用户名: 密码: 验证码:
全反式维甲酸(RA)诱导的神经细胞分化中NeuroD1基因调控的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全反式维甲酸(RA)诱导的神经细胞分化中NeuroD1基因调控的分子机制研究
     NeuroD1是一类与神经细胞分化和神经系统发育紧密相关的调控因子,其家族中共有七个成员,分别是NeuroD1~6和PJA2。NeuroD1作为一种神经分化因子在外周和中枢神经系统发育过程中都有的高表达。尽管NeuroD1在神经细胞发育中通常是瞬时表达,但在成年小鼠的小脑与海马区细胞中为持续表达;同时,其表达水平也随神经元细胞的成熟而降低。在神经母细胞中过表达NeuroD1时可引起神经细胞提前成熟;而在向表皮细胞分化的细胞中引入外源过表达的NeuroD1则可导致该细胞发育成为神经元细胞。在12种成神经管细胞瘤、成神经细胞瘤和视网膜成细胞瘤中NeuroD1基因都有表达,并且在受到各种刺激或向神经细胞方向诱导时其表达水平都会有显著升高。NeuroD1(-/-)小鼠在出生后立即死亡;重新转入neuroD1,这种小鼠虽然可继续生长,但其小脑和海马区粒细胞层在分化后会出现严重的神经元缺失。
     在真核生物中,组蛋白是染色质基本结构一核小体中的重要组成部分,其N末端氨基酸残基可发生乙酰化等共价修饰。组蛋白乙酰化与转录活性有密切关系:乙酰化组蛋白特异地聚集于活性染色质功能区。组蛋白的乙酰化是一可逆的动态过程,而其稳定状态的维持则是多种组蛋白乙酰基转移酶(HATs)和组蛋白去乙酰基转移酶(HDACs)共同作用的结果。这种可逆的乙酰化修饰作用可使染色质结构发生动态的改变,并对基因的转录产生重要影响。
     我们以RA诱导神经母细胞瘤SH-SY5Y分化为模型,低浓度RA处理24小时后,采用染色质免疫沉淀和启动子芯片结合技术研究基因组20,000基因的启动子区组蛋白H3K9和H3K14双乙酰化水平变化。本文中所用的ChIP on chip是染色质免疫沉淀与启动子DNA芯片相结合的一种新技术,作为系统生物学的一种手段去检测全基因组范围内变化,它具有高效性和高通量的特点。我们筛选染色质中通常代表转录活性的两个乙酰化修饰位点的分布及其在诱导前后的变化,并检出阳性位点相关的启动子与基因。初步结果根据log_2Ratio≥1或log_2Ratio≤-1分析,找到了597个乙酰化水平上升的启动子和647个乙酰化水平下降的启动子位点,显示RA的处理在细胞分化早期诱导了上述变化。鉴于RA诱导SH-SY5Y细胞分化一般出现在96小时后,上述乙酰化有改变的启动子不仅提示了神经分化早期的相关基因,还包含着与RA受体活化的效应基因。我们选择了数个乙酰化修饰发生变化的基因进行验证,结果显示其一致性达到70%。如PRKCA启动子区组蛋白H3乙酰化水平下降显著,CGB2、CUL7、ELF3、FOXH1、JARID1A和RARB上升显著,而NRG1,MVP和CSF1R变化不显著,与前七者与ChIP on chip结果一致,而后三者则不一致。值得重视的是发现神经分化标记基因NeuroD1的核心启动子区组蛋白H3的K9/K14的乙酰化水平明显降低,但是其mRNA表达水平却明显升高。为深入探讨其机制,我们开展了以下工作。
     为进一步研究NeuroD1调控的分子机制,在RA诱导的P19细胞分化模型中,NeuroD1核心启动子区的组蛋白H3乙酰化水平逐步降低,去除RA后组蛋白乙酰化H3修饰有回升,但在整个过程中神经细胞早期分化标记基因NeuroD1的mRNA水平一直升高;这种组蛋白H3乙酰化修饰和NeuroD1 mRNA变化关系与SH-SY5Y细胞分化模型相似。
     NeuroD1具有激活自身的启动子效应,并且对顺式调节元节E1 box依赖;研究表明,用TSA处理时,NeuroD1蛋白水平显著升高,但其激活活性反而受到抑制。免疫荧光结果表明,NeuroD1聚集在细胞核内;在TSA处理时,不仅NeuroD1的蛋白水平发生改变,而且在细胞中的定位发生改变,其蛋白会发生核膜聚集现象。
     RA能促进NeuroD1的自身激活作用;组蛋白去乙酰化酶HDAC3对自身激活效应具有协同激活作用,能显著增强自身激活效应。免疫共沉淀结果表明NeuroD1和HDAC3蛋白存在于同一个蛋白复合物中,两者之间可能存在相互作用。其他去乙酰化酶(HDAC),如HDAC1,HDAC2,HDAC4,HDAC5,HDAC6都对NeuroD1的激活没有影响。
     外源表达HDAC3在去乙酰化酶抑制剂TSA处理的情况下蛋白被修饰,NeuroD1的加入能阻止HDAC3的修饰。可能的机制是,HDAC3在TSA存在的时,在含HDAC3的蛋白复合物中HDAC3被丝/苏氨酸蛋白磷酸酶PP4c磷酸化;当NeuroD1存在的时候,通过某种方式抑制这种磷酸化修饰。
     综上所述,在神经细胞分化进程中,神经分化标记基因neuroD1的表达受NeuroD1以及HDAC3的精确调控来执行其功能。
NeuroD is a family of bHLH transcription factors, which play a pivotal role in neuronal differentiation and neuronal development. There are seven members in the family, named NeuroD1~6, and PJA2. As a neuron differentiation factor, NeuroD1 is expressed predominantly in peripheral nerve and genesis of central nervous system. In spite of NeuroD1 is transiently expressed in differentiating neurons in a subset of neural tissues, it also maintains in the cells of the adult mouse cerebellum and hippocampus. However, the expression level gets lower and lower with the mature process of neuron cells. Xenopus ectoderm can be conversed into neurons by NeuroD1. NeuroD1 is also expressed in medulloblastoma, neuroblastoma, and retinoblastoma cells, and once activated and induced to neuron the expression level of NeuroD1 significantly increased. neuroD1 -null mice die shortly after birth. If rescued them by introducing expression plasmid encoding mouse neuroD1 gene, these mice survive to adulthood but appear neuronal deficit in the granule layers of the cerebellum and hippocampus.
     In eukaryote, histone is an important part of nucleosome. Covalent modifications, such as acetylation occur in the N-terminal amino acids of histones. Histone acetylation is enriched in chromatin structure with where gene transcription is functionally active. Acetylation modification of histone is a reversible dynamic process determined by the accurate balance between the histone acetyltransferases (HAT) and the histone deacetyltransferase (HDAC).
     In our study, all-trans retinoic acid (RA) treated neuroblastoma SH-SY5Y cells are taken as a model to study mechanisms of neuronal differentiation. The ChIP on Chip assay used here is the association of chromatin immunoprecipitation and promoter DNA array to detect the genome wide distribution of the acetylated residues of both H3k9 and H3K14 with over 20,000 gene promoters covered in one array. We chose to study the acetylation of these lysine residues because they usually stand for an active chromatin structure where transcription machinery is on. Raw data were analyzed by log2 Ratio≥1 or log2 Ratio≤-1, and 597 genes with elevated level of acetylated histone H3 and 647 genes with lowered acetylated histone in the promoter areas were identified. We have selected some genes with changes in acetylation status to check the reliability of the above data and found a consistency of 70%. The significant ones with consistency in both assays are 7 genes, which include the lowered PRKCA and the elevated CGB2, ELF3, CUL7, RARB, FOXH1, JARID1A genes. In contrast, NRG1, MVP and CSF1R promoters showed no marked changes in histone acetylation and thus were inconsistent with the ChIP on Chip results. The most worth mentioning point is that while acetylation of neuroD1 core promoter decreases, its mRNA level elevated. This prompts us to further investigate the mechanism of neuroD1, the neural differentiation marker gene during RA induced neuronal differentiation.
     To explore the regulation mechanisms of neuroD1 gene during neuronal differentiation, we take RA treated teratocarcinoma P19 cells as a differentiation model specifically for mechanistic studies on neuroD1 gene. We showed that, as the mRNA of neuroD1 increasing upon RA treatment, the acetylation on H3 sites in the promoter region was getting lower and lower, which was exactly in accordance with the situation of SH-SY5Y cells under RA induced differentiation.
     It has been known for years that NeuroD1 is capable of trans activating its own promoter, and the activation was E1 box dependent in cis. We showed in P19 cells that the trans auto-regulation of neuroD1 gene can be enhanced by RA. Additionally, histone deacetyltransferase HDAC3 showed synergic effect on the self-activation of NeuroD1. In vitro co-IP showed that NeuroD1 and HDAC3 coexisted in the same protein complex, whereas other HDACs (1,2, 4~6) were non-effective. Unsimilar with the HDAC3 effect shown above, an HDAC inhibitor, tricostatin A (TSA) inhibited the NeuroD1 auto-activity effect. Western blotting and Immunofluorescence analyses showed that NeuroD1 was dominantly located in the nucleus. However, the higher level of NeuroD1 protein induced by TSA was concentrated on the nuclear membrane.
     In conclusion, in neuronal differentiation process, the expression of the marker gene neuroD1 is regulated in several levels and through several pathways accurately. As an auto-regulated gene, NeuroD1 protein enhances its own gene expression, this effect is induced by RA and HDAC3, but inhibited by TSA, which suggests a critical role of HDAC3 both in synergistically induced NeuroD1 expression and to counteract acetylation on H3K9-H3K14 as shown in ChIP on Chip and in the RA induced neuronal differentiation from P19 and SH-SY5Y cells.
引文
[1]J.C.Rice,and C.D.Allis,Histone methylation versus histone acetylation:new insights into epigenetic regulation[J].Curr Opin Cell Biol,2001,13(3):263-273.
    [2]K.Luger,A.W.Mader,R.K.Richmond,et al.,Crystal structure of the nucleosome core particle at 2.8 A resolution[J].Nature,1997,389(6648):251-260.
    [3]沈珝琲,(Ed.),染色质与表观遗传调控,高等教育出版社,北京,2006.
    [4]S.K.Kurdistani,and M.Grunstein,Histone acetylation and deacetylation in yeast[J].Nat Rev Mol Cell Biol,2003,4(4):276-284.
    [5]M.Grunstein,Histone acetylation in chromatin structure and transcription[J].Nature,1997,389(6649):349-352.
    [6]S.L.Berger,Histone modifications in transcriptional regulation[J].Curr Opin Genet Dev,2002,12(2):142-148.
    [7]J.Wu,and M.Grunstein,25 years after the nucleosome model:chromatin modifications[J].Trends Biochem Sci,2000,25(12):619-623.
    [8]R.D.Kornberg,and Y.Lorch,Chromatin-modifying and-remodeling complexes[J].Curr Opin Genet Dev,1999,9(2):148-151.
    [9]Y.Ruiz-Leon,and A.Pascual,Induction of tyrosine kinase receptor b by retinoic acid allows brain-derived neurotrophic factor-induced amyloid precursor protein gene expression in human SH-SY5Y neuroblastoma cells[J].Neuroscience,2003,120(4):1019-1026.
    [10]M.E.Truckenmiller,M.P.Vawter,C.Cheadle,et al.,Gene expression profile in early stage of retinoic acid-induced differentiation of human SH-SY5Y neuroblastoma cells [J].Restor Neurol Neurosci,2001,18(2-3):67-80.
    [11]V.C.Yu,G.Hochhaus,F.H.Chang,et al.,Differentiation of human neuroblastoma cells:marked potentiation of prostaglandin E-stimulated accumulation of cyclic AMP by retinoic acid[J].J Neurochem,1988,51(6):1892-1899.
    [12]P.Rossino,P.Defilippi,L.Silengo,et al.,Up-regulation of the integrin alpha 1/beta 1 in human neuroblastoma cells differentiated by retinoic acid:correlation with increased neurite outgrowth response to laminin[J].Cell Regul,1991,2(12):1021-1033.
    [13]D.R.Kaplan,K.Matsumoto,E.Lucarelli,et al.,Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells.Eukaryotic Signal Transduction Group[J].Neuron,1993,11(2):321-331.
    [14]H.Ammer,and R.Schulz,Retinoic acid-induced differentiation of human neuroblastoma SH-SY5Y cells is associated with changes in the abundance of G proteins[J].J Neurochem,1994,62(4):1310-1318.
    [15]S.Pahlman,A.I.Ruusala,L.Abrahamsson,et al.,Retinoic acid-induced differentiation of cultured human neuroblastoma cells:a comparison with phorbolester-induced differentiation[J].Cell Differ,1984,14(2):135-144.
    [16]I.Garcia-Bassets,Y.S.Kwon,F.Telese,et al.,Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors[J].Cell,2007,128(3):505-518.
    [17]沈珝琲.,染色质与真核基因调控[J].医学分子生物学杂志,2006,3(1):1-7.
    [18]X.Guo,K.Tatsuoka,and R.Liu,Histone acetylation and transcriptional regulation in the genome of Saccharomyces cerevisiae[J].Bioinformatics,2006,22(4):392-399.
    [19]C.L.Wei,Q.Wu,V.B.Vega,et al.,A global map of p53 transcription-factor binding sites in the human genome[J].Cell,2006,124(1):207-219.
    [20]J.E.Lee,S.M.Hollenberg,L.Snider,et al.,Conversion of Xenopus ectoderm into neurons by NeuroD,a basic helix-loop-helix protein[J].Science,1995,268(5212):836-844.
    [21]M.Yokoyama,Y.Nishi,Y.Miyamoto,et al.,Molecular cloning of a human neuroD from a neuroblastoma cell line specifically expressed in the fetal brain and adult cerebellum[J].Molecular Brain Research,1996,42(1):135-139.
    [22]T.Miyata,T.Maeda,and J.E.Lee,NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus[J].Genes & Development,1999,13(13):1647-1652.
    [23]K.Chu,and M.J.Tsai,Neuronatin,a downstream target of BETA2/NeuroD1 in the pancreas,is involved in glucose-mediated insulin secretion[J].Diabetes,2005,54(4):1064-1073.
    [24]W.Y.Kim,B.Fritzsch,A.Serls,et al.,NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development[J].Development,2001,128(3):417-426.
    [25]T.Inoue,M.Hojo,Y.Bessho,et al.,Math3 and NeuroD regulate amacrine cell fate specification in the retina[J].Development,2002,129(4):831-842.
    [26]T.Miyachi,H.Maruyama,T.Kitamura,et al.,Structure and regulation of the human NeuroD(BETA2/BHF1) gene[J].Brain Res Mol Brain Res,1999,69(2):223-231.
    [27]H.P.Huang,M.Liu,H.M.El-Hodiri,et al.,Regulation of the pancreatic islet-specific gene BETA2(neuroD) by neurogenin 3[J].Mol Cell Biol,2000,20(9):3292-3307.
    [28]B.Gaudilliere,Y.Konishi,N.de la Iglesia,et al.,A CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis[J].Neuron,2004,41(2):229-241.
    [29]S.Khoo,S.C.Griffen,Y.Xia,et al.,Regulation of insulin gene transcription by ERK1 and ERK2 in pancreatic beta cells[J].J Biol Chem,2003,278(35):32969-32977.
    [30]C.Ratineau,M.W.Petry,H.Mutoh,et al.,Cyclin D1 represses the basic helix-loop-helix transcription factor,BETA2/NeuroD[J].Journal of Biological Chemistry,2002,277(11):8847-8853.
    [31]C.Dufton,E.Marcora,J.H.Chae,et al.,Context-dependent regulation of NeuroD activity and protein accumulation[J].Molecular and Cellular Neuroscience,2005,28(4):727-736.
    [32]Y.Qiu,M.Guo,S.Huang,et al.,Acetylation of the BETA2 transcription factor by p300-associated factor is important in insulin gene expression[J].J Biol Chem,2004,279(11):9796-9802.
    [33]E.Marcora,K.Gowan,and J.E.Lee,Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(16):9578-9583.
    [34]T.Noma,Y.S.Yoon,Y.Yamashiro,et al.,Regulation of NeuroD expression by activation of the protein kinase-C pathway in Y79 human retinoblastoma cells[J].Neuroscience Letters,1999,272(1):45-48.
    [35]W.D.Liu,H.W.Wang,M.Muguira,et al.,INSM1 functions as a transcriptional repressor of the neuroD/beta2 gene through the recruitment of cyclin D1 and histone deacetylases[J].Biochem J,2006,397(1):169-177.
    [36]T.T.Le,E.Wroblewski,S.Patel,et al.,Math5 is required for both early retinal neuron differentiation and cell cycle progression[J].Dev Biol,2006,295(2):764-778.
    [37]S.Li,Z.Mo,X.Yang,et al.,Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors[J].Neuron,2004,43(6):795-807.
    [38]S.Seo,G.A.Richardson,and K.L.Kroll,The SWI/SNF chromatin remodeling protein Brgl is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD[J].Development,2005,132(1):105-115.
    [39]J.M.Moates,S.Nanda,M.A.Cissell,et al.,BETA2 activates transcription from the upstream glucokinase gene promoter in islet beta-cells and gut endocrine cells[J].Diabetes,2003,52(2):403-408.
    [40]R.Joseph,D.Dou,and W.Tsang,Molecular cloning of a novel mRNA(neuronatin)that is highly expressed in neonatal mammalian brain[J].Biochem Biophys Res Commun,1994,201(3):1227-1234.
    [41]R.Joseph,D.Dou,and W.Tsang,Neuronatin mRNA:alternatively spliced forms of a novel brain-specific mammalian developmental gene[J].Brain Res,1995,690(1):92-98.
    [42]Y.Qiu,A.Sharma,and R.Stein,p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene[J].Mol Cell Biol,1998,18(5):2957-2964.
    [43]V.Sartorelli,P.L.Puri,Y.Hamamori,et al.,Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program[J].Mol Cell,1999,4(5):725-734.
    [44]M.A.Martinez-Balbas,U.M.Bauer,S.J.Nielsen,et al.,Regulation of E2F1 activity by acetylation[J].EMBO J,2000,19(4):662-671.
    [45]J.Boyes,P.Byfield,Y.Nakatani,et al.,Regulation of activity of the transcription factor GATA-1 by acetylation[J].Nature,1998,396(6711):594-598.
    [46]W.Gu,J.Luo,C.L.Brooks,et al.,Dynamics of the p53 acetylation pathway[J].Novartis Found Symp,2004,259 197-205;discussion 205-197,223-195.
    [47]J.J.Kovacs,P.J.Murphy,S.Gaillard,et al.,HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor[J].Mol Cell,2005,18(5):601-607.
    [48]P.J.Murphy,Y.Morishima,J.J.Kovacs,et al.,Regulation of the dynamics of hsp90action on the glucocorticoid receptor by acetylation/deacetylation of the chaperone [J].J Biol Chem,2005,280(40):33792-33799.
    [49]Y.Zhang,N.Li,C.Caron,et al.,HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo[J].EMBO J,2003,22(5):1168-1179.
    [50]J.Lu,T.A.McKinsey,C.L.Zhang,et al.,Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class Ⅱ histone deacetylases[J].Mol Cell,2000,6(2):233-244.
    [51]P.Bali,M.Pranpat,J.Bradner,et al.,Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90:a novel basis for antileukemia activity of historic deacetylase inhibitors[J].J Biol Chem,2005,280(29):26729-26734.
    [52]S.Chang,T.A.McKinsey,C.L.Zhang,et al.,Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development[J].Mol Cell Biol,2004,24(19):8467-8476.
    [53]P.Gallinari,S.Di Marco,P.Jones,et al.,HDACs,histone deacetylation and gene transcription:from molecular biology to cancer therapeutics[J].Cell Res,2007,17(3):195-211.
    [54]S.Gregoire,L.Xiao,J.Nie,et al.,Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2[J].Mol Cell Biol,2007,27(4):1280-1295.
    [55]A.Lahm,C.Paolini,M.Pallaoro,et al.,Unraveling the hidden catalytic activity of vertebrate class Ⅱa histone deacetylases[J].Proc Natl Acad Sci U S A,2007,104(44):17335-17340.
    [56]C.L.Zhang,T.A.McKinsey,S.Chang,et al.,Class Ⅱ histone deacetylases act as signal-responsive repressors of cardiac hypertrophy[J].Cell,2002,110(4):479-488.
    [57]W.Fischle,F.Dequiedt,M.J.Hendzel,et al.,Enzymatic activity associated with class Ⅱ HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR[J].Mol Cell,2002,9(1):45-57.
    [58]M.S.Finnin,J.R.Donigian,A.Cohen,et al.,Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors[J].Nature,1999,401(6749):188-193.
    [59]C.Monneret,Histone deacetylase inhibitors[J].Eur J Med Chem,2005,40(1):1-13.
    [60]S.Emiliani,W.Fischle,C.Van Lint,et al.,Characterization of a human RPD3ortholog,HDAC3[J].Proc Natl Acad Sci U S A,1998,95(6):2795-2800.
    [61]I.Lopez-Solache,V.Marie,A.Camirand,et al.,Regulation of uncoupling protein-2mRNA in L6 myotubules:Ⅱ:Thyroid hormone amplifies stimulation of uncoupling protein-2 gene by thiazolidinediones and other peroxisome proliferator-activated receptor ligands in L6 myotubules:evidence for a priming effect[J].Endocrine,2002,19(2):209-217.
    [62]H.S.Choi,J.H.Lee,J.G.Park,et al.,Trichostatin A,a histone deacetylase inhibitor,activates the IGFBP-3 promoter by upregulating Sp1 activity in hepatoma cells:alteration of the Sp1/Sp3/HDAC1 multiprotein complex[J].Biochem Biophys Res Commun,2002,296(4):1005-1012.
    [63]D.M.Fath,X.Kong,D.Liang,et al.,Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha[J].J Biol Chem,2006,281(19):13612-13619.
    [64]A.J.Wilson,D.S.Byun,N.Popova,et al.,Histone deacetylase 3(HDAC3) and other class Ⅰ HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer[J].J Biol Chem,2006,281(19):13548-13558.
    [65]S.Bhaskara,B.J.Chyla,J.M.Amann,et al.,Deletion of histone deacetylase 3reveals critical roles in S phase progression and DNA damage control[J].Mol Cell,2008,30(1):61-72.
    [66]L.Zeng,Y.Zhang,S.Chien,et al.,The role of p53 deacetylation in p21Wafl regulation by laminar flow[J].J Biol Chem,2003,278(27):24594-24599.
    [67]I.Nusinzon,and C.M.Horvath,Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation[J].Mol Cell Biol,2006,26(8):3106-3113.
    [68]Y.L.Yao,W.M.Yang,and E.Seto,Regulation of transcription factor YY1 by acetylation and deacetylation[J].Mol Cell Biol,2001,21(17):5979-5991.
    [69]P.Gupta,P.C.Ho,M.M.Huq,et al.,Retinoic acid-stimulated sequential phosphorylation,PML recruitment,and SUMOylation of nuclear receptor TR2 to suppress Oct4 expression[J].Proc Natl Acad Sci U S A,2008,105(32):11424-11429.
    [70]P.Gupta,P.C.Ho,S.G.Ha,et al.,HDAC3 as a molecular chaperone for shuttling phosphorylated TR2 to PML:a novel deacetylase activity-independent function of HDAC3[J].PLoS ONE,2009,4(2):e4363.
    [71]G.A.Baltus,M.P.Kowalski,A.V.Tutter,et al.,A positive regulatory role for the mSIN3a/HDAC complex in pluripotency through nanog and sox2[J].J Biol Chem,2009.
    [72]D.W.R.J Sambrook Molecular Cloning:A laboratory Manual[M].Cold Spring Harbor Laboratory Press,2000:16.33-16.35.
    [73]L.Xiao,and W.Lang,A dominant role for the c-Jun NH2-terminal kinase in oncogenic ras-induced morphologic transformation of human lung carcinoma cells [J].Cancer Res,2000,60(2):400-408.
    [74]M.H.Kuo,and C.D.Allis,In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment[J].Methods,1999,19(3):425-433.
    [75]Z.Y.Li,J.Yang,X.Gao,et al.,Sequential recruitment of PCAF and BRG1contributes to myogenin activation in 12-O-tetradecanoylphorbol-13-acetate-induced early differentiation of rhabdomyosarcoma-derived cells[J].J Biol Chem,2007,282(26):18872-18878.
    [76]Y.Zhang,J.S.Wang,L.L.Chen,et al.,Repression of hsp90beta gene by p53 in UV irradiation-induced apoptosis of Jurkat cells[J].J Biol Chem,2004,279(41):42545-42551.
    [77]Y.Adachi,F.Itoh,H.Yamamoto,et al.,Retinoic acids reduce matrilysin(matrix metalloproteinase 7) and inhibit tumor cell invasion in human colon cancer[J].Tumour Biol,2001,22(4):247-253.
    [78]E.M.Jones-Villeneuve,M.W.McBurney,K.A.Rogers,et al.,Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells[J].J Cell Biol,1982,94(2):253-262.
    [79]S.L.Hsu,C.C.Cheng,Y.R.Shi,et al.,Proteolysis of integrin alpha5 and betal subunits involved in retinoic acid-induced apoptosis in human hepatoma Hep3B cells[J].Cancer Lett,2001,167(2):193-204.
    [80]K.K.Matthay,J.G.Villablanca,R.C.Seeger,et al.,Treatment of high-risk neuroblastoma with intensive chemotherapy,radiotherapy,autologous bone marrow transplantation,and 13-cis-retinoic acid.Children's Cancer Group[J].N Engl J Med,1999,341(16):1165-1173.
    [81]K.H.Dragnev,J.R.Rigas,and E.Dmitrovsky,The retinoids and cancer prevention mechanisms[J].Oncologist,2000,5(5):361-368.
    [82]H.Halfter,R.Lotfi,R.Westermann,et al.,Inhibition of growth and induction of differentiation of glioma cell lines by oncostatin M(OSM)[J].Growth Factors,1998,15(2):135-147.
    [83]W.M.Cheung,P.W.Chu,C.H.Lung,et al.,Expression of retinoid receptors during the retinoic acid-induced neuronal differentiation of human embryonal carcinoma cells[J].J Neurochem,2000,75(1):34-40.
    [84]M.De los Santos,A.Zambrano,A.Sanchez-Pacheeo,et al.,Histone deacetylase inhibitors regulate retinoic acid receptor beta expression in neuroblastoma cells by both transcriptional and posttranscriptional mechanisms[J].Mol Endocrinol,2007,21(10):2416-2426.
    [85]S.Rosewicz,F.Brembeck,A.Kaiser,et al.,Differential growth regulation by all-trans retinoic acid is determined by protein kinase C alpha in human pancreatic carcinoma cells[J].Endocrinology,1996,137(8):3340-3347.
    [86]P.C.Megee,B.A.Morgan,B.A.Mittman,et al.,Genetic analysis of histone H4:essential role of lysines subject to reversible acetylation[J].Science,1990,247(4944):841-845.
    [87]M.H.Kuo,and C.D.Allis,Roles of histone acetyltransferases and deacetylases in gene regulation[J].Bioessays,1998,20(8):615-626.
    [88]P.Hitchcock,and L.Kakuk-Atkins,The basic helix-loop-helix transcription factor neuroD is expressed in the rod lineage of the teleost retina[J].Journal of Comparative Neurology,2004,477(1):108-117.
    [89]E.Marsich,A.Vetere,M.Di Piazza,et al.,The PAX6 gene is activated by the basic helix-loop-helix transcription factor NeuroD/BETA2[J].Biochemical Journal,2003,376 707-715.
    [90]H.Oda,F.Fushimi,M.Kato,et al.,Microarray analysis of the genes induced by tetracycline-regulated expression of NDRF/NeuroD2 in P19 cells[J].Biochem Biophys Res Commun,2005,335(2):458-468.
    [91]Y.Noma,Y.S.Yoon,Y.Yamashiro,et al.,Regulation of NeuroD expression by activation of the protein kinase-C pathway in Y79 human retinoblastoma cells[J].Neurosci Lett,1999,272(1):45-48.
    [92]H.Kaneto,Y.Nakatani,Y.Miyatsuka,et al.,PDX-1/VP16 fusion protein,together with NeuroD or Ngn3,markedly induces insulin gene transcription and ameliorates glucose tolerance[J].Diabetes,2005,54(4):1009-1022.
    [93]S.H.Ghil,Y.J.Jeon,and H.Suh-Kim,Inhibition of BETA2/NeuroD by id2[J].Experimental and Molecular Medicine,2002,34(5):367-373.
    [94]H.Kaneto,A.Sharma,K.Suzuma,et al.,Induction of c-Myc expression suppresses insulin gene transcription by inhibiting NeuroD/BETA2-mediated transcriptional activation[J].Journal of Biological Chemistry,2002,277(15):12998-13006.
    [95]H.Krugel,A.Becker,A.Polten,et al.,Transcriptional response to the neuroleptic-like compound Ampullosporin A in the rat ketamine model[J].J Neurochem,2006.
    [96]F.Gu,R.Hata,Y.J.Ma,et al.,Suppression of Stat3 promotes neurogenesis in cultured neural stem cells[J].J Neurosci Res,2005,81(2):163-171.
    [97]S.Mandel,G.Rechavi,and I.Gozes,Activity-dependent neuroprotective protein (ADNP) differentially interacts with chromatin to regulate genes essential for embryogenesis[J].Dev Biol,2007,303(2):814-824.
    [98]J.Lanier,L.A.Quina,S.R.Eng,et al.,Brn3a target gene recognition in embryonic sensory neurons[J].Dev Biol,2007,302(2):703-716.
    [99]B.A.Westerman,A.Poutsma,K.Maruyama,et al.,The proneural genes NEUROD1and NEUROD2 are expressed during human trophoblast invasion[J].Mech Dev,2002,113(1):85-90.
    [100]R.Gasa,C.Mrejen,N.Leachman,et al.,Proendocrine genes coordinate the pancreatic islet differentiation program in vitro[J].Proc Natl Acad Sci U S A,2004,101(36):13245-13250.
    [101]H.Noguchi,S.Bonner-Weir,F.Y.Wei,et al.,BETA2/NeuroD protein can be transduced into cells due to an arginine-and lysine-rich sequence[J].Diabetes,2005,54(10):2859-2866.
    [102]H.Noguchi,M.Ueda,S.Matsumoto,et al.,BETA2/NeuroD protein transduction requires cell surface heparan sulfate proteoglycans[J].Hum Gene Ther,2007,18(1):10-17.
    [103]S.Yatoh,T.Akashi,P.P.Chan,et al.,NeuroD and reaggregation induce beta-cell specific gene expression in cultured hepatocytes[J].Diabetes Metab Res Rev,2007,23(3):239-249.
    [104]W.Winckler,M.N.Weedon,R.R.Graham,et al.,Evaluation of Common Variants in the Six Known Maturity-Onset Diabetes of the Young(MODY) Genes for Association With Type 2 Diabetes[J].Diabetes,2007,56(3):685-693.
    [105]A.Fodor,C.Harel,L.Fodor,et al.,Adult rat liver cells transdifferentiated with lentiviral IPF1 vectors reverse diabetes in mice:an ex vivo gene therapy approach [J].Diabetologia,2007,50(1):121-130.
    [106]Y.I.Kitamura,T.Kitamura,J.P.Kruse,et al.,FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction[J].Cell Metab,2005,2(3):153-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700