proceedings of Gas Hydrate Colloquium Between Taiwan and MotherlandTainan,Taiwan, 2005 (17-18):3-4.
    [34] Judge A S, Majorowicz J A. Geothermal conditions for gas hydrate stability in the Bearfort-Mackenzie area: the global change aspect. Global and Planetary Change, 1992 (6(2-4)):251-263.
    [35] Kasner M, Kvenvolden K A, Whiticar M J. Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia Margin, sites 889&892. Proceedings of the Ocean Drilling Program, Scientific Results, 1995 (46(1)):175-187.
    [36] Kvenvolden K A, Kastner M. Gas hydrate of the Peruvian outer continental margin. Proceedings ODP Scientific Results, 1990 (112):517-526.
    [37] Kvenvolden K A. Potential effects of gas hydrate on human welfare. Proceedings of Natural Academy of Science, 1999 (96):3420-3426.
    [38] Ludmann T. Upward flow of North Pacific deep water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophys Res Lett, 2005(32, L05614), doi:10.1029/2004GL021967.
    [39] Marki R G, Bryan G, MandEwing J I. Structure of the Blake-Bahama outer ridge. Journal of Geophysical Research, 1970 (75):4539-4555.
    [40] Mastsumoto R, Takedomi Y, Wassada H. Exploration of marine gas hydrates in Nankai Trough, offshore central Japan. AAPG Annual Convention, Official Program, 2001 (10):A128.
    [41] McDonnell S L, Max M D, Cherkis N Z. Tectonic-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan. Marine Petroleum Geology, 2000 (17):929-936.
    [42] McGinnis D F, Greinert J, Artemov Y. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res, 2006 (C09007):111.
    [43] Mikov A V, Sassen R. Thickness of the gas hydrate stability zone: Gulf of Mexico continental slope. Marine and Petroleum Geology, 2000 (17):981-911.
    [44] Miles P R. Potential distribution of methane hydrate beneath the European continental margins. Geophysical Research Letters, 1995 (22(23)):3179-3182.
    [45] Milkov A V, Sassen R. Preliminary assessment of resources and economic potential of individual gas hydrate accumulations in the Gulf of Mexico continental slope. Marine and Petroleum Geology, 2003 (20):111-128.
    [46] Milkov A V. Global estimates of hydrate-bound gas in marine sediments:How much is really out there? Earth-Science Reviews, 2004 (66(3-4)):183-197.
    [47] Paull C K. Evaluation of marine slumping as a mechanism to transfer methane from seafloor gas hydrate deposits into the upper ocean and atmosphere. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama May 19-23, 2002.
    [48] Ranger A, Bruke T. Upper water column CH4 geochemistry in the eastern tropical North Pacific. Limnol Oceanogr, 1983 (28):19-32.
    [49] Satoh M. Gas hydrate (IV): Distribution, amount of methane and resources of methane hydrates. Jour Japan Inst Energy, 2003 (80):1064-1074.
    [50] Satoh M, Maekawa T, Okuda Y. Estimation of amount of methane and resources of natural gas hydrate in the world and around Japan. Journal Geological Society Japan, 1996 (102):959-971.
    [51] Shao L. Provennace of a prominent sediment drift on the northern slope of the South Shina Sea. Sciences in China, Ser D, 2001 (44(10)):919-925.
    [52] Shyu C T, Hsu S K, Liu C S. Heat flows off southwest Taiwan: measurements over mud diapers and estimated from bottom simulating reflectors. TAO, 1998 (9(4)): 795-8l2.
    [53] Sloan E D. Cathrate hydrates of natural gas (second edition). New York: Marvel Dekker Inc. 1998:628.
    [54] Solomon E A, Kastner M, MacDonald I R. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico. NATURE GEOSCIENCE, 2009 (2):561-565.
    [55] Spence G D, Minshull T A, Fink C. Seismic structure of a marine methane hydrate reflector off Vancouver Island. ODP Scientific Results, 1995 (146):163-174.
    [56] Suess E, Torres M, Bohrmann G. Gas hydrate destabilization: enhanced dewatering,benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth & Planet Sci Let, 1999 (170):115.
    [57] Suess,吴能友,黄永样,Erwin.南海北部陆坡甲烷和天然气水合物地质——中德合作SO—177航次成果专报.北京:地质出版社, 2008:56-58
    [58] Taylor B, Hayes D E. The tectonic evolution of the South China Sea Basin. Hayes D E, The tectonics and Geologic Evolution of Southeast Asian Seas and Islands. AM Geophys Un Geophys Un Geophys Monogr, 1980 (23):89-104.
    [59] Trofimuk A A, Gherskiy N V, Tsarev V P. Accumulation of natural gases in zones of hydrate-formation in the hydrosphere. Doklady Akademii Nauk SSSR, 1973 (212):931-934.
    [60] Ussler WIII Paull C K. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Marine Letters, 1995 (15(1)):37-44.
    [61] Valentine D. L., Blanton, D. C., Reeburgh, W. S. Water column methane oxidation adjacent to an area of active hydrate dissociation, Eel River Basin. Geochim Cosmochim, 2001 (65):2633-2640.
    [62] Watanabe S. Annual variation of methane in seawater of Funka Bay, Japan. J Oceanogr, 1994 (50):415-421.
    [63] Wiesenburg D A Guinasso N L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. 1979 (24(4)): 356-360.
    [64]藏家业.东海海水中的融存甲烷.海洋学报, 1998 (20(2)):52-59.
    [65]陈多福.琼东南盆地崖13天然气水合物的温压条件和厚度计算.地球化学, 2001 (30(6)):585-591.
    [66]陈多福,李绪宣,夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测.地球物理学报, 2004 (47(3)):483-489.
    [67]陈多福,王茂春,夏斌.青藏高原冻土带天然气水合物形成条件与分布预测.地球物理学报, 2005 (48(1)):164-171.
    [68]邓希光,付少英,黄永祥.南海北部东沙群岛HD196站位地球化学特征及其对水合物的指示.现代地质, 2006 (20(1)):92-102.
    [69]方银霞,黎明碧,金翔龙.东海冲绳海槽天然气水合物的资源前景.天然气地球科学, 2001 (12(6)):32-37.
    [70]方银霞,初凤友.硫酸盐-甲烷界面与甲烷通量及下伏天然气水合物赋存的关系。海洋学研究,2007(25(1)):1~9.
    [71]龚建明.天然气水合物稳定带顶底界线及厚度预测.海洋地质动态, 2004 (20(6)):18-21.
    [72]龚再升,李思田,谢泰俊.南海北部大陆边缘盆地分析与油气聚集.北京:科学出版社, 1997:1-510.
    [73]江怀友,乔卫杰,钟太贤等.世界天气水合物资源勘探开发现状与展望.中外能源, 2008 (13(5)):19-25.
    [74]李建松.地理信息系统.武昌:武汉大学出版社, 2006.
    [75]李亮亮,依艳丽.地统计学在土壤空间变异研究中的应用.土壤通报, 2005 (36(2)):265-266.
    [76]李新,程国栋,卢玲.空间内插方法比较.地球科学进展, 2000 (15(3)):260-265.
    [77]梁金强,吴能友,杨木壮.天然气水合物资源量估算方法及应用.地质通报, 2006 (25(9-10)):1205-1210.
    [78]梁金强,吴能友,杨木壮.天然气水合物资源量估算方法及应用.地质通报, 2006 (10):1205-1210.
    [79]卢振权,吴必豪,金春爽.天然气水合物资源量的一种估算方法——以南海北部陆坡为例.石油实验地质, 2007 (29(3)):319-323.
    [80]蒲晓强,陶小晚,张会领.南海北部陆坡天然气水合物存在的地球物理和地球化学特征.天然气水合物, 2009 (20(4)):620-626.
    [81]沙志彬.南海北部陆坡海底异常地貌特征与天然气水合物的关系.南海地质研究, 2003 (14):19-25.
    [82]宋海斌,译Satoh, M著.南海海槽等海域天然气水合物资源评价.天然气地球科学, 2003 (14(6)):512-513.
    [83]苏新,陈芳,于兴河.南海陆坡中新世以来沉积物特性与气体水合物分布初探.现代地质, 2005 (19(1)):l-l3.
    [84]王淑红,宋海斌,颜文.全球与区域天然气水合物中天然气资源估算.地球物理学进展, 2005 (20(4)):1145-1154.
    [85]王淑红,宋海斌,颜文.天然气水合物稳定带计算方法与参数选择探讨.现代地质, 2005 (19(1)):101-107.
    [86]王政权.地统计学在生态学中的应用.北京:科学出版社, 1999:76-80.
    [87]邬伦,刘瑜,张晶.地理信息系统原理方法和应用.北京:科学出版社, 2001:178-192.
    [88]吴能友,杨胜雄.南海神狐海域天然气水合物成藏系统初探.天然气工业, 2007 (27(9)):1-6.
    [89]吴时国.东沙海区天然气水合物BSR形成与稳定分布的地质构造因素.石油学报, 2004 (25(4)):8-16.
    [90]吴时国,姚伯初.天然气水合物赋存地质构造分析与资源评价.北京:科学出版社, 2008.
    [91]夏新宇,王先彬.西太平洋上层海水溶解甲烷浓度及碳同位素特征研究.沉积学报, 1996 (14(4)):45-49.
    [92]许洁.南海、黄海及长江口海域溶解氧化亚氮和甲烷的分布及海—气交换通量研究.硕士学位论文,中国海洋大学, 2006.
    [93]杨木壮.南海北部陆坡特殊地质环境与BSR分布.见:李家彪边缘海的形成演化与主要资源的关键问题专辑北京:地质出版社, 2004:409-420.
    [94]杨涛,葛路,杨競红.南海北部陆坡西沙海槽XS-01站位沉积物孔隙水的地球化学特征及其对天然气水合物的指示意义.第四纪研究, 2006 (26(3)):442-448.
    [95]杨涛薛,杨竞红,蒋少涌.南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征.地球学报, 2003 (24(6)):511-514.
    [96]姚伯初.南海的天然气水合物矿藏.热带海洋学报, 2001 (20(2)):20-28.
    [97]于兴河,张志杰,苏新.中国南海天然气水合物沉积成藏条件初探及其分布.地学前缘, 2004(11(1)):3l1-3l4.
    [98]臧家业.东海海水中的溶存甲烷.海洋学报, 1998 (20(2)):52-59.
    [99]臧家业,王相芹.海湾区海水中的溶存甲烷Ⅱ浓度和海气交换通量.黄渤海海洋, 1997 (15(3)):1-9.
    [100]曾维平,周蒂. GIS辅助南海南部天然气水合物资源量.热带海洋学报, 2003 (22(6)):35-45.
    [101]张峰.黄海及长江口海域溶存氧化亚氮和甲烷的分布及海—气交换通量研究.硕士学位论文,中国海洋大学, 2008.
    [102]张光学.世界海域水合物地震调查研究综述.海洋地质, 2001 (1):1-18.
    [103]张桂玲.中国近海部分海域溶解甲烷和氧化亚氮的生物地球化学研究.博士学位论文,中国海洋大学, 2004.
    [104]张桂玲,张经.海洋中溶存甲烷研究进展.地球科学进展, 2001 (16(6)):829-835.
    [105]张宏,温永宁,刘爱利.地理信息系统算法基础.北京:科学出版社, 2006:100-103.
    [106]张少良.哈尔滨市农田黑土养分空间分布特征分析.黑龙江八一农垦大学硕士学位论文, 2007:54-56.
    [107]张志杰,于兴河,刘博.我国台西南附近构造沉降与沉积作用对气水合物成藏的可能控制.天然气地球科学, 2004 (15(6)):565-569.
    [108]张志杰,于兴河,刘博.我国台西南附近构造沉降与沉积作用对气水合物成藏的可能控制.天然气地球科学, 2004 (15(6)):655-659.
    [109]朱光辉,陈刚,刁应护.琼东南盆地温度-压力场特征及其与油气运聚到关系.中国海上油气(地质), 2000 (14(1)):29-36.
    [110]朱求安,张万昌,余均辉.基于GIS的空间插值方法研究.江西师范大学学报:自然科学版, 2004 (28(2)):184.
    [111]祝有海,张光学,卢振权.南海天然气水合物成矿条件与找矿前景.石油学报, 2001 (22(5)):6-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700