用户名: 密码: 验证码:
基于CASA模型的俄罗斯布里亚特共和国植被NPP变化及其对气候的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被作为地表碳循环重要组分,其净初级生产力(NPP)不仅直接反映自然环境条件下植被群落生产能力,表征陆地生态系统质量状况;而且也是判定生态系统碳源、碳汇以及调节生态过程的主要因子。近20多年来,随温室效应等气候与环境问题加剧,联合国气候变化框架公约(UNFCCC)外交谈判中,对碳循环需要提供更充分的科学依据。因此,了解我国及周边地区陆地生态系统碳收支时空格局及其变化趋势,具有重要科学与政治意义。
     以TM和MODIS NDVI为遥感数据源,辅以地面气象观测和其它本底数据,综合利用遥感技术(RS)、地理信息系统技术(GIS)和全球定位系统技术(GPS),并应用改进后CASA模型,模拟估算俄罗斯布里亚特共和国地区2000-2008年的植被NPP年际、季节和月份变化动态。同时,以实测NPP数据验证模型适用性和精度,分析其对气候因子的响应方式和反馈机制,初步揭示影响NPP变化的气候驱动机制。
     1 CASA模型的改进
     CASA模型分为光合有效辐射、光能利用率和土壤含水量3个子模型。由于CASA模型土壤含水量子模型较复杂,数据获取有一定难度;所以对其先进行简化和优化,将原模型中表示土壤水分的蒸发潜力,即相对干燥率(RDR)和可能蒸散量(PET),通过生物温度来计算。
     通过NPP实测数据、MODIS NPP数据产品和其它模型的模拟结果对比分析,发现改进后的CASA模型,其模拟值分布于趋势线附近,均值接近,分别为323.69 gC·m-2和355.68 gC·m-2,平均相对误差4.94%。实测值和模拟值间的相关系数R为0.88(P<0.01),说明,改进后的CASA模型模拟精度较高,可运用于布里亚特共和国地区植被NPP估算。
     2 NDVI和EVI对比分析
     植被NDVI最大和最小值分别出现在伊沃尔金斯基和塔尔布加泰斯基地区,而EVI最大和最小值则出现在塔尔布加泰斯基和伊沃尔金斯基地区。
     不同地区最大与最小NDVI均值的植被类型不同在伊沃尔金斯基和穆哈尔什比尔斯基地区,森林植被最大,稀树草原最小;在吉丁斯基地区,草原与森林混合植被最大,高山植被最小;在塔尔布加泰斯基地区,森林最大,草原与森林混合植被最小,而恰赫金斯基地区则与之相反;在比丘尔斯基地区,森林>稀树草原;在色楞津斯基地区沼泽、草地最大,高山植被最小。
     不同地区最大与最小EVI均值的植被类型不同在伊沃尔金斯基地区,草原与森林混合植被最大,森林最小;在吉丁斯基地区,沼泽和草地最大,草原与森林混合植被最小;在塔尔布加泰斯基地区,草原与森林混合植被最大,稀树草原最小;在恰赫金斯基地区,森林植被最大,草原与森林混合植被最小;在比丘尔斯基地区,稀树草原>森林;在穆哈尔什比尔斯基地区,稀树草原最大,森林最小;在色楞津斯基地区,高山植被最大,沼泽和草地最小。
     整个南部地区森林植被的NDVI和EVI值最大,沼泽和草地最小。NDVI的最大值、最小值、均值和标准差变化范围均明显>EVI。NDVI能客观地区分不同类型植被,利于植被类型遥感解译和定量分析。
     3植被NPP时空分布格局
     年际变化2000-2008年,布里亚特共和国植被NPP总体为波动中呈现上升趋势,均值为544.29gC·m-2·a-1,总量为1.91E+14gC·a-1,平均增幅为0.39gC·m-2·a-1。2001年和2003年为植被NPP低值期,2003年达最小值,为345.94gC·m-2·a-1。2003年以后,植被NPP呈上升趋势,至2008年达最大值,为668.76gC·m-2·a-1;且2003-2004年、2007-2008年增长幅度大,其余年份增幅平缓。月际和季节变化2000-2008年,布里亚特共和国植被NPP的月变化为,1-3月,单位面积内植被NPP约为0,最小值出现在2月,为0.002gC·m-2·month-1;自4月开始,其植被NPP急速增长,至7月达峰值,为131.13gC·m-2·month-1;随后急骤下降,11-12月降至0左右。生长季(4-10月)的NPP均值总量为537.37gC·m-2。春(3-5月)、夏、秋和冬季的NPP总量分别为81.83 gC·m-2、365.73 gC·m-2、94.16 gC·m-2和0.73gC·m-2,分别占全年的15.08%、67.42%、17.36%和0.14%。区域变化23个辖区中,乌兰乌德市、奥金斯基地区的植被NPP值在年际和月际水平上都较低;而伊沃尔金斯基、普里贝加尔斯基、扎卡缅斯基地区和比丘尔斯基地区则较高。
     经纬向变化无论年际还是月际水平上,在经度上,植被NPP均表现为双峰分布格局,总体表现为随经度递增而增大规律;在纬度上,植被NPP表现为单峰分布格局,总体表现为随纬度递增而减小规律。
     空间变化2000-2008年,布里亚特共和国植被NPP增加的区域主要分布在北部及西部地区。由西南向东北,其NPP表现出增加、变化平缓和增加的变化趋势。绝大部分地区的植被NPP变化不显著(p>0.05),占植被总面积的88.95%;而变化显著地区(p<0.05)仅占总面积的11.05%。75.05%的植被NPP呈增加趋势,其中显著(p<0.05)和极显著(p<0.01)增加面积占总面积的9.77%;24.95%的植被NPP呈降低趋势,其中极显著(p<0.01)降低的面积仅占总面积的0.23%。
     植被类型变化年际水平上,不同植被类型NPP在2000-2001年和2002-2003年为下降趋势,而2001-2002年和2003-2008年为上升趋势;与2000-2008年所有植被NPP的年际变化规律一致。月际水平上,不同植被类型NPP积累均集中于生长季(4-10月),11-3月不同植被类型NPP都保持在0左右。4-7月和8-10月分别为植被NPP积累增长期和递减期,且递增和递减速率较大。
     4植被NPP与气候因子相互关系分析
     植被NPP与气候因子相关性通过对该区植被NPP与主要气候因子的简单相关性和偏相关性分析,得知,年际水平上,植被NPP与主要气候因子均无呈显著相关性(p>0.05);但月份水平上,其相关性均呈极显著水平(p<0.01)。
     温度和降水量对植被NPP的空间响应布里亚特共和国地区西部、南部小面积地区和贝加尔湖沿岸地区以及北部大面积地区的植被NPP均与温度呈显著正相关(p<0.05),西部和北部大面积地区均与降水量呈显著正相关(p<0.05),而中部地区与降水量呈显著或极显著负相关(p<0.05或p<0.01)。说明,西部和北部地区的植被生长主要受温度和降水共同影响,南部和贝加尔湖沿岸地区的则主要受温度影响。
     在综合运用遥感数据、气象数据、数学模型的基础上,对2000-2008年俄罗斯布里亚特共和国地区植被NPP进行时空变化模拟,并与气候因子进行了相关性分析。同处西伯利亚冷高压气候循环系统的布里亚特共和国地区植被NPP与中国北方地区的植被NPP在时空分布格局上有着许多相似之处。本研究改进的CASA模型可以运用于中国北方地区的植被NPP模拟估算以及本研究成果对于中国北方地区植被NPP的模型估算和生态跨境研究具有重要的借鉴意义。
Vegetation Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. As the direct reflection of plant community productivity for a certain natural environment, it is the basis of matter and energy cycle of terrestrial ecosystem. As highlighted during the international negotiation process for the United Nations Framework Convention on Climate Change (UNFCCC), a better grasp upon the controls and distribution of NPP is pivotal for sustainable human use of the biosphere. Based on Remote Sensing, Geographic Information System and Gobal Positioning System, This paper comprehensively used remote sensing data, ground meteorological data, other additional data and improved Carnegie Ames Stanford Approach (CASA) model to estimate vegetation NPP in Buryatiya Republic, Russia from 2000 to 2008. After the comparison and validation with observed data and other NPP product data, the NPP time-series of Buryatiya terrestrial vegetation from 2000 to 2008 was built. Spatio-temporal variations and potential trend of NPP were analyzed in these 9 years, and the relationship between NPP and global climatic change was comprehensively studied. From these researches, some basic conclusions were drawn as follows:
     1. Improvement of CASA model
     CASA model contains three submodels of Photosynthetically Active Radiation, Light Use Efficiency and Soil Water Content, but the parameters of Soil Water Content model are complex. So, there is some difficulty to obtain the reaserch data. This paper simplifys the estimation model via inputing Bio-temperature to model in order to calculate potential evaporation of soil water. With the comparison and validation with observed data and other NPP product data, the result shows: Average value of observed data is 323.69gC·m-2 and estimation data is 355.68gC·m-2. The difference between them is small and the average relative error is 4.94%. Correlation coefficient between observed data and estimation data is 0.88(p<0.01), which prove the improved CASA model can be used to estimate the vegetation NPP in Buryatiya Republic. Precise of improved CASA model is high.
     2. Comparison and analysis between NDVI and EVI
     Maximal average value of vegetation NDVI presents in Ivolginskii region, but minimal average value of NDVI in Tarbagataiskii region. Maximal average value of vegetation EVI presents in Tarbagataiskii region, but minimal average value of NDVI in Ivolginskii region. It is very interesting that the opposite phenomenon is found.
     Vegetation with maximal average NDVI value in Ivolginskii region is forest, but steppe has the minimal NDVI value in this region. In Dzhidinskii region, mixed vegetation of grassland and forest has the maximal average NDVI value, but high mountain vegetation with the minimal NDVI value. In Tarbagataiskii region, vegetation with maximal average NDVI value is forest, and mixed vegetation of grassland and forest has the minimal average NDVI value. In Kyahtinskii region, the phenomenon is opposite to Tarbagataiskii region. Forest has the bigger average NDVI value than steppe in Bichurskii region. In Muhorshibirskii region, forest has the maximal average NDVI value, and steppe with the minimal average NDVI value. Mixed vegetation of swampe and meadow has the maximal average NDVI value, and high mountain vegetation has the minimal average NDVI value in Selenginskii region.
     Vegetation with maximal average EVI value in Ivolginskii region is mixed vegetation of forest and grassland, but forest has the minimal EVI value in this region. In Dzhidinskii region, mixed vegetation of swampe and meadow has the maximal average EVI value, but mixed vegetation of forest and grassland with the minimal EVI value. In Tarbagataiskii region, vegetation with maximal average EVI value is mixed vegetation of forest and grassland, and steppe has the minimal average EVI value. In Kyahtinskii region, forest has the maximal average EVI value, and mixed vegetation of forest and grassland has the minimal average EVI value. Steppe has the bigger average EVI value than forest in Bichurskii region. In Muhorshibirskii region, steppe has the maximal average EVI value, and forest with the minimal average EVI value. Mixed vegetation of swampe and meadow has the minimal average EVI value, and high mountain vegetation has the maximal average EVI value in Selenginskii region.
     Forest has the maximal average value of NDVI and EVI, and mixed vegetation of swampe and meadow has the minimal average value of NDVI and EVI in total southern region of Buryatiya. Fluctuation range of maximal value, minimal value, average value and standard deviation of NDVI is obvious bigger than EVI, which can show that NDVI has the superior capacity to distinguish vegetation types on remote sensings objectively and is propitious to remote sensing interpretation and quantitative analysis in future.
     3. Spatio-temporal distribution pattern of vegetation NPP
     (1) Annual variation of vegetation NPP: Average value of vegetation NPP in Buryatiya Republic from 2000 to 2008 is 544.29gC·m-2·a-1, and total NPP is 1.91E+14gC·a-1. The trend of vegetation NPP in Buryatiya Republic from 2000 to 2008 is increasing among fluctuation as a whole. The value of vegetation NPP locates lowest point in 2003 with 345.94gC·m-2·a-1, but locates wave crest in 2008 with 668.76gC·m-2·a-1. The increase range is great from 2003 to 2004, 2007 to 2008, but it increase gently in other years. The average increase range of vegetation NPP is 0.39gC·m-2·a-1 in this area from 2000 to 2008.
     (2) Monthly variation of vegetation NPP: The trend of monthly variation shows: vegetation NPP has the smallest value with 0.002gC·m-2·month-1 per unit area in February, but it has the biggest value with 131.13gC·m-2·month-1 per unit area in July. From January to March, vegetation NPP locates zero per unit area, but it increases rapidly in April and reaches highest point in July. With the climate change, vegetation NPP decreases sharpely from Augest to October, and locates zero per unit area in December.
     (3) Seasonal variation of vegetation NPP: Vegetation NPP in Spring(March to May), Summer(June to Augest), autumn(September to November) and Winter(December to February next year) are 81.83 gC·m-2, 365.73 gC·m-2, 94.16 gC·m-2 and 0.73 gC·m-2, with proportion of 15.08%, 67.42%, 17.36% and 0.14% of total NPP in all year per unit area.
     (4) Regional variation of vegetation NPP: Among all the twenty-three regions of Buryatiya Republic, vegetation NPP has lower value in Ulan-Ude city, Okinskiy region on both yearly and monthly level, but it has higher value in Ivolginskii region, Severobaykalsk region, Zakamensk p. region and Bichurskii region.
     (5) Longitudinal and latitudinal variation of vegetation NPP: Both yearly and monthly level, vegetation NPP in Buryatiya Republic shows“double-humped”distribution pattern on longitudinal scale, and“Singlet”distribution pattern on latitudinal scale. It presents increasing rule fllowing raised longitude and decreasing rule with increased latitude.
     (6) Spatial variation of vegetation NPP: The regions of increased vegetation NPP locate in northern and western areas in Buryatiya Republic from 2000 to 2008. From southwest to northeast, vegetation represents the trend of increased distinctively, vary indistinctively and increased distinctively. Vegetation NPP changes indistinctively (p>0.05) in most area with proportion of 88.95%, only in 11.05% area, the vegetation NPP changes distinctively (p<0.05). Vegetation NPP shows increased trend with proportion of 75.05%, thereinto, the proportion of increased distinctively (p<0.05) and increased very distinctively (p<0.01) is 9.77%. Vegetation NPP shows decreased trend with proportion of 24.95%, thereinto, the proportion of decreased very distinctively (p<0.01) is 0.23%.
     (7) NPP Variation of different vegetation: On yearly level, different vegetations NPP present decreased trend from 2000 to 2001, 2002 to 2003, but increased trend from 2001 to 2002, 2003 to 2008. It is similar with the annual variation rule of vegetation NPP from 2000 to 2008. On monthly level, NPP accumulation of different vegetations arise in growing season, but growth arrest from November to March next year. Vegetation NPP accumulation increasing period is April to July, and decreasing period is Augest to October. The rates of increasing and decreasing are great.
     4. Correlation research between vegetation NPP and climatic factors
     (1) Correlation analysis between vegetation NPP and climatic factors: with the simple correlation and partial correlation analysis between vegetation NPP and climatic factors in research area, result shows that: on yearly level, there is non-significant correlation (p>0.05) between vegetation NPP and climatic, but it is opposite to (p<0.01) on monthly level.
     (2) Spatial response of temperature and precipitation to vegetation NPP: In small area of western, southern Buryatiya, baikal shore and large area of northern Buryatiya, vegetation NPP and temperature have significant positive correlation (p<0.05), but vegetation NPP and precipitation have significant positive correlation (p<0.05) in large area of western and northern Buryatiya and significant negative correlation (p<0.05) even very significant negative correlation (p<0.01). It shows that temperature in company with precipitation impact on vegetation NPP in western and northern Buryatiya, but it is mainly controlled by temperature in southern Buryatiya and baikal shore.
     Based on Remote Sensing data, meteorological data and mathematical model, temporal-spatial variation simulation of vegetation NPP and its correlation with climatic factors were applied. Vegetation between Buryatiya Republic and Northern China has a lot of similarities, because they locate in cold and high-pressure climate circulation system in Siberia. The improved CASA model can be used in vegetation NPP estimation of Northern China and research results have reference significance for ecological cross-border study.
引文
[1]张新时.研究全球变化的植被-气候分类系统[J].第四纪研究, 1993, 2: 157-169.
    [2]谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响[J].自然资源学报, 2007, 22(2): 251-260.
    [3]牛建明.内蒙古主要植被类型与气候因子关系的研究[J].应用生态学报, 2000, 11(1): 47-52.
    [4] IGBP(Steffan W, Noble I, Canadell P, et al). The terrestrial carbon cycle: implications for Kyoto Protocol[J]. Science, 1998, 280: 1393-1394.
    [5] Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetation (1): Chicago model for evaluating productivity[J]. Journal of Agricultural Meteorology, 1985, 40: 3343-353.
    [6] Lieth H. Primary production: terrestrial ecosystem[J]. Human Ecology, 1973, 1: 303-332.
    [7] Whittaker R H, Likens G E. The biosphere and man. In: Lieth H, Whittaker R H.eds. Primary productivity of the biosphere[M]. New York: Springer-Verlag Press. 1975, 305-328.
    [8] IPCC (Intergovernmental Panel on Climate Change)[R]. Climate Change Report, 2001.
    [9] Jarvis P G. Scaling processes and problems[J]. Plant, Cell and Environment, 1995, 18: 1079-1089.
    [10]朴世龙,方精云,郭庆华. 1982-1999年我国植被净第一性生产力及其时空变化[J].北京大学学报(自然科学版), 2001, 37(4): 563-569.
    [11]侯英雨,柳钦火,延昊,等.我国陆地植被净初级生产力变化规律及其对气候的响应[J].应用生态学报, 2007, 18(7): 1546-1553.
    [12]李贵才.基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D].北京:中国科学院研究生院, 2004.
    [13] Lieth H, Whittaker R H. Primary Productivity of the Biosphere[M]. New York: Springer-Verlag Press, 1975: 237-263.
    [14] S. H. Roxburgh, S. L. Berry, T. N. Buckley, et al. What is NPP? Inconsistent accounting of respiratory fluxes in the definition of net primary production[J]. Functional Ecology, 2005, 19: 378–382.
    [15]李世华,牛铮,李壁成.植被净第一性生产力遥感过程模型研究[J].水土保持研究, 2005, 12(3): 126-128.
    [16]施新民,黄峰,陈晓光.气候变化对宁夏植被生态系统的影响分析[J].干旱区资源与环境, 2008, 22(2): 65-69.
    [17] Baret F, Guyot G, Major D J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation[A]. Proceedings of the 12th Canadian Symposium on Remote Sensing[C]. Vancouver, Canada, 1989. 1355-1358.
    [18]王正兴,刘闯, HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报, 2003, 23(5): 979-987.
    [19] Miller J R. Quantitative characterizition of the vegetation Red edge reflectance: 1. an inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing, 1990, 11(10): 1755-1773.
    [20] Gamon J A. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Envrionment, 1992, 41:35-44.
    [21]田庆久,闵祥军.植被指数研究进展[J].地球科学进展, 1998, 13(4): 327-333.
    [22] Gower S T, Vogel J G, Norman J M. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada[J]. Journal of Geophysical Research, 1997, 102: 29029-29041.
    [23]方精云.全球生态学[M].北京:教育出版社;施普林格出版社, 2004: 191-211.
    [24]崔霞,冯琦胜,梁天刚.基于遥感技术的植被净初级生产力研究进展[J].草业科学, 2007, 10(24): 36-42.
    [25] Running S W, Nemani R R, Peterson D L, et al. Mapping regional forest evapotranspiration and photosynthesis by coup ling satellite data with ecosystem simulation[J]. Ecology, 1989, 70(4): 1090-1101.
    [26] Ruimy A, Saugier B, Dedieu G. Methodology for the estimation of terrestrial NPP from remotely sensed data[J]. Journal of Geophysical Research, 1994, 99(D3): 5263-528.
    [27] Liu J, Chen J M, Cihlar J, et al. A process-based boreal ecosystem productivity simulator using remote sensing inputs[J]. Remote Sensing of Environment, 1997, 62: 158-175.
    [28]冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报, 2004, 19(3): 369-378.
    [29]陈利军,刘高焕,冯险峰.遥感在植被净第一性生产力研究中的应用[J].生态学杂志, 2002, 21(2): 53-57.
    [30]朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志, 2005, 24(3): 296-300.
    [31]郑凌云,张佳华.植被净第一性生产力估算的研究进展[J].农业工程学报, 2007, 23(1): 279-285.
    [32]姜立鹏,覃志豪,谢雯,等.基于MODIS数据的植被净初级生产力模型探讨[J].中国植被学报, 2006, 28(6): 72-76.
    [33]林慧龙,常生华,李飞.植被净初级生产力模型研究进展[J].草业科学, 2007, 24(12): 26-29.
    [34] Cramer W, Field C B. Comparing global models of terrestrial net primary productivity(NPP):Introduction[J]. Global Change Biology, 1999, 5(supp 1): 121-126.
    [35]陶伟国,徐斌,刘丽军,等.不同利用状况下草原遥感估产模型[J].生态学杂志, 2007, 26(3): 332-337.
    [36] Monteith J.L.. Solar Radiation and productivity in Tropical ecosystems[J]. Journal of Applied Ecology, 1972, 9: 747-766.
    [37] Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochemical Cycles, 1993, 7:785-890.
    [38]崔林丽,史军,唐娉,等.中国陆地净初级生产力的季节变化研究[J].地理科学进展, 2005, 24(3): 8-16.
    [39]朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志, 2005, 24(3): 296-300.
    [40]朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其气候变化关系的研究[D].北京:北京师范大学研究生院, 2005.
    [41]李刚.内蒙古植被生产力和锡林浩特市草畜空间管理模拟研究[D].内蒙古:中国农业科学院农业资源与农业区划研究所, 2006.
    [42]郑凌云.基于卫星遥感与BEPS生态模式的藏北植被变化及NPP动态研究[D].北京:中国气象科学研究院, 2006.
    [43] ZHU Wen-quan, PAN Yao-zhong, LIU Xin, et al. Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change[J]. Journal of Forestry Research, 2006, 17(2): 93-98.
    [44]高清竹,万运帆,李玉娥,等.基于CASA模型的藏北地区植被植被净第一性生产力及其时空格局[J].应用生态学报, 2007, 18(11): 2526-2532.
    [45]杨凯.气候变化对藏北地区植被生产力的影响模拟[D].内蒙古:中国农业科学院农业环境与可持续发展研究所研究生院, 2007.
    [46] ShilongPiao, JingyunFang, JinshengHe. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau in China from 1982 to 1999[J]. Climatic Change, 2006, 74: 253–267.
    [47]李刚,辛晓平,王道龙,等.改进CASA模型在内蒙古植被生产力估算中的应用[J].生态学杂志, 2007, 26(12): 2100-2106.
    [48]张峰,周广胜.中国东北样带植被净初级生产力时空动态遥感模拟[J].植物生态学报, 2008, 32(4): 798-809.
    [49]彭少麟,赵平,任海,等.全球变化压力下中国东部样带植被与农业生态系统格局的可能性变化[J].地学前缘(中国地质大学,北京), 2002, 9(1): 217-226.
    [50]朴世龙,方精云,贺金生,等.中国植被植被生物量及其空间分布格局[J].植物生态学报, 2004, 28(4): 491-498.
    [51] Wright R F. Effects of increased carbon dioxide and temperature of runoff chemistry at a forested catchment in Southern Norway (CLIMEX Project)[J]. Ecosystems, 1998, 1: 216-225.
    [52]盛文萍.气候变化对内蒙古植被生态系统影响的模拟研究[D].内蒙古:中国农业科学院农业环境与可持续发展研究所研究生院, 2007.
    [53]史瑞琴.气候变化对中国北方植被生产力的影响研究[D].南京:南京信息工程大学, 2006.
    [54] Guo Ran, Wang Xiao-ke, Ouyang Zhi-yun, et al. Spatial and temporal relationships between precipitation and ANPP of four types of grasslands in northern China[J]. Journal of environmental science, 2006, 18(5): 1024-1030.
    [55]谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响[J].自然资源学报, 2007, 22(2): 253-256.
    [56] Jesse B. Nippert, Alan K. Knapp, John M. Briggs. Intra-annual rainfall variability and grassland productivity: can the past predict the future?[J]. Plant Ecology, 2006, 184: 65-74.
    [57] Briggs J M, Seastedt T R, Gibson D J. Comparative analysis of temporal and spatial variability in aboveground production in a deciduous forest and prairie[J]. Holarctic Ecology, 1989, 12: 130-136.
    [58] Overpeck J T, Rind D, Goldberg R. Climate-induced changes in forest disturbance and vegetation[J]. Nature, 1990, 343(4): 51-53.
    [59] Jingyun Fang. Interannual Variability in Net Primary Production and Precipitation[J]. Science, 2001, 293: 1723a.
    [60]白永飞.降水量季节分配对克氏针茅草原群落初级生产力的影响[J].植物生态学报, 1999, 23(2): 155-160.
    [61] Dafeng Hui, Robert B. Jackson. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data[J]. New Phytologist, 2006, 169: 85–93.
    [62] YongZha, JayGao, YingZhang. Grassland productivity in an alpine environment in response to climate change[J]. Area, 2005, 37(3): 332-340.
    [63]李素英,李晓兵,莺歌,等.基于植被指数的典型草原区生物量模型-以内蒙古锡林浩特市为例[J].植物生态学报, 2007, 31(1): 23-31.
    [64]郑晓翾,赵家明,张玉刚,等.呼伦贝尔草原生物量变化及其与环境因子的关系[J].生态学杂志, 2007, 26(4): 533-538.
    [65]白永飞,李凌浩,王其兵,等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报, 2000, 24(6): 667-673.
    [66] P. J. Vickery. Grazing and Net Primary Production of Temperate Grassland[J]. The Journal of Applied Ecology, 1972,9(1): 307-314.
    [67]董世魁,丁路明,徐敏云,等.放牧强度对高寒地区多年生混播禾草叶片特征及植被初级生产力的影响[J].中国农业科学, 2004, 37(1): 136-142.
    [68]刘颖,王德利,韩士杰,等.放牧强度对羊草植被植被再生性能的影响[J].草业学报, 2004, 13(6): 39-44.
    [69]杨殿林,韩国栋,胡跃高,等.放牧对贝加尔针茅草原群落植物多样性和生产力的影响[J].生态学杂志, 2006, 25(12): 1470-1475.
    [70]高清竹,万运帆,李玉娥,等.藏北高寒植被NPP变化趋势及其对人类活动的响应[J].生态学报, 2007, 27(11): 4612-4619.
    [71]戴小华,余世孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学杂志, 2004, 23(4): 94-95.
    [72] W. K. Lauenroth, A. A. Wade, M. A. Williamson, et al. Uncertainty in Calculations of Net Primary Production for Grasslands[J]. Ecosystems, 2006, 9: 843-851.
    [73]盛永伟,陈维英,肖乾广,等.利用气象卫星植被指数进行我国植被的宏观分类[J].科学通报, 1995, 40(1): 68-71.
    [74]吴健,潘军,邢立新,等.基于景观分区的植被类型信息提取[J].吉林大学学报(地球科学版), 2007, 37(增刊): 217-220.
    [75] Songyang.布里亚特共和国[EB/OL]. http://baike.baidu.com/view/168891.htm, 2009-12-25.
    [76]王娓,彭书时,方精云.中国北方天然草地的生物量分配及其对气候的响应[J].干旱区研究, 2008, 25(1): 90-97.
    [77] Raich J.W., Schlesinger W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44B:81-89.
    [78] Tueker C.J., I.Y. Fung, C.D.Keeling, et al. Relationship between atmospheric CO2 variations and a satellite-derived vegetation index[J]. Nature, 1986, 319: 195-199.
    [79] Fild C. B., Randerson J.T., Malmstrom C.M.. Global net primary production: combining ecology and remote sensing[J]. Remote sensing of environment, 1995, 51: 74-88.
    [80] Potter C.S., Klooster S.A.. Global model estimates of earbon and nitrogen storage in litter and soil Pools:response to changes in vegetation quality and biomass allocation[J]. Tellus, 1997, 49B: 1-17.
    [81] Lobell D.B., Hieke J.A., Asner G.P., et al. Satellite estimates of Productivity and lightuse efficiency in United States agriculture 1982-1998[J]. Golbal Change Biology, 2002, 8: 722-735.
    [82] Bradford J.B., Hieke J.A., Lauenroth W.K.. The relative importance of light-use efficiency modifications from environmental conditions and cultivation for estimation of large-scale net Priry Produetivity[J]. Remote Sensing environment, 2005, 96: 246-255.
    [83]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报, 2001, 25(5): 603-608.
    [84]陈正华.基于CASA和多光谱遥感数据的黑河流域NPP研究[D].兰州:兰州大学研究生院, 2006.
    [85]李刚,周磊,王道龙,等.内蒙古草地NPP变化及其对气候的响应[J].生态环境, 2008, 17(5): 1948-1955.
    [86]国志兴,王宗明,张柏,等. 2000-2006年东北地区植被NPP的时空特征及影响因素分析[J].资源科学, 2008, 30(8): 1226-1235.
    [87]朱文泉.中国陆地生态系统植被净初级生产力遥感估算及其气候变化关系的研究[D].北京:北京师范大学研究生院, 2005.
    [88]张峰,周广胜,王玉辉.基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟[J].植物生态学报, 2008, 32(4): 786-797.
    [89]郭铌.植被指数及其研究进展[J].干旱气象, 2003, 21(4): 71-75.
    [90]朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算—以中国内蒙古为例[J].遥感学报, 2005, 9(3): 300-307.
    [91]王磊,丁晶晶,季永华,等. 1981-2000年中国陆地生态系统NPP时空变化特征分析[J].江苏林业科技, 2009, 36(6): 1-5.
    [92]张佳华,陈开喜.陆地表面复杂过程模式中耦合植物生态过程的研究进展[J].气象科学, 2002, 22(1): 119-126.
    [93]苏宏新,桑卫国.宏观老手天麻研究现状与展望[J].植物生态学报, 2002, 26(suppl.): 98-106.
    [94]李银鹏,季劲钧.陆地碳循环研究中植物生理生态过程模拟进展[J].生态学报, 2002, 22(12): 2227-2237.
    [95]陈述彭.地球信息科学[M].北京:高等教育出版社, 2007.1-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700