用户名: 密码: 验证码:
天山乌鲁木齐河源1号冰川雪冰细菌分布特征及其多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川是微生物的储存库,为研究不同历史时期环境条件对生物多样性时空变化的影响以及丰富物种多样性提供了极好的框架。微生物在沉降过程中的变化,不仅受到沉积时气候环境的影响,也受到沉积后微生物的生长、降解、溶水冲刷和雪→冰环境改变的影响。本研究对天山1号冰川PGPI点4月(snow pit-1)和5月(snow pit-2)所挖的两个雪坑和钻取的一段浅冰芯不同深度样品中的微生物数量和多样性进行了研究,分析了微生物与环境之间的关系,主要得出了如下结论:
     雪坑中微生物总数为0.7×10~3-2.16×10~5 cells·mL~(-1),可培养细菌数为0-550cfu·mL~(-1),snow pit-2细菌总数平均值为snow pit-1的1.5倍,但可培养细菌数却为7.5倍,这种大的差异可能是5月的环境更利于细菌的生长繁殖和复苏。两个雪坑中微生物数量出现高值区和低值区,它可能是两个季节的旋回,春夏季时微生物数量出现峰值而秋冬季出现低值与大气气流和来源地密切相关。天山1号冰川浅冰芯中微生物总量为1.4×10~3-1.0×10~5 cells·mL~(-1),可培养细菌数量为0-300cfu·mL~(-1),冰片中微生物总量和可培养细菌的数量较多,粒雪层中相对少的多,这可能是雪层中的微生物及粉尘颗粒随融水的淋溶作用进入冰层。冰片中微生物总数和可培养细菌数量随深度呈递减的趋势,可能是近几年环境变化或人类活动频繁使大气中携带更多的细菌和颗粒物质沉积在冰川上,也可能是细菌发生自溶或被降解所致,还有待进一步研究证实。微生物总数与可培养细菌之间也有一定的对应关系,但并不是一一对应,说明除了来源和繁殖因素外,细菌种类组成也影响着可培养细菌的数量。
     分离到的天山1号冰川雪坑的24株可培养细菌分属于4大类的18个属,其中Actinobacteria中属的种类最多,CFB类、Actinobacteria、Firmicutes类这三大类是可培养细菌的主要类群,Proteobacteria极少,4、5月所挖雪坑样品中,CFB类所占比例分别为53.5%和54%,Actinobacteria所占比例分别为26%和28.5%,Firmicutes类所占比例分别为14%和12%,Proteobacteria为6.5%和5.5%。Flavobacterium和Pedobacter、Arthrobacter、Bacillus分别是CFB类、Actinobacteria、Firmicutes类中的优势属。分离到的天山1号冰川冰芯可培养细菌分属于4大类的14个属,Firmicutes类中属的种类最多,而Proteobacteria、Actinobacteria类和CFB类中,Frigoribacterium、Flavobacterium、Arthrobacter、Brevundimona、Pseudomonas和Pedobacter等属的细菌在天山冰芯的可培养菌株中为优势种类,在数量上占可培养细菌的90%以上。
     天山雪坑中的一些分离株在中性或碱性条件下生长,一些细菌能降解碳氢化合物、二苯并呋喃、有机氯化合物、苯酚等,这可能都与天山雪中的化学物质有关,可见,这种化学环境对天山细菌种类的分布有一定的选择作用。从1号冰川雪坑中分离出来的细菌与1号冰川植物中分离出的植物内生菌有一些相同属。植物中分离出来的细菌也有很多是天山雪坑样品中没有分离到的,应该是不同的生境有不同的选择作用的结果。天山雪坑细菌与Puruogangri、昆仑山和两极分离属有很多相同,说明这些种适应低温环境,能在不同的低温环境中保存下来,并且天山和Puruogangri、昆仑山有部分相同的沙尘爆来源;而与东绒布雪中的分离属比较,只有3个共有属,这种极大的差异性可能是它们主要的来源不同。雪坑中的细菌在数量和种类组成上的分布与季节性有很大相关性,而冰芯中微生物却没有呈现这种特征,主要是雪变冰的过程和淋溶作用等影响了微生物的分布,但在长时间尺度上冰芯中微生物信息也能反映气候信息。
     从雪坑和冰芯中分离出来的细菌多与从其他低温环境中分离出来的细菌有99%或98%的相似性,说明它们是适应低温的细菌,从天山雪坑和天山冰芯中分离的细菌只有4个属相同,而天山雪坑和天山冻土有11个共有属,天山冰芯和天山冻土有6个共有属,这三种不同的生境保存了不同的微生物类群,使微生物构成既有相似之处又有很大的区别,雪坑和冰芯样品中种类的巨大差别可能是不同时期微生物来源不同以及不同的生境进行选择的结果,源区微生物的种类构成、大气环流、沉降区的物理化学性质、沉积后作用以及微生物自身的种类构成等都是微生物种类和数量的重要影响因素,因此,研究保存在冰川中的微生物信息需要考虑更多这些因素的影响,这样才能更全面的反映过去的气候信息。
Microorganisms in the glaciers which were atmospheric constituents originating from a variety of ecological sources at defined ages in history. The microbial community may occur transition after depositing by reproduction, decomposition, autolysis and meltwater washout and suffering the habitat changes of snow-ice. How these changes impact microbial distribution is vital important to unravel the relationship between microorganisms entrapped in deep ice core and climatic and environment. We study on microbial abundunce and structure of two snow pits and a shallow ice core intended to determine the mechanisms responsible for the process of microbial depositing on glacier .The major results were obtained as follows:
     The total cell number in different layers of snow pits ranged from 0.7×10~3 to 2.16×10~5 cells·mL~(-1) and bacterial CFU varied from 0 to 550 cfu·mL~(-1). It was 1.5:1 ratio of the average cell number in snow pit-2 samples to snow pit-1 samples, while the ratio of average CFU was 7.5:1. It might be because the conditions in May were much more favorable for bacterial recovery and growth. The vertical profiles of microbial distribution compared with Ca~(2+) concentrations at different depths appears cycles of peak value ranges and low value ranges, which might be related to the atmospheric circulation and ecological sources. The total cell number of the shallow ice core samples fluctuated from 1.4×10~3 to 1.0×10~5 cells·mL~(-1) and bacterial CFU varied from 0 to 300 cfu·mL~(-1). The cell counts and CFU within ice layers were higher than that within firn layers. This might be because of the percolation. The concentration of microorganisms in this shallow ice core decreased with increasing depth, which might be caused by changes of environment or by autolysis or being decomposited by other organisms. The amounts of total microorganisms and culturable bacteria have corresponding relationship but not instrictly. It indicated that the amount of culturable bacteria was also affected by the composition of bacteria other than ecologycal sources and bacteria generation.
     Isolates from two snow pits samples affiliated with 18 genera of 4 phylogenetic groups: Actinobacteria (Arthrobacter, Leifsonia, Microbacterium, Clavibacter, Rhodococcus, Nocardioides and one unclassified genus), Firmicutes(Bacillus, Brevibacillus, Planococcus, Exiguobacterium and one unclassified genus), Bacteroidetes (CFB group, Flavobacterium and Pedobacter) and Proteobacteria (Sphingomonas and Massilia and two unclassified genera). CFB group, Actinobacteria, Firmicutes and Proteobacteria accounted for 53.5% and 54%, 26% and 28.5%, 14% and 12%, 6.5% and 5.5% of all bacterial isolates in snow pit-1 and snow pit-2 samples, respectively. The main genera of CFB、Actinobacteria、Firmicutes group were Flavobacterium, Pedobacter, Arthrobacter and Bacillus. Bacteria isolated from ice core samples belonged to 14 genera of 4 main phylogenetic groups. Actinobacteria contained 3 genera (Arthrobacter, Frigoribacterium and Kocuria) and the isolates were all from cold environments. Two genera (Flavobacterium and Pedobacter) affiliated with CFB group. Four genera (Brevundimonas, Janthinobacterium, Polaromonas and Pseudomonas) belong to the Proteobacteria. Firmicutes was consisted of 4 genera (Bacillus, Cohnella, Paenibacillus and Sporosarcina). Firmicutes group contained the most genera. In Proteobacteria、Actinobacteria and CFB groups, Frigoribacterium、Flavobacterium、Arthrobacter、Brevundimona、Pseudomonas and Pedobacter were the dominant genera, which contained 90% of the total culturable bacteria.
     Some bacteria isolated from snow at No.1 Glacier can only survive when pH=7. Some can decomposite hydrocorbon compound, dibenzofuran, phenol and organochlorine compound, etc., which might be related with the chemical substances in snow. These implied that chemical condition was a selective factor for bacteria in glaciers. There were some common genera between snow isolates and plant isolates, but many isolates from plant cann't isolated from snow, which might be the result of selection of different environments. At the same time, we found that there were some common genera between Tianshan snow isolates and Puruogangri, Kunlun Mountain and Polars isolates, which suggestted that these bacteria can fit to low temperature, and also, Tianshan Mountain and Puruogangri, Kunlun Mountain have some common dust sources regions. However, just three common genera existed between Tianshan snow and East Rongbuk glacier snow. It seems likely that variations in bacterial composition of diverse glacial snow could reflect changes in atmospheric circulation which affected different communities of bacteria and chemical environments for bacterial survival. The vertical distribution of microbial abundance and bacterial compositons was related with seasons. While microorganisms deposited in the ice haven't showed this characteristic because of percolation but it also could reflect the atmospheric information on a long time scale.
     Isolates from snow and ice of Tianshan have 98% or 99% similarity with other cold environments' isolates. In this study, just 4 common genera were found between snow pits and ice core samples, but members of 11 genera isolated from snow pits have been found in Tianshan permafrost, and 6 genera recovered from the ice core were found in Tianshan permafrost. This indicated three different environments deposited different microorganisms and made the different microbial community. The large difference between snow pits and ice core isolates might be caused by different sources and selective environments. Microbial abundunce and composition were affected by sources, atmoshperic circulation, physical and chemical characteristics of precipitation regions, post-depositional process and microbial community itself, etc. For reflecting atmoshperic information more accurately we should think about more factors affectting the process of microbial depositing on glacier.
引文
Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedman EI (ed) Antarctic microbiology. John Wiley & Sons, New York, pp 265-295.
    Abyzov SS, Mitskevich IN & Poglazova MN (1998) Microflora of the Deep Glacier Horizons of Central Antarctica Microbiology 67: 451-458.
    Abyzov SS, Mitskevich IN, Poglazova MN, Barkov NI, Lipenkov VY, Bobin NE, Koudryashov BB & Pashkevich VM (1998) Antarctic ice sheet as a model in search of life on other planets.Advances in Space Research 22: 363-368.
    Alfred T, Mikell J, Parker BC & Gregory EM (1986) Factors Affecting High-Oxygen Survival of Heterotrophic Microorganisms from an Antarctic Lake. Applied and Environmental Microbiology 52:1236-1241.
    Aller JY, Kuznetsova MR, Jahns CJ & Kemp PF (2005) The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols. Journal of Aerosol Science 36: 801-812.
    Amato P, Hennebelle R, Magand O, Sancelme M, Delort A-M, Barbante C, Boutron C & Ferrari C (2007) Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology 59: 255-264.
    Bai Y, Yang D, Wang J, Xu S, Wang X & An L (2006) Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Research in Microbiology 157: 741-751.
    Battin TJ, Wille A, Sattler B & Psenner R (2001) Phylogenetic and Functional Heterogeneity of Sediment Biofilms along Environmental Gradients in a Glacial Stream. Applied and Environmental Microbiology 67: 799-807.
    Carpenter EJ, Lin S & Capone DG (2000) Bacterial activity in South Pole snow. Applied and Environmental Microbiology 66: 4514-4517.
    Castello JD, Rogers SO, Starmer WT, Catranis CM, Ma L, Bachand GD, Zhao Y & Smith JE (1999) Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biology 22: 207-212.
    
    Catranis C & Starmer WT (1991) Microorganisms entrapped in glacial ice. Antarctic Journal of the United States 26: 234-236.
    Cheng SM & Foght JM (2007) Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiology Ecology 59: 318-330.
    Christner BC, Mosley-Thompson E, Thompson LG & Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environmental Microbiology 3: 570-577.
    Christner BC, Mosley-Thompson E, Thompson LG & Reeve JN (2003) Bacterial recovery from ancient glacial ice. Environmental Microbiology 5: 433-436.
    Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K & Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479-485.
    Clocksin KM, Jung DO & Madigan MT (2007) Cold-Active Chemoorganotrophic Bacteria from Permanently Ice-Covered Lake Hoare, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology 73: 3077-3083.
    Corsaro MM, Lanzetta R, Parrilli E, Parrilli M, Tutino ML & Ummarino S (2004) Influence of Growth Temperature on Lipid and Phosphate Contents of Surface Polysaccharides from the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Bacteriology 186:29-34.
    D'Amico S, Marx J-C, Gerday C & Feller G (2003) Activity-Stability Relationships in Extremophilic Enzymes. The Journal of Biological Chemistry 278: 7891-7896.
    D'Amico S, Collins T, Marx J-C, Feller G & Gerday C (2006) Psychrophilic microorganisms:challenges for life. EMBO Reports 7: 385-389.
    Dabboussi F, Hamze M, Elomari M, Verhille S, Baida N, Izard D & Leclerc H (1999) Pseudomonas libanensis sp. nov., a new specie isolated from Lebanese spring waters.International Journal of Systematic and Evolutionary Microbiology 49: 1091-1101.
    Darling CA & Siple PA (1941) bacteria of Antarctica. Journal of Bacteriology 42: 83-98.
    Dodd CER, Sharman RL, Bloomfield SF, Booth IR & Stewart GSAB (1997) Inimical processes: Bacterial self-destruction and sub-lethal injury. Trends in Food Science & Technology 8:238-241.
    Ekelof E (1908) Wissenschaftliche ergebnisse der schwedischen Sudpolar Expedition.Lithographisches Institut des Generalstabs, Stockholm 1901-1903.
    Fajardo-Cavazos P & Nicholson W (2006) Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments. Applied and Environmental Microbiology 72: 2856-2863.
    Feller G & Gerday C (2003) Psychrophilic enzymes: Hot topics in cold adaptation. Nature Reviews Microbiology 1: 200-208.
    Fong NJC, Burgess ML, Barrow KD & Glenn DR (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Applied Microbiology and Biotechnology 56: 750-756.
    Fountain AG, Tranter M, Nylen TH, Lewis KJ & Mueller DR (2004) Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys,Antarctica. Journal of Glaciology 50: 35-45.
    Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541-548.
    Fukazawa H, Sugiyama K, Mae S, Narita H & Hondoh T (1998) Acid Ions at Triple Junction of Antarctic Ice Observed by Raman Scattering. Geophys. Res. Lett. 25: 2845-2848.
    Fuzzi S, Mandrioli P & Perfetto A (1997) Fog droplets--an atmospheric source of secondary biological aerosol particles.Atmospheric Environment 31: 287-290.
    Gerdel RW & Drouet F (1960) The Cryoconite of the Thule Area, Greenland. 79: 256-272.
    Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J et al (2008) Glacial ecosystems. Ecol Monogr 78:41-67. doi:10.1890/07-0187.1
    Hahn MW, Lunsdorf H, Wu Q, Schauer M, Hofle MG, Boenigk J & Stadler P (2003) Isolation of Novel Ultramicrobacteria Classified as Actinobacteria from Five Freshwater Habitats in Europe and Asia. Applied and Environmental Microbiology 69: 1442-1451.
    Junge K, Eicken H & Deming JW (2004) Bacterial activity at-2 to-20 degrees C in Arctic wintertime sea ice. Applied and Environmental Microbiology 70: 550-557.
    Karl DM, Bird DF, Bj, ouml, rkman K, Houlihan T, Shackelford R & Tupas L (1999) Microorganisms in the Accreted Ice of Lake Vostok, Antarctica. science 286: 2144-2147.
    Kirchman DL (2002) The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology 39: 91-100.
    Koronelli T, Komarova T, Il'inskii V, Kuz'min Y, Kirsanov N & Yanenko A (1997) Introduction of Bacteria of the Genus Rhodococcus into Oil-contaminated Tundra Soils Applied Biochemistry and Microbiology 33: 172-175.
    Krembs C, Eicken H, Junge K & Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Research Part I: Oceanographic Research Papers 49:2163-2181.
    Kuhn, M. (2008) The climate of snow and ice as boundary condition for microbial life. In R.Margesin, F. Schinner, J.C. Marx, and C. Gerday (eds), Psychrophiles: from Biodiversity to Biotechnology. Springer Verlag, Berlin Heidelberg.
    Kumar GS, Jagannadham MV & Ray MK (2002) Low-Temperature-Induced Changes in Composition and Fluidity of Lipopolysaccharides in the Antarctic Psychrotrophic Bacterium Pseudomonas syringae. Journal of Bacteriology 184: 6746-6749.
    Kumar S, Tamura K & Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics 5: 150-163.
    Legrand M & Mayewski P (1997) Glaciochemistry of Polar Ice Cores: A Review. Rev. Geophys.35: 219-243.
    Li Z, Edwards R, Thompson EM, Wang F, Dong Z, You X, Li H, Li C & Zhu Y (2006) Seasonal variability of ionic concentrations in surface snow and elution processes in snow-firm packs at the PGPI site on Urumqi glacier No.l, eastern Tien Shan, China Annals of Glaciology 43:250-256.
    Lighthar B & Shaffer BT (1995) Airborne Bacteria in the Atmospheric Surface Layer:Temporal Distribution above a Grass Seed Field. Applied and Environmental Microbiology 61:1492-1496.
    Liu Y, Yao T, Jiao N, Kang S, Zeng Y & Huang S (2006) Seasonal variation of snow microbial community structure in the East Rongbuk glacier, Mt. Everest Chinese Science Bulletin 51:1476—1486
    Liu Y, Yao T, Jiao N, Kang S, Huang S, Li Q, Wang K & Liu X (2008) Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest.13: 89-99.
    Ma L, Catranis C & Starmer WT (1999) Revival and characterization of fungi from ancient polarice. Mycologist 13: 70-73.
    Mader HM, Pettitt ME, Wadham JL, Wolff EW & Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169-172.
    Margesin R, Fonteyne P-A & Redl B (2005) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and basidiomycetous yeasts. Research in Microbiology 156:68-75.
    Marshall WA & Chalmers MO (1997) Airborne dispersal of antarctic terrestrial algae and cyanobacteria. Ecography 20: 585-594.
    McIntyre NF (1984) Cryoconite hole thermodynamics. Canadian Journal of Earth Sciences 21:152-156.
    
    McLean AL (1918) Bacteria of ice and snow in antarctica. Nature 102: 35-39.
    Methe BA, Nelson KE, Deming JW, et al. (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proceedings of the National Academy of Sciences of the United States of America 102:10913-10918.
    Miteva, V. (2008) Bacteria in snow and glacier ice. In Psychrophiles: from Biodiversity to Biotechnology. Margesin, R., Schinner, F., Marx, J.-C, and Gerday, C. . Berlin-Heidelberg:Springer-Verlag, pp. 31-50.
    Miteva VI & Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Applied and Environmental Microbiology 71:7806-7818.
    Miteva VI, Sheridan PP & Brenchley JE (2004) Phylogenetic and Physiological Diversity of Microorganisms Isolated from a Deep Greenland Glacier Ice Core. Applied and Environmental Microbiology 70: 202-213.
    
    Morita RY (1975) Psychrophilic bacteria. Bacteriological Reviews 39:144-167.
    Nakamura LK, Roberts MS & Cohan FM (1999) Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp.nov. and Bacillus subtilis subsp.spizizenii subsp. nov. International Journal of Systematic Bacteriology 49: 1211-1215.
    Nichols CAM, Guezennec J & Bowman JP (2005) Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review. Marine Biotechnology (New York) 7: 253-271.
    Nichols DS, Miller MR, Davies NW, Goodchild A, Raftery M & Cavicchioli R (2004) Cold Adaptation in the Antarctic Archaeon Methanococcoides burtonii Involves Membrane Lipid Unsaturation.Journal of Bacteriology 186: 8508-8515.
    Nicholson WL (2002) Roles of Bacillus endospores in the environment. CMLS Cellular and Molecular Life Sciences 59: 410-416.
    Noumura T, Habe H, Widada J, Chung J-S, Yoshida T, Nojiri H & Omori T (2006) Genetic characterization of the dibenzofuran-degrading Actinobacteria carrying the dbfA1A2 gene homologues isolated from activated sludge. FEMS Microbiology Letters 239:147-155.
    Nozomu T (2001) The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrological Processes 15: 3447-3459.
    Posfai M, Li J, Anderson JR & Buseck PR (2003) Aerosol bacteria over the Southern Ocean duringACE-1. Atmospheric Research 66: 231-240.
    
    Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. PNAS 97:1247-1251.
    Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiology Ecology 59: 217-231.
    Price PB & Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proceedings of the National Academy of Sciences of the United States of America 101: 4631-4636.
    Priscu JC, Fritsen CH, Adams EE & al e (1998) Perennial Antarctic lake ice:an oasis for life in a polar desert. science 280: 2095-2098.
    Priscu JC, Adams EE, Lyons WB, et al. (1999) Geomicrobiology of Subglacial Ice Above Lake Vostok, Antarctica. Science 286: 2141-2144.
    Reddy GSN, Matsumoto GI & Shivaji S (2003) Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. International Journal of Systematic and Evolutionary Microbiology 53: 1363-1367.
    Rogers SO, Theraisnathan V, Ma LJ, Zhao Y, Zhang G, Shin SG, Castello JD & Starmer WT (2004) Comparisons of Protocols for Decontamination of Environmental Ice Samples for Biological and Molecular Examinations. Applied and Environmental Microbiology 70: 2540-2544.
    Rohde RA & Price PB (2007) From the Cover: Diffusion-controlled metabolism for long-term survival of single isolated microorganisms trapped within ice crystals. PNAS 104:16592-16597.
    Russell NJ & Nichols DS (1999) Polyunsaturated fatty acids in marine bacteria--a dogma rewritten. Microbiology 145: 767-779.
    
    Rutz BA & Kieft TL (2004) Phylogenetic characterization of dwarf archaea and bacteria from a semiarid soil. Soil Biology & Biochemistry 36: 825-833.
    S(?)wstrom C, Mumford P, Marshall W, Hodson A & Laybourn-Parry J (2002) The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N) Polar Biology 25: 591-596.
    Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
    Sattler B, Puxbaum H & Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophysical Research Letters 28: 239-242.
    Sawstrom C, Graneli W, Laybourn-Parry J & Anesio AM (2007) High viral infection rates in Antarctic and Arctic bacterioplankton. Environ Microbiol 9:250-255.
    Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J, Herman L, De Vos P, Logan NA & Heyndrickx M (2004) Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk.International Journal of Systematic and Evolutionary Microbiology 54: 885-891.
    Segawa T, Miyamoto K, Ushida K, Agata K, Okada N & Kohshima S (2005) Seasonal Change in Bacterial Flora and Biomass in Mountain Snow from the Tateyama Mountains, Japan,Analyzed by 16S rRNA Gene Sequencing and Real-Time PCR. Applied and Environmental Microbiology 71: 123-130.
    Sheridan PP, Miteva VI & Brenchley JE (2003) Phylogenetic Analysis of Anaerobic Psychrophilic Enrichment Cultures Obtained from a Greenland Glacier Ice Core. Applied and Environmental Microbiology 69: 2153-2160.
    Straka RP & Stokes JL (1960) Psychrophilic bacteria from antarctica Journal of Bacteriology 80:622-625.
    Strand A, Shivaji S & Liaaen-Jensen S (1997) Bacterial carotenoids 55. C50-carotenoids 25.+ revised structures of carotenoids associated with membranes in psychrotrophic Micrococcus roseus. Biochemical Systematics and Ecology 25: 547-552.
    Takeuchi N & FUJITA K (1998) Snow algae community on a Himalayan glacier, Glacier AX010 East Nepal: Relationship with glacier summer mass balance. Bulletin of glacier research 16:43-50.
    Takeuchi N, Kohshima S & Segawa T (2003) Effect of cryoconite and snow algal communities on surface albedo on maritime glaciers in south Alaska. Bulletin of Glaciological Research 20:21-27.
    Tung HC, Price PB, Bramall NE & Vrdoljak G (2006) Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice.Astrobiology 6: 69-86.
    Van Trappen S, Vandecandelaere I, Mergaert J & Swings J (2005) Flavobacterium fryxellicola sp.nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. International Journal of Systematic and Evolutionary Microbiology 55: 769-772.
    Weinbauer MG, Beckmann C & Hofle MG (1998) Utility of Green Fluorescent Nucleic Acid Dyes and Aluminum Oxide Membrane Filters for Rapid Epifluorescence Enumeration of Soil and Sediment Bacteria.Applied and Environmental Microbiology 64: 5000-5003.
    Wharton RA, Jr., McKay CP, Simmons GM, Jr. & Parker BC (1985) Cryoconite holes on glaciers.Bioscience 35: 499-503.
    Willerslev E, Hansen AJ, Christensen B, Steffensen JP & Arctander P (1999) Diversity of Holocene life forms in fossil glacier ice. Proceedings of the National Academy of Sciences 96: 8017-8021.
    Xiang S,Yao T,An L,Wu G,Xu B,Ma X,Li Z,Wang J & Yu W(2005) Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core Science in China Series D-Earth Science 48:1728-1739.
    Yao T,Wu G,Pu J,Jiao K & Huang C(2004) Relationship between calcium and atmospheric dust recorded in Guliya ice core.Chinese Science Bulletin 49:706-710.
    Yao,T.,Y.Liu,S.Kang,N.Jiao,Y.Zeng,X.Liu,and Y.Zhang(2008),Bacteria variabilities in a Tibetan ice core and their relations with climate change,Global Biogeochem.Cycles,22,GB4017,doi:10.1029/2007GB003140.
    Yoshimura Y,Kohshima S & Ohtani S(1997) A community of snow algae on a Himalayan glacier:change of algal biomass and community structure with altitude.Arct.Antarct.Alp.Res.29:126-137.
    Yoshimura Y,Kohshima S,Takeuchi N,Seko K & Fujita K(2000) Himalayan ice-core dating with snow algae Journal of Glaciology 46:335-340.
    Young KD(2006) The Selective Value of Bacterial Shape.Microbiology and Molecular Biology Reviews 70:660-703.
    Yumoto I,Hishinuma-Narisawa M,Hirota K,Shingyo T,Takebe F,Nodasaka Y,Matsuyama H &Hara I(2004) Exiguobacterium oxidotolerans sp.nov.,a novel alkaliphile exhibiting high catalase activity.International Journal of Systematic and Evolutionary Microbiology 54:2013-2017.
    Zhang S,Hou S,Ma X,Qin D & Chen T(2007) Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation.Biogeosciences 4:1-9.
    Zhao Z,Tian L,Fischer E,Li Z & Jiao K(2008) Study of chemical composition of precipitation at an alpine site and a rural site in the Urumqi River Valley,Eastern Tien Shan,China.Atmospheric Environment 42:8934-8942.
    Zhou J,Bruns MA & Tiedje JM(1996) DNA recovery from soils of diverse composition.Applied and Environmental Microbiology 62:316-322.
    Zhu F,Wang S & Zhou P(2003) Flavobacterium xinjiangense sp.nov.and Flavobacterium omnivorum sp.nov.,novel psychrophiles from the China No.1 glacier.International Journal of Systematic and Evolutionary Microbiology 53:853-857.
    丁文慈,李心清,李忠勤 & 王飞腾(2007)乌鲁木齐河源1号冰川表层雪的化学特征——以低分子有机酸和无机阴离子为例.冰川冻土 5.
    尤晓妮,李忠勤 & 王飞腾(2005)利用雪层层位跟踪法研究暖型成冰作用的年限—以乌鲁木齐河源1号冰川为例.冰川冻土 27:853-860.
    尤晓妮,李忠勤,王飞腾 & 朱宇曼(2006)乌鲁木齐河源1号冰川不溶微粒的季节变化特征.地球科学进展 20:1164-1170.
    向述荣,姚檀栋,陈勇 & 尚天翠(2006)冰川微生物菌群分布的研究概况及其前景.生态学报 26:3098-3107.
    向述荣,姚檀栋,安黎哲,邬光剑,徐柏青,马晓军,真李,汪君霞 & 余武生(2005)慕士塔格冰芯可培养细菌的数量分布和主要菌群结构随深度的变化.中国科学D辑35:252-262.
    李向应,李忠勤,陈正华,赵中平,尤晓妮 & 朱宇漫(2006)天山乌鲁木齐河源1号冰川雪坑中pH值和电导率的季节变化及淋溶过程.地球科学进展 21:487-495.
    李传金,李忠勤,李月芳 & 王飞腾(2007)天山乌鲁木齐河源1号冰川积雪内痕量金属元素的季节变化及其环境意义.中国科学D辑 37:676-681.
    邱新法,曾燕 & 缪启龙(2001)我国沙尘暴的时空分布规律及其源地和移动路径.地理学报 56:316-322.
    侯书贵(2001)沉积后过程对冰川渗浸带雪坑化学剖面的影响.冰川冻土 23:185-188.
    侯书贵(2001)乌鲁木齐河源区大气降水的化学特征.冰川冻土 23:80-84.
    侯书贵 & 秦大河(1996)青藏高原冰川雪层中淋溶作用的初步研究.冰川冻土 18:75-82.
    盛红梅(2006)博士论文:乌鲁木齐河源区冰缘植物内生细菌多样性及其空间分布特征研究.兰州大学
    焦克勤,井哲帆,韩添丁,杨惠安,叶柏生 & 李忠勤(2004)42a来天山乌鲁木齐河源1号冰川变化及趋势预测.冰川冻土 26:253-260.
    刘勇勤,姚檀栋,康世昌,焦念志 & 曾永辉(2006)珠穆朗玛峰地区东绒布冰川冰雪微生物群落及其季节变化.科学通报 51:1287-1296.
    刘勇勤,姚檀栋,康世昌,焦念志,曾永辉,黄思军 & 骆庭伟(2007)珠穆朗玛峰北坡6000m以上主要生境细菌群落特征.科学通报 52:1542-1547.
    刘潮海 & 谢自楚(1998)天山冰川作用.科学出版社,北京.
    刘炜,马晓军,候书贵,陈拓 & 秦大河(2007)东天山地区庙儿沟雪坑中微生物多样性、群落与环境关系研究.微生物学报 47.
    张寅生,康尔泗 & 刘潮海(1994)天山乌鲁木齐河流域山区气候特征分析.冰川冻土 16:333-341.
    张淑红,侯书贵 & 秦大河(2007)青藏高原冰川雪冰微生物研究进展.应用与环境生物学报 13:592-596.
    张淑红,侯书贵,秦翔,王叶堂 & 杜文涛(2007)青藏高原冰川雪细菌与气候环境的关系.环境科学研究 20:39-44.
    张晓君,姚檀栋,马晓君 & 王宁练(2001)马兰冰川:一支深冰芯中微生物特征的分析.中国科学D辑 31:295-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700