用户名: 密码: 验证码:
新城疫病毒单克隆抗体制备及部分NP蛋白抗原表位鉴定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫(ND)是危害世界养禽业的重要疾病之一,目前对其病原新城疫病毒(NDV)进行了大量的研究,可是对于NDV编码蛋白的结构与功能以及致病机理还未完全阐明。应用单克隆抗体仍是对NDV编码蛋白进行结构与功能分析、表位鉴定以及强弱毒鉴别诊断的基本手段之一。
     本研究分别构建了含有NDV基因Ⅶ型QY97株F基因全长及部分基因片段FA(1-357bp)、FB(336-1047bp)和FC(948-1662bp)的原核表达载体。经IPTG诱导后,在大肠杆菌中成功地表达了含F蛋白部分片段(FA、FB和FC)分子量分别为30.6ku、43.5ku和43.7ku的3个融合蛋白,其中FA片段对应F2蛋白,FB和FC分别对应部分重叠的F1蛋白的两个片段。Western-blot结果表明表达的融合蛋白FB和FC具有良好的反应原性。以原核表达的融合蛋白FB和FC免疫小鼠,获得了针对NDV F蛋白FB和FC片段的单克隆抗体各1株,分别命名为FB-B9和FC-B5。
     以NDV QY97株全病毒免疫6周龄BALB/c雌性小鼠,采用细胞融合技术制备单克隆抗体。经间接ELISA和间接免疫荧光试验筛选,共获得了15株NDV杂交瘤细胞。其中5A12属于IgG2a亚型,18C6属于IgG2b亚型,31B4和33F12属于IgM亚型,其余均属于IgG1亚型。这15株单克隆抗体均无中和活性和血凝抑制活性。采用夹心ELISA对不同单抗与10株属于不同基因型的NDV进行交叉反应,结果表现出不同的反应性。
     用纯化的NDV QY97株作为抗原,与所获得的单抗进行Western-blot反应,结果表明18C6、24F9和25C12与病毒55ku左右的片段反应,因此这3株单克隆抗体针对的是NDV结构蛋白的线性表位,可能是针对NDV NP蛋白或者F蛋白的单抗,其它几株单克隆抗体与病毒蛋白没有明显的反应,可能是针对NDV结构蛋白构象表位的单抗。
     选取10株分属于基因Ⅰ型、基因Ⅱ型、基因Ⅵ型、基因Ⅶ型和基因Ⅸ型的毒株作为代表株,进行了识别线性表位的3株单抗18C6、24F9和25C12与不同NDV毒株之间的间接ELISA和Western-blot交叉反应。试验结果与夹心ELISA结果相符,单抗18C6只与CK/CH/HLJ/1/06(ZY)、CK/CH/HN/1/07(LHN)、Mallard/CH/HLJ01/06(JL01)和QY97株有反应性,24F9与除基因Ⅵ型PG/CH/JS/1/06(Y4)毒株以外的所有毒株有反应性,而25C12与10株NDV均有反应性。
     进一步利用原核表达系统表达了系列截短的NP蛋白多肽片段,采用Western-blot对18C6和24F9所识别的线性表位进行定位。结果发现这两株单抗都是针对NP蛋白的C-末端,18C6识别的抗原表位位于NP蛋白的第473-481位氨基酸之间,其多肽序列为(473)~PPPTPGASQ~(481);24F9识别的抗原表位位于NP蛋白的第470-478位氨基酸之间,其多肽序列为(470)~HPEPPPTPG~(478)。两个抗原表位相互重叠,具有共同的核心序列(473)~PPPTPG~(478)。
     本试验扩增了4个分离株的NP基因,进行了23株NDV NP基因的序列分析,结果表明,NP基因全长序列比较保守,但是在C-末端的401-489位氨基酸差异较大,在弱毒株之间比较序列同源率较高,均在83.5%以上;强毒株之间的序列同源率与基因型相关,同一基因型内同源率均高于84.4%,但是强弱毒之间的序列同源率有的仅为67%。NP蛋白401-489位氨基酸之间的差异说明NP基因在病毒进化过程中也呈现一定的变异规律。单抗24F9所识别的470-478位氨基酸序列在各基因型毒株中也有所不同,在NDV基因Ⅶ型毒株的序列中相对比较保守,为(470)~HPEPPPTPG~(478);而在基因Ⅵ型毒株中的序列为(470)~H(P/L)EP(L/P)(S/P)HE~(478),第477位的组氨酸未在其它基因型毒株中出现;在弱毒株中的序列为(470)~Q(S/L)GPPPTPG~(478),与强毒株比较至少有三个氨基酸的差异。
     本研究采用全病毒免疫小鼠制备了15株NDV单克隆抗体,采用原核表达的F蛋白FB和FC多肽免疫获得了针对F蛋白的单抗2株。所获单抗与NDV不同基因型毒株呈现不同的反应性。进行了NP基因的序列分析,发现NP蛋白的C-末端氨基酸序列在不同基因型强弱毒之间有所不同,利用获得的单抗在NP蛋白C-末端上鉴定了两个具有共同核心基序的重叠表位。本研究为NDV编码蛋白进行结构与功能分析、表位鉴定以及强弱毒鉴别诊断等方面的深入研究奠定基础。
Newcastle Disease Virus (NDV) is an important pathogen which causes great losses to poultry industry in the world. Currently much research has been done on NDV; however the structure and function of the proteins encoded by NDV and the mechanism on pathogencity of the virus are not fully elucidated. Using monoclonal antibodies (MAbs) is still a basic tool to do research on the structure and function analyses of the proteins encoded by NDV, epitope identification and differentiate diagnosis of NDV.
     The prokaryotic expression vector containing the whole F gene and its partial segment of FA(1-357bp), FB(336-1047bp)and FC(948-1662bp)was constructed, after induction by IPTG, the fragment of the fused protein was expressed with a molecular weight of 30.5ku, 43.6ku and 43.7ku, respectively. Among them FA corresponding to F2, FB and FC corresponding to partial overlapped two fragment of F1. The result of Western-blot showed that expressed protein FB and FC have good reactivity. Two MAbs were obtained by immunization with the prokaryotic expressed fragment FB and FC and named as FB-B9 and FC-B5, respectively.
     6-week-old female BALB/c mice were immunized with purified NDV QY97 strain for the preparation of MAbs by cell-fusion technology. After screening by indirect ELISA and IFA, 15 MAbs were obtained. Among them, MAb 5A12 belongs to IgG2a subgroup; MAb 18C6 belongs to IgG2b subgroup; MAbs 31B4 and 33F12 belong to IgM subgroup; and the others belong to IgG1 subgroup. All these MAbs have no neutralization and HI activities. Cross-reactivity of MAbs with 10 NDV strains of different genotype were detected by sandwich ELISA and different reactivity was found.
     The purified NDV QY97 strain was used as antigen to do Western-blot with MAbs obtained in the study. The results of western-blot showed that 18C6, 24F9 and 25C12 reacted with 55ku protein fragment of NDV, so these three MAbs may react with linear antigenic epitope on structural proteins of NDV; the protein recognized by MAbs is NP or F protein. While other MAbs showed no obvious reactions with NDV proteins, these MAbs may react with conformational antigenic epitope on structural proteins of NDV.
     Ten NDV strains from genotype I, II, VI, IX and VII were used as typical strain and cross-reactivity of three MAbs which recognize linear epitope with different NDV strains were detected by indirect ELISA and Western-blot. The results are the same with the results of sandwich ELISA; MAb 18C6 could react only with NDV CK/CH/HLJ/1/06(ZY), CK/CH/HN/1/07(LHN), QY97 and Mallard/CH/HLJ01/06(JL01). MAb 24F9 did not react with NDV strain in genotypeⅥ, but could react with strains in other genotype; while MAb 25C12 could react with all the strains used.
     Serials of truncated NP protein were expressed by prokaryotic expression system and used as antigen to map the linear antigenic epitope recognized by MAbs 18C6 and 24F9 by Western-blot, respectively. The results showed that these two MAbs could react with C-terminal of NP protein. Antigenic epitope recognized by 18C6 lines in amino acid sequence of 473-481 and its sequence is (473)~PPPTPGASQ~(481); while the antigenic epitope recognized by 24F9 lines in amino acid sequence of 470-478 and its sequence is (470)~HPEPPPTPG~(478). Two antigenic epitopes are overlapped and they have the same core sequence (473)~PPPTPG~(478).
     The results of NP gene analysis showed that NP gene is relatively conservative, but the differences are obvious in the C-terminal 400-489aa of NP protein. The homology of amino acid sequence in C-terminal 400-489aa of avirulent strain is high and is 83.5% to the lowest level. The homology of amino acid sequence in this segment in the virulent strains is related to genotype, it is above 84.4% in the same genotype; while the homology is 67% between some virulent and avirulent strain. The difference in 400-489aa in the C-terminal of NP protein showed the variation of NP has its pattern in the virus evolution process.
     There are some differences in amino acid sequence of the antigenic epitope corresponding to the position of 470-478 recognized by MAb 24F9 in NDV strains from different genotypes. It is conservative in the NDV strains from genotype VII and the amino acid sequence is (470)~HPEPPPTPG~(478); while the amino acid sequence is (470)~H(P/L)EP(L/P)(S/P)HE~(478)in NDV strains belong to genotype VI, His in position 477 was not seen in the virus from other genotypes; the amino acid sequence of avirulent virus strains are(470)~Q(S/L)GPPPTPG~(478), there are at least three amino acid difference with virulent strains.
     15 MAbs were obtained by NDV immunization and 2 MAbs were obtained by immunization with prokaryotic expressed F protein peptide segment in this study, respectively. Different reactivity was found among MAbs with NDV of different genotype. Sequence analysis of NP gene showed that there are some differences in amino acid sequence in the C-terminal of NP protein in the virulent and avirulent NDV strains from different genotypes. Two overlapped epitopes were identified by two MAbs and they have same core sequence. This study laid foundation for the further study on the structure and function analyses of the proteins encoded by NDV, epitope identification and differentiate diagnosis of NDV.
引文
陈少莺,胡奇林,陈仕龙等. 2004.鸭副粘病毒的分离与初步鉴定[J].中国预防兽医学报. 26(2) : 118-120.
    戴荣四,刘毅,胡仕凤等. 2006.鸡新城疫免疫胶体金诊断技术的研究[J].湖南农业大学学报(自然科学版). 2: 169-172.
    董伟,陈海涛,孙志良等. 2009.新城疫不同弱毒株疫苗对鸭免疫效果比较[J].中国动物检疫. 26(5) : 53-54.
    高云英,张永才,张碧侠等. 1997.新城疫病毒单克隆抗体研究Ⅲ酶标单克隆抗体ELISA夹心法检测鸡新城疫病毒抗原.西北农业学报. 6(1) : 14-17.
    古长庆,金宁一,王兴龙等. 2000.鉴别新城疫病毒弱毒株的抗多肽抗体制备[J].中国兽医科技. 30(4) : 5-7.
    胡北侠,黄艳艳,张秀美等.2008. 3株单抗对新城疫病毒HN抗原变异的分析[J].中国兽医学报.28(11) : 1251-1253.
    黄淑坚,白挨泉. 2000.鹅副粘病毒病病原的分离及初步鉴定[J].中国兽医杂志. 26(3) : 20-21.
    蒋建兵,张国栋,杨建彬. 2001.一起鹅副粘病毒病的诊治[J].中国禽业导刊. 18(22) : 35.
    金.萨姆布鲁克D.W.拉塞尔. 2003.分子克隆试验指南.黄培堂.第三版.科学出版社, 26-30.
    瞿继红,周碧君,温贵兰等. 2005.不同新城疫分离株的毒力测定与单克隆抗体分群研究[J].山地农业生物学报. 24(6) : 491-496.
    李明龙,邵向群. 1999.八例鹅副粘病毒病发病情况调查和防治[J].中国禽业导刊. 16(7): 28-29.
    李希友,田夫林,张秀娥等. 2006.单抗标记检测新城疫病毒免疫胶体金试纸条的研制[J]. 西南农业学报. 19(6) : 1162-1165.
    李颖,田波. 2007.新城疫病毒F蛋白七肽重复序列(HR)三螺旋HR212蛋白的抗体抑制病毒和细胞融合[J].自然科学进展. 17(1) : 122-126.
    李玉峰,曹福敏,李峰等. 2004.单抗ELISA试剂盒检测肉鸽新城疫病毒初步研究[J].山东家禽. 6 : 7-8.
    刘成宏,金扩世,金宁一等. 2007.新城疫强毒株F蛋白裂解位点串联基因的构建及其原核表达[J]. 20(2) : 73-76.
    刘怀然,孙敏华,葛鑫等. 2009.不同宿主源NDV毒株对SPF鸡致病性研究[J].中国预防兽医学报. 31(2) : 99-103.
    刘梅,程旭,戴亚斌等. 2010.不同禽源和不同毒力新城疫病毒对鸭的感染性[J].禽病. 4(1) : 25-30.
    刘秀梵. 2007.家养水禽在A型流感病毒和新城疫病毒进化和疾病流行中的作用[J].中国家禽. 29(15) : 1-7.
    刘宇卓,罗函禄,瞿永前等. 2001.南京郊县鹅副粘病毒病的流行及诊治[J].中国家禽. 23(21) : 33-34.
    卢建红,谈志祥,鲁杏华等. 2001.应用聚乙二醇介导的单抗夹心ELISA监测湖南新城疫病毒强毒感染[J].湖南农业大学学报(自然科学版).27(5) : 391-393.
    鲁会军,金扩世,李旭等. 2009.猪源新城疫病毒JL01株分离鉴定及F基因遗传进化分析[J]. 病毒学报. 25(1) : 52-57.
    钱忠明,周继宏,朱国强等. 1999.鹅副粘病毒病流行病学和血清学研究[J].中国家禽. 21(10) : 6-8.
    仇旭升. 2009.反向遗传技术研究新城疫病毒P基因功能及其对病毒毒力的影响[D].扬州大学博士学位论文.
    冉旭华,闻晓波,赵喜红等. 2008.新城疫病毒F和HN蛋白的原核表达[J].生物技术. 18(3) : 11-13.
    邵向群,沈广东,沈德云. 2002.副粘病毒病发病情况及防治效果的调查报告[J].畜禽业. 148(8) : 39.
    沈艳,余为一,仲大莲. 2008.鸡新城疫病毒F蛋白部分表位基因的克隆表达及其免疫反应性[J].安徽农业大学学报. 35(1) : 26-29.
    苏敬良,王双山,黄瑜等. 2000.企鹅新城疫强毒的分离鉴定[J].中国预防兽医学报. 22(3) : 186-188.
    万洪全,卢军,刘秀梵等. 2004.致病性鹅源新城疫病毒对鸡胚成纤维细胞的致病变特性[J].动物医学进展. 25(5) :89-91.
    万洪全,姜连连,吴力力等. 2001.鹅副粘病毒组织嗜性的初步研究[J].中国兽医学报. 21(6) : 549-551.
    万洪全. 2002.鹅源新城疫病毒部分生物学特性鉴定及其囊膜糖蛋白基因序列分析[D]. 博士学位论文.
    王永坤,田慧芳,周继宏等. 1998.鹅副粘病毒病的研究[J].江苏农学院学报. 19 (1) : 59-62.
    王永坤,田慧芳,周继宏等. 1999.鹅副粘病毒感染的研究[J].广西畜牧兽医. 15 (6) : 7-11.
    王永坤. 1999.鹅副粘病毒病的防治对策[J].中国动物保健. 5(3) : 29-30.
    王志玉,王战勇,于修平. 2002.糖化作用对新城疫病毒HN糖蛋白功能的影响[J].病毒学报. 18(2) : 155-161.
    温贵兰. 2005.抗新城疫单克隆抗体的制备与特异性分析[J].中国兽医科技. 35(1) : 22-26.
    吴红专,张如宽,刘秀梵. 1995.新城疫单抗ELISA试剂盒的研制及其初步应用[J]. 25(6) : 3-6.
    吴红专,张如宽,刘秀梵. 1997.应用新城疫单抗ELISA试剂盒监测华东地区部分鸡场中新城疫强毒感染[J].中国畜禽传染病. 92(1) : 11-15.
    辛朝安,任涛,罗开键. 1997.疑似鹅副粘病毒感染诊断初报[J].养禽与禽病防治. 16(l) : 5.
    殷震,刘景华. 1997.动物病毒学[M].第二版,科学出版社,北京.
    于圣青,刘秀梵. 1990.单克隆抗体夹心ELISA试验检测鸡新城疫病毒抗原的研究[J].江苏农学院学报. 11(2) : 41-45.
    张桂芝,陈亚波,徐程等. 2006.新城疫病毒F蛋白结构域基因原核表达与抗原表位分析[J]. 浙江大学学报(农业与生命科学版). 32(1) : 82-87.
    张太翔,田国宁,张金玲等. 2010.鸭新城疫病毒强毒株的分离和初步鉴定[J]. 4(1) : 23-24.
    张训海,王珏,李升和等. 2010.鸭副粘病毒人工感染鸭的病理组织学研究[J].中国预防兽医学报. 32(1) : 27-31.
    张训海,朱鸿飞,陈溥言. 2001.鸭副粘病毒强毒株的分离和鉴定[J].中国动物检疫. 18(10) : 24-26.
    周继宏,田慧芳,王永坤等. 1999.鹅副粘病毒的人工感染试验[J].中国预防兽医学报. 21(1) : 51-52.
    庄向生,林天龙,吴平,等. 1993.直接荧光抗体试验检测新城疫病毒[J].中国兽医科技. 23(11) : 20-22.
    邹健. 2005.鹅副粘病毒SF02全基因组克隆与序列分析及锤头状核酶对病毒复制的抑制作用[D].中国科学院研究生院博士学位论文.
    Abolnik C, Horner R F, Maharaj R, et al. 2004. Characterization of a pigeon paramyxovirus (PPMV1) isolated from chickens in South Africa[J]. Onderstepoort J. Vet. Res. 71: 157–160.
    Aghi M and Martzua R L. 2005. Oncolytic viral therapies—the clinical experience[J] . Oncogene. 24: 7802– 7815.
    Al′?z C, Dorina U, Eszter S, et al. 2006. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications[J]. Virus Research. 120: 36–48.
    Aldous E W, Fuller C M, Mynn J K, et al. 2004. A molecular epidemiological investigation of isolates of the variant avian paramyxovirus type 1 virus (PPMV1) responsible for the 1978 to present panzootic in pigeons[J]. Avian Pathol. 33: 258–269.
    Aldous E W, Mynn J K , Banks J, et al. 2003. A molecular epidemiological study of avian paramyxovirus type 1 (Newcastle disease virus) isolates by phylogenetic analysis of a partial nucleotide sequence of the fusion protein gene[J]. Avian Pathol. 32: 239–257.
    Alexander D J, Manvell R J, Lowings, J P, et al. 1997. Antigenic diversity and similarities detected in avian paramyxovirus type 1 (Newcastle disease virus) isolates using monoclonal antibodies[J]. Avian Pathol. 26: 399–418.
    Basak S, Raha T, Chattopadhyay D, et al. 2003. Leader RNA binding ability of chandipura virus P protein is regulated by its phosphorylation status: a possible role in genome transcription-replication switch[J]. Virology. 307:372–385
    Bin M D, Shigan Y A, Xiumei Z A, et al. 2010. Identification of a vatiable epitope on the Newcastle disease virus hemagglutinin-neuraminidase protein[J]. Veterinary Microbiology. 140: 92-97.
    Bock R.R. 2001. Newcastle disease in geese. In: Newsletter of the World Veterinary Poultry Association. 13:10.
    Bolte A L,Voss M,Vielitz E, et al. 2001. Response of domestic geese to lentogenic and velogenic strains of Newcastle disease virus[J]. Deutsche Tierarztliche Wochenschrift 108:155-159.
    Cantin C, Holguera J, Ferreira L, et al. 2007. Newcastle Disease Virus may enter cells by caveolae-mediated endocytosis . J Gen Virol. 88: 559–569.
    Charles J R and Laura E L. 2006. The structural basis of paramyxovirus invasion[J]. Trends Microbiology. 14(6): 243-246.
    Chatziandreou N, Young D, Andrejeva J, et al. 2002. Differences in interferon sensitivity and biological properties of two related isolates of simian virus 5: a model for virus persistence[J]. Virology. 293: 234–242.
    Chlichlia K, Schirrmacher V and Sandaltzopoulos R. 2005. Cancer immunotherapy: battling tumors with gene vaccines[J]. Curr. Med. Chem. Anti-inflammatory Anti-allergy Agents. 4 : 353– 365.
    Choi K S, Lee E K, Jeon W J, et al. 2010. Antigenic and immunogenic investigation of the virulence motif of the Newcastle disease virus fusion protein[J]. Journal of Veterinary Science. 11(3): 205-211.
    Cobaleda C, Munoz B I, Sagrera A. 2002. Fusogenix activity of reconstituted newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process[J].The International Journal of Biochemistry & Cell Biology, 34(4) : 403-413.
    Collins M S, Bashiruddin J B, Alexander D J. 1993. Deduced amino acid sequences at the fusion protein cleavage site of Newcastle disease viruses showing variation in antigenicity and pathogenicity[J]. Arch Virol. 128:363-370.
    Curran J, Pelet T, Kolakofsky D. 1994. An acidic activation like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation. Virology. 202:875–884.
    Czegledi A. 2006. Third genome size category of avian paramyxovirus serotype 1(Newcastle disease virus) and evolutionary implications[J] . Virus Res. 120( 1- 2) : 36- 48.
    Damico R L, Crane J, Bates P. 1998. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc. Natl. Acad. Sci. U.S.A. 95: 2580– 2585.
    de Leeuw O & Peeters B. 1999. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae[J]. J Gen Virol. 80: 131–136.
    Dinapoli J M, Ward J M, Chen L, et al. 2009. Delivery to the lower respiratory tract is required for effective immunization with Newcastle disease virus-vectored vaccines intended for humans[J]. Vaccine. 27: 1530–1539.
    Docherty D E, Friend M, Franson J C, et al. (eds): Field Manual of Wildlife Diseases, General Field Procedures and Diseases of Birds. US Geological Survey, 1999, pp 175-180.
    Elankumaran S, Rockemann D, Samal S K. 2006. Newcastle disease virus exerts oncolysis by both intrinsic caspase-dependent pathways of cell death[J]. J.Virol. 80: 7522-7534.
    Engvall E, Perlman P. 1971. Enzyme-linked immunosorbent assay (ELISA), Quantitative assayof immunoglobulin G. Immunochemistry. 8(9):871-874.
    Fontana J M, Bankamp B, Bellini W J, et al. 2008. Regulation of interferon signaling by the C and V proteins from attenuated and wild-type strains of measles virus[J]. Virology. 374: 71–81.
    Fournier P, Zeng J and Schirrmacher V. 2003. Two ways to induce innate immune responses in human PBMCs: Paracrine stimulation of IFN-αresponses by viral protein or dsRNA[J] . Int. J. Oncol. 23: 673–680.
    Freeman A I, Zakay-Rones Z, Gomori J M, et al. 2006. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme[J]. Mol. Ther. 13: 221–228.
    Furuta R A, Wild C T, Weng, Y, et al. 1998. Capture of an early fusion-active conformation of HIV-1 gp41[J]. Nat. Struct. Biol. 5: 276– 279.
    Ghosh J K, Ovadia M andShai Y. 1997. A leucine zipper motif in the ectodomain of Sendai virus fusion protein assembles in solution and in membranes and specifically binds biologically-active peptides and the virus[J]. Biochemistry. 36:15451–15462.
    Ghosh J K, Peisajovich S G, Ovadia M, et al. 1998. Structure-Function Study of a Heptad Repeat Positioned Near the Transmembrane Domain of Sendai Virus Fusion Protein Which Blocks Virus-Cell Fusion[J]. The Journal of Biological Chemistry. 273(42)16: 27182- 27190.
    Gould A R, Hannson E, Selleck K, et al. 2003. Newcastle disease virus fusion and haemagglutinin-neuraminidase gene motifs as markers for viral lineage[J]. Avian Pathol. 32: 361–373.
    Gould A R, Kattenbelt J A, Selleck P, et al. 2001. Virulent Newcastle disease in Australia: Molecular epidemiological analysis of viruses isolated prior to and during the outbreak of 1998- 2000[J]. Virus Res. 77:51-60.
    Gregory K, Patrick A. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses [J]. Nucleic Acids Research. 12(18): 7269-7286.
    Harrison M S, Sakaguchi T, Schmitt A P. 2010. Paramyxovirus assembly and budding : building particles that transmit infections[J]. The International Journal of Biochemistry and Cell Biology.42:1416-1429.
    Hernandez L D, Peters R J, Delos S E, et al. 1997. Activation of a retroviral membrane fusion protein: soluble receptor-induced liposome binding of the ALSV envelope glycoprotein[J]. J. Cell Biol. 139:1455–1464.
    Hlinak A, Muller T, Kramer M, et al. 1998. Serological survey of viral pathogens in bean and whitefronted geese from Germany[J]. J Wild Dis. 34:479-486.
    Huang Y, Wan H Q, Liu H Q, et al. 2004. Genomic sequence of an isolate of Newcastle disease virus isolated from an outbreak in geese: a novel six nucleotide insertion in the non-coding region of the nucleoprotein gene[J]. Arch. Virol. 149: 1445–1457.
    Huang Z, Elankumaran S, Panda S A, et al. 2003. Recombinant Newcastle disease virus as a vaccine vector[J]. Poultry Sci. 82(6): 899-906.
    Huang Z, Panda A, Elankumaran S, et al. 2004. The Hemagglutinin- Neuraminidase Protein ofNewcastle Disease Virus Determines Tropism and Virulence[J]. Journal of virology. 78(8): 4176–4184.
    Huntley C C, De B P, Murray N R, et al. 1995. Human parainfluenza virus type 3 phosphoprotein: identification of serine 333 as the major site for PKC zeta phosphorylation[J]. Virology. 211:561–567.
    Iorio R M, Syddall R J, Sheehan J P, et al. 1991.Neutralization map of the Hemagglutinin-Neuraminidase glycoprotein of Newcastle disease virus: domains recognized by monoclonal antibodies that prevent receptor recognition[J]. Journal of Virology. 65(9): 4999-5006.
    Iorio R M, Field G M, Sauvron J M, et al. 2001. Structural and Functional Relationship between the Receptor Recognition and Neuraminidase Activities of the Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein: Receptor Recognition Is Dependent on Neuraminidase Activity[J]. Journal of Virology. 75(4) : 1918-1927.
    Jacqueline A. Kattenbelt, Matthew P. et al. 2006. Sequence variation in the Newcastle disease virus genome[J]. Virus Research. 116:168-184.
    Jang J, Hong S H, Choi D W, et al. 2010. Overexpression of Newcastle disease virus (NDV) V protein enhances NDV production kinetics in chicken embryo fibroblasts[J]. Appl Microbiol Biotechnol. 85:1509–1520.
    Jennifer C H and Jean A. P,DMV, DVSc, Dip. ACZM. Viruses of waterfowl. 2004. Seminars in Avian and Exotic Pet Medicine. 13(4): 176-183.
    Jeon W J, Lee E K, Kwon J H, et al. 2008. Full-length genome sequence of avain paramyxovirus type 4 isolated from a mallard duck[J]. Virus Genes. 37:342–350.
    Judith G. Alamares, Jian L, et al. 2005. Monoclonal antibody routinely used to identify avirulent strains of Nescastle disease virus binds to an epitope at the carboxy terminus of the hemagglutinin-neuraminidase protein and recognizes individual mesogenic and velogenic strains[J]. Journal of Clinical Microbiology. 43(8): 4229-4233.
    Judith G. Alamares, Subbiah E, et al. 2010. The interferon antagonistic activities of the V proteins from two strains of Newcastle disease virus correlate with their known virulence properties[J]. Virus Research. 147 :153–157.
    Kaleta E F and Baldauf C. 1998. Newcastle disease in free-living and pet birds[M]. In Newcastle Disease.Edited by Alexander.DJ.Kluwer Academic Publishers, Boston, MA.197-246.
    Kaleta E F, Alexander D J, Russell P H, 1985. The first isolation of the avian PMV1 virus responsible for the current panzootic in pigeons[J]. Avian Pathol. 14: 553–557.
    Kato A, Kiyotani K, Sakai Y, et al. 1997. Importance of the cysteine-rich carboxyl-terminal half of V protein for Sendai virus pathogenesis[J]. J. Virol. 71: 7266–7272.
    Kattenbelt J A. 2006. Sequence variation in the Newcastle disease virus genome[ J]. Virus Res. 116:168-184.
    Kay C, Nicola S, Craig R, et al. 2007. mda-5, but not RIG-I, is a common target for paramyxovirus V proteins[J]. Virology. 359(1): 180-200.
    Kelleher C J, Halvorson D A, Newman J A. 1985. Isolation of avian Paramyxovirus from sentinel ducks and turkeys in Minnesota[J]. Avian Diseases. 29(2):400-407.
    Krishnamurthy S, Samal S K. 1998. Nucleotide sequence of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence[J]. J. Gen. Virol. 79: 2419–2424.
    Kwon H J, Cho S H, Ahn Y J, et al. 2003. Molecular epidemiology of Newcastle disease in Republic of Korea. Veterinary Microbiology. 95:39–48.
    Lamb R A and Kolakofsky D. 2001. Paramyxoviridae: the viruses and their replication. In: Knipe, D.M., Howley, P.M. (Eds.), Fields Virology, 4th eds Lippincott, Williams and Wilkins, PA, pp. 1305–1340.
    Lamb R A, Jardetzky T S. 2007. Structural basis of viral invasion: lessons from paramyxovirus F[J]. Curr. Opin. Struct. Biol. 17: 427–436.
    Liang R, Cao D J, Li J Q. et al. 2002. Newcastle disease outbreaks in western China were caused by the genotypesⅦa andⅧ[J].Veterinary Microbiology. 87:193-202.
    Lin C, Jeffrey G, Jenny M B. et al. 2001. The Structure of the Fusion Glycoprotein of Newcastle Disease Virus Suggests a Novel Paradigm for the Molecular Mechanism of Membrane Fusion[J] Structure. 9(3): 255–266.
    Lin, G Y, Paterson R G, Richardson C D, et al. 1998. The V protein of the paramyxovirus SV5 interacts with damage-specific DNA binding protein[J]. Virology 249:189–200.
    Liu H L, Wang Z L, Wu Y G, et al. 2008. Molecular characterization and phylogenetic analysis of new Newcastle disease virus isolates from the mainland of China[J]. Research in Veterinary Science. 85: 612–616.
    Malathi K, Dong B, Gale M, et al. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity[J]. Nature 446 : 816– 819.
    Masaji M, Toshikazu I and Tadao I. 2009. Genotyping of Newcastle Disease Viruses Isolated from 2001 to 2007 in Japan[J]. J. Vet. Med. Sci. 71(8): 1101–1104.
    Matsuoka YJ, Curran T, Pelet D. et al. 1991. The P gene of human parainfluenza virus type 1 encodes P and C proteins but not a cysteine-rich V protein[J]. J. Virol. 65: 3406–3410. Mayo M A. 2002a. Virus taxonomy-Houston[J]. Arch. Virol. 147: 1071–1076.
    Mayo M A. 2002b. A summary of taxonomic changes recently approved by ICTV[J]. Arch. Virol. 147: 1655–1656.
    Mebatsion T, Verstegen S, De Vaan L T, et al. 2001. A recombinant newcastle disease virus with low-level V protein expression is immunogenic and lacks pathogenicity for chicken embryos[J]. J.Virol. 75:420-428.
    Meulemans G, Berg V D, Decaesstecker T P, et al. 2002. Evolution of pigeon Newcastle disease virus strains. Avian Pathol. 31: 515–519.
    Mirza A M, Deng R and Iorio R M. 1994. Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hemagglutinin-neuraminidase glycoprotein: effects on antigenic structure andfunction[J]. J. Virol. 68:5093–5099.
    Mirza A M, Sheehan J P, Hardy L W, et al. 1993. Structure and function of a membrane anchor-less form of the hemagglutinin-neuraminidase glycoprotein of Newcastle disease virus[J]. J. Biol.Chem. 268:21425–21431.
    Nagai Y, Klenk H D and Rott R. 1976. Proteolytic cleavage of the viral glycoproteins and its significance for the virulence of Newcastle disease virus[J]. Virology. 72:494–508.
    Nicholas R A. 1986. The use of the enzyme-linked immunosorbent assay in detecting antibodies to avian viruses. Vet Bull. 56:337-343.
    Nishikawa K, Hanada N, Morishima T, et al. 1987. Antigenic characterization of the internal proteins of Newcastle disease virus by monoclonal antibodies[J]. Virus Res. 7: 83-92.
    Panda A, Huang Z, Elankumaran S, et al. 2004. Role of fusion protein cleavage site in the virulence of Newcastle disease virus[J]. Microb. Pathog. 36: 1–10.
    Panshin A, Shihmanter E, Weisman Y, et al. 1997. Antigenic epitope characterization of matrix protein of Newcastle disease virus using monoclonal antibody approach: contrasting variability amongst NDV strains[J]. Comp. Immun. Microbiol. Infect. Dis. 20(2) : 177-189.
    Panshin A, Shihmanter E, Weisman Y, et al. 1998. Variability of antigenic epitopes of the fusion protein of Newcastle disease virus[J]. Immun. Microbiol. Infect. Dis. 21(1) : 51-63.
    Panshin A, Shihmanter E, Weisman Y, et al. 2000. Antigenic characterization of the nucleocapsid protein of Newcastle disease virus by means of a new panel of monoclonal antibodies[J]. Comparative Immunology, Microbiology& Infectious Diseases. 23: 209-220.
    Pantua H D, McGinnes L W, Peeples M E, et al. 2006. Requirements for the assembly and release of Newcastle disease virus-like particles[J]. J Virol. 80:11062–73.
    Park M S, Shaw M L, Munoz J J, et al. 2003. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins[J]. J. Virol. 77: 1501–1511.
    Paterson R G, Leser G P, Shaughnessy M A, et al. 1995. The paramyxovirus SV5 V protein binds two atoms of zinc and is a structural component of virions[J]. Virology 208:121–131.
    Pattnaik A K, Hwang L, Li T, et al. 1997. Phosphorylation within the amino-terminal acidic domain I of the phosphoprotein of vesicular stomatitis virus is required for transcription but not for replication[J]. J Virol. 71:8167–8175.
    Peeples E. 1988. Differential detergent treatment allows immunofluorescent localization of the Newcastle disease virus matrix protein within the nucleus of infected cells[J]. Virology. 162:255-259.
    Peeters B P, de Leeuw O S, Gruijthuijsen Y K, et al. 1999. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence[J]. J. Virol. 73, 5001–5009.
    Peeters B P, Gruijthuijsen Y K, de Leeuw O S, et al. 2000. Genome replication of Newcastle disease virus: involvement of the rule-of-six[J]. Arch Virol. 145(9): 1829-45.
    Phillips R J, Samson A C, Emmerson P T, 1998. Nucleotide sequence of the 5'-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the "rule of six"[J]. Arch Virol. 143(10): 1993-2002.
    Poch O, Benjamin M, Blumberg. 1990. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains [J]. Journal of General Virology. 71:1153-1162.
    Poch O, Sauvaget I. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements [J]. EMBO J. 8(12): 3867-3874.
    Rabu A, Tan W S, Kho C L, et al. 2002. Chimeric Newcastle disease virus nucleocapsid with parts of viral hemagglutinin-neuraminidase and fusion protein[J]. Acta Virologica. 46: 211–217.
    Raha A R, Abdul M A, Wen S T, et al. 2009. Localization of the antigenic sites of newcastle disease virus nucleocapsid using a panel of monoclonal antibodies[J]. Research in Veterinary Science. 86: 174-182.
    Rajinder S, Prem C V, Satparkssh S, et al. 2010. Immunogenicity and protective efficacy of virosome based vaccines against Newcastle disease[J]. Trop Anim Health Prod. 42:465-471.
    Roberts A, Rose J K. 1998. Recovery of negative-strand RNA viruses from plasmid DNAs: a positive approach revitalizes a negative field[J]. Virology. 247(1):1-6.
    Roy P, Venugopalan A T, Manveell R. 2000. Characterization of NDV isolated from chickens and Ducks in Tamilnadu, India [J]. Vet Res Comm. 24:135- 142.
    Russell P H, Alexander D J. 1983. Antigenic variation of Newcastle disease virus strains detected by monoclonal antibodies[J]. Archives of Virology. 75:243-253.
    Ryota T, Hiroshi I, Koichi O, et al. 2010. Genetic omparisons between lentogenic Newcastle disease virus isolated from waterfowl and velogenic variants[J]. Virus Genes. 40: 252–255.
    Saikia P, Gopinath M, Shaila M S. 2008. Phosphorylation status of the phosphoprotein P of rinderpest virus modulates transcription and replication of the genome[J]. Arch Virol 153:615–626.
    Schmitt A P, He B, Lamb R A. 1999. Involvement of the cytoplasmic domain of the hemagglutinin-neuraminidase protein in assembly of the paramyxovirus simian virus 5[J]. J Virol. 73:8703-8712.
    Sergel G T, Mcquain C, Morrison T. 1994. Mutations in the fusion peptide and heptad repent regions of the Newcastle disease virus fusion protein block fusion[J]. Journal of Virology. 68(11): 7654-7658.
    Sergel T A, Mcginnes L W and Morrison T G. 2000. A Single Amino Acid Change in the Newcastle Disease Virus Fusion Protein Alters the Requirement for HN Protein in Fusion[J]. Journal of Virology. 74(11) : 5101–5107.
    Sergel T, Mcginnes L W, Peeples M E, et al. 1993. The attachment function of the Newcastle disease virus Hemagglutin-neuraminidase protein can be separated from fusion promotion by mutation[J]. Virology. 193(2):717-726.
    Shengqing Y, Shinya K, Otsuki K, et al. 2002. Isolation of myxoviruses from migratingwaterfowls in San-in District, Western Japan in winters of 1997-2000[J]. J Vet Med Sci, 64:1049-1052.
    Shihmanter E, Panshin A, Lipkind M, 2005. Nucleotide sequence of the matrix protein gene of avian paramyxovirus, serotype 3b: evidence on another member of the suggested new genus of the subfamily Paramyxovirinae[J]. Comp Immunol Microbiol Infect Dis. 28(1):37-51.
    Skehel, J J, Wiley, D C. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin[J]. Annu. Rev. Biochem. 69: 531–569.
    Steward M, Samson A C R, Errington W, et al. 1995. The Newcastle disease virus V protein binds zinc[J]. Arch. Virol. 140:1321–1328.
    Steward M, Vipond I B, Millar N S. 1993. RNA editing in Newcastle disease virus[J]. J Gen Virol. 74 ( Pt 12): 2539-47.
    Swanson K, Wen X L, Leser G P, et al. 2010. Structure of the Newcastle disease virus F protein in the post-fusion conformation. Virology. 402(2):472-479.
    Takakuwa H, Ito T, Takada A, et al. 1998. Potentially virulent Newcastle disease viruses are maintained in migratory waterfowl populations[J]. Japanese journal of veterinary research. 45:207-215.
    Teshome M, Marck J M, Leonie T C, et al. 2002. Newcastle Disease Virus (NDV) Marker Vaccine: an Immunodominant Epitope on the Nucleoprotein Gene of NDV Can Be Deleted or Replaced by a Foreign Epitope[J].Journal of virology. 10138–10146.
    Toru T, Garry T, Helen C, et al. 2002. Role of the Hemagglutinin-Neuraminidase Protein in the Mechanism of Paramyxovirus-Cell Membrane Fusion[J]. Journal of virology. 76(24):13028–13033.
    Tsai H J, Chang K H, Tseng C H. 2004. Antigenic and genotypical characterization of Newcastle disease viruses isolated in Taiwan between 1969 and 1996[J]. Veterinary Microbiology. 104: 19-30.
    Viekers M L, Hanson R P. Newcastle disease virus in waterfowl in Wiseonsin[J]. Journal of Wildlife Diseases. 1982, 18(2):149-158.
    Waning D L, Schmitt A P, Leser G P, et al. 2002. Roles for the cytoplasmic tails of the fusion and hemagglutinin-neuraminidase proteins in budding of the paramyxovirus ximian virus 5[J]. J Virol. 76:9284-9297.
    Ward, M D, Fuller F J, Mehrotra Y, et al. 2000. Nucleotide sequence and vaccinia expression of the nucleoprotein of a highly virulent, neurotropic strain of Newcastle disease virus[J]. Avian Dis. 44(1): 34-44.
    Werner O, Romer-Oberdorfer A, Kollner B, et al. 1999. Characterisation of avian paramyxovirus type 1 strains isolated in Germany during 1992–1996[J]. Avian Pathol. 28: 79–88.
    White J M, Delos S E, Brecher M, et al. 2008. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme[J]. Crit. Rev. Biochem. Mol. Biol. 43, 189–219.
    Young J K, Li D H, Matthew C, et al. 1999. Interaction of peptides with sequences from theNewcastle disease virus fusion protein heptad repeat regions[J]. J.Virol., 73(7): 5945-5956.
    Zanetti F, Mattiello R, Garbino C, et al. 2001. Biological and molecular characterization of a pigeon paramyxovirus type 1 isolate found in Argentina[J]. Avian Dis. 45: 567–571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700