用户名: 密码: 验证码:
表达C亚型禽偏肺病毒糖蛋白和融合蛋白的重组新城疫病毒二价苗的构建及免疫效力评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新城疫和禽偏肺病分别是由新城疫病毒(Newcastle disease virus,NDV)和禽偏肺病毒(Avian metapneumovirus,aMPV)引起家禽呼吸道感染的急性高度传染性疾病,可在全世界范围内传播,其高发病率和致死率不仅会造成养禽业重大的经济损失,而且还严重威胁着食品安全,公共卫生及生物安全。目前,疫苗接种和严格的生物安全措施是控制NDV和aMPV疾病的主要措施,NDV弱毒株LaSota、B1、VG/GA可作为疫苗直接用于NDV疾病的防控,而aMPV却没有直接用于控制该病爆发的活疫苗弱毒株,现有疫苗的安全性和有效性仍有待于进一步提高。为了研发一种安全有效且经济实用的双价苗,因此,本研究以NDV弱毒株LaSota为疫苗载体,构建表达aMPV抗原蛋白融合蛋白(Fusion protein,F)和糖蛋白(Glycoprotein,G)的重组新城疫病毒,以获得可以抵抗NDV和aMPV的安全有效的双价苗。
     为了获得表达aMPV C亚型融合蛋白F或糖蛋白G的重组新城疫病毒,该研究以新城疫病毒疫苗株LaSota为载体,首先将绿色荧光蛋白(Green fluorescence protein,GFP)作为报告基因插入到NDV基因组F-HN之间,利用反向遗传学技术构建表达GFP蛋白的重组新城疫病毒rLS/GFP。结果显示,LaSota可作为活疫苗载体安全稳定地表达GFP蛋白。进而构建了表达aMPV-C G蛋白的重组新城疫病毒rLS/aMPV-C G,并对其毒力、生物学特性及免疫保护率进行了评估。结果表明rLS/aMPV-C G的毒力在SPF(Specific-pathogen-free,SPF)鸡胚和1日龄雏鸡内轻微致弱,其生物学特性与LaSota株相似,并可完全抵新城疫病毒抗强毒株(NDV/CA02)的攻击,对aMPV-C有部分免疫保护。由此推测G蛋白的抗原性不强,产生的免疫力不足以完全保护aMPV-C的攻击,于是,该研究进一步构建表达aMPV-C双重抗原蛋白F和G的重组新城疫病毒。在rLS/GFP载体的基础上,以红色荧光蛋白(Red fluorescence protein,RFP)为另一报告基因插入到载体F基因末端,作为第二阅读框架,然后将内部核糖体进入位点IRES(Internal ribosome entry site ,IRES)插入F和RFP阅读框架之间用于启动RFP基因的表达,进而成功构建表达两个外源基因(RFP和GFP)的重组新城疫病毒rLS/I-RFP-GFP。在此基础上,构建了表达aMPV-C F和G蛋白的重组新城疫病毒rLS/aMPV-C F G,并对其进行免疫保护评估。结果显示,SPF火鸡免疫接种rLS/aMPV-C F G后可完全保护NDV/CA02的攻击,首免后60-80%的火鸡可诱导产生特异性aMPV-C抗体,二免后可达100%。用强毒aMPV-C攻击时,与对照组LaSota相比,其临床症状表现轻微,病毒在呼吸道内的检出率仅为20%,明显提高了对aMPV的保护率。
     本研究结果表明,以LaSota为载体表达aMPV-C F和G蛋白的NDV重组疫苗,对NDV/CA02毒株完全保护,对aMPV有明显保护作用,可作为抵抗NDV和aMPV的候选双价疫苗,用于生产实践。同时,在本研究中所构建的重组NDV载体还可用于其他多价疫苗和基因治疗方面的研究,具有广泛的应用前景。
Virulent strains of Newcastle disease virus (NDV) and avian metapneumovirus (aMPV) can cause serious respiratory diseases in poultry worldwide. These viruses are highly contagious and possess serious threats to food safety, public health, and biosecurity. The aMPV disease is usually accompanied by secondary bacterial infection that can increase high incidence and mortality, resulting in the significant economic losses to the poultry industry. Vaccination combined with strict biosecurity practices has been the recommendation for controlling both NDV and aMPV diseases in the field. Naturally occurring lentogenic NDV strains, such as B1, VG/GA, and LaSota strains, are routinely used as live vaccines throughout the world to prevent Newcastle disease. However, there are no low-virulence strains of aMPV that can be directly used as live vaccines. Live, attenuated aMPV vaccines appear to be effective against aMPV disease, but the stability and safety of these live attenuated vaccines remain a concern because of the potential of virulence revertance. Thus, there is a pressing need to develop a save, effective and economic bivalent vaccine that can be readily administered in the field to control these viral diseases. Therefore, this research proposed to develop NDV LaSota vaccine strain-based recombinant viruses that express aMPV fusion (F) protein and/or glycoprotein (G) as a bivalent vaccine against these viral diseases.
     The NDV LaSota vaccine strain was chosen as a vector to generate recombinant viruses in this study. Firstly, a reporter gene, green fluorescence protein (GFP), was inserted into the intergenic region between F and HN genes of NDV genome, and successfully rescued a recombinant virus expressing GFP by using a reverse genetics approach. Secondly, the recombinant LaSota virus expressing the aMPV-C G protein was generated. Subsequently, the recombinant virus was characterized in vitro and in vivo. The results showed that the recombinant virus, rLS/aMPV-C G, was slightly attenuated in vivo, yet maintained similar growth dynamics, cytopathic effects, and virus titers in vitro when compared to the parental LaSota virus. Vaccination of turkeys with rLS/aMPV-C G induced complete protection against velogenic NDV challenge and partial protection against pathogenic aMPV-C challenge. The results, suggest that expression of the aMPV-C G protein alone is not sufficient to provide full protection against an aMPV-C infection. Expression of additional aMPV-C immunogenic protein(s) may be needed to induce stronger protective immunity against the aMPV-C disease. Thirdly, to prove whether the LaSota vaccine can express two foreign genes, another reporter gene, the red fluorescence protein (RFP), was added into the rLS/GFP vector. The RFP and an internal ribosome entry site sequence (IRES) were inserted into the F gene end as a second open reading frame (ORF). A recombinant NDV LaSota virus that expressed both RFP and GFP was rescued. Based on this rLS/I-RFP-GFP construct. Finally, the NDV recombinant virus expressing the aMPV-C F and G protein was successfully generated by replacing the RFP and GFP with the F and G genes, respectively. This recombinant virus vectoring the aMPV-C F and G displayed similar growth dynamics, virus titer and lentogenic pathotype as the parental LaSota strain. SPF turkeys vaccinated with rLS/aMPV-C F G were completely protected against the challenge with a virulent NDV strain, NDV/CA02. About 60-80% of rLS/aMPV-C G vaccinated birds developed an aMPV-C specific antibody response following the first vaccination and all birds seroconverted after the booster. After challenge with the pathogenic aMPV-CO virus, vaccinated turkeys displayed milder clinical signs and significantly less virus shedding in tracheal tissues than the control birds that were vaccinated with the parental LaSota strain.
     In summary, the results demonstrated that vaccination of SPF turkeys with the NDV LaSota vaccine strain-based recombinant virus expressing the aMPV-C F and G proteins provided complete protection against the virulent NDV/CA02 strain challenge and significant protection against the pathogenic aMPV-C challenge. Thus, this recombinant virus could be used as a bivalent vaccine against NDV and aMPV-C diseases. In addition, the recombinant NDV LaSota vaccine vector can be used to develop multivalent vaccines against other avian viral diseases and may also have potential applications in gene therapy or anti- cancer research.?
引文
[1]Cook J K. Avian rhinotracheitis [J]. Rev Sci Tech,2000,19(2):602-613.
    [2]Jones R C, Baxter-Jones C, Savage C E, et al. Experimental infection of chickens with a ciliostatic agent isolated from turkeys with rhinotracheitis [J]. Vet Rec,1987,120(13):301-302.
    [3]Panigrahy B, Senne D A, Pedersen J C, et al. Experimental and serologic observations on avian pneumovirus (APV/turkey/Colorado/97) infection in turkeys [J]. Avian Disease,2000,44(1):17-22.
    [4]Cook J K. Avian pneumovirus infections of turkeys and chickens [J]. Vet J, 2000,160(2):118-125.
    [5]Maharaj S B, Thomson D K, da Graca J V. Isolation of an avian pneumovirus-like agent from broiler breeder chickens in South Africa [J]. Vet Rec,1994, 134(20):525-526.
    [6]Pattison M, Chettle N, Randall C J, et al. Observations on swollen head syndrome in broiler and broiler breeder chickens [J]. Vet Rec,1989,125(9):229-231.
    [7]Majo N, Allan G M, O'Loan C J, et al. A sequential histopathologic and immunocytochemical study of chickens, turkey poults, and broiler breeders experimentally infected with turkey rhinotracheitis virus [J]. Avian Disease,1995,39(4):887-896.
    [8]Cook J K, Kinloch S, Ellis M M. In vitro and in vivo studies in chickens and turkeys on strains of turkey rhinotracheitis virus isolated from the two species [J]. Avian Pathol,1993,22(1):157-170.
    [9]Liman M, Rautenschlein S. Induction of local and systemic immune reactions following infection of turkeys with avian Metapneumovirus (aMPV) subtypes A and B [J]. Vet Immunol Immunopathol,2007,115(3-4):273-285.
    [10]Chary P, Rautenschlein S, Njenga M K, et al. Pathogenic and immunosuppressive effects of avian pneumovirus in turkeys [J]. Avian Dis,2002,46(1):153-161.
    [11]Chary P, Rautenschlein S, Sharma J M. Reduced efficacy of hemorrhagic enteritis virus vaccine in turkeys exposed to avian pneumovirus [J]. Avian Dis 2002,46(2):353-359.
    [12]Pringle C R. Virus taxonomy--San Diego 1998 [J]. Arch Virol,1998,143(7):1449-159.
    [13]Yu Q, Davis P J, Li J, et al. Cloning and sequencing of the matrix protein (M) gene of turkey rhinotracheitis virus reveal a gene order different from that of respiratory syncytial virus [J]. Virology,1992,186(2):426-434.
    [14]Ling R, Easton A J, Pringle C R. Sequence analysis of the 22K, SH and G genes of turkey rhinotracheitis virus and their intergenic regions reveals a gene order different from that of other pneumoviruses [J]. J Gen Virol,1992,73 ( Pt 7):1709-1715.
    [15]Curran J, Pelet T, Kolakofsky D. An acidic activation-like domain of the Sendai virus P protein is required for RNA synthesis and encapsidation [J]. Virology,1994,202(2):875-884.
    [16]Curran J, Marq J B, Kolakofsky D. An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication [J]. J Virol,1995,69(2):849-855.
    [17]Hamaguchi M, Yoshida T, Nishikawa K, et al. Transcriptive complex of Newcastle disease virus. I. Both L and P proteins are required to constitute an active complex [J]. Virology,1983, 128(1):105-117.
    [18]Horikami S M, Curran J, Kolakofsky D,et al. Complexes of Sendai virus NP-P and P-L proteins are required for defective interfering particle genome replication in vitro [J]. J Virol, 1992,66(8):4901-4908.
    [19]Faaberg K S, Peeples M E. Association of soluble matrix protein of Newcastle disease virus with liposomes is independent of ionic conditions [J]. Virology, 1988,166(1):123-132.
    [20]Nagai Y, Ogura H, Klenk H. Studies on the assembly of the envelope of Newcastle disease virus [J]. Virology,1976,69(2):523-538.
    [21]Sanderson C M, McQueen N L, Nayak D P. Sendai virus assembly: M protein binds to viral glycoproteins in transit through the secretory pathway [J]. J Virol,1993,67(2):651-663.
    [22]Blumberg B M, Rose K, Simona M G, et al. Analysis of the Sendai virus M gene and protein [J]. J Virol,1984,52(2):656-663.
    [23]Collins P L, Olmsted R A, Spriggs M K, et al. Gene overlap and site-specific attenuation of transcription of the viral polymerase L gene of human respiratory syncytial virus [J]. Proc Natl Acad Sci U S A 1987,84(15):5134-5138.
    [24]Collins P L, Hill M G, Camargo E,et al. Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development [J]. Proc Natl Acad Sci U S A,1995,92(25):11563-11567.
    [25]Fearns R, Collins P L. Role of the M2-1 transcription antitermination protein of respiratory syncytial virus in sequential transcription [J]. J Virol,1999, 73(7):5852-5864.
    [26]Hardy R W, Harmon S B, Wertz G W. Diverse gene junctions of respiratory syncytial virus modulate the efficiency of transcription termination and respond differently to M2-mediated antitermination [J]. J Virol,1999,73(1):170-176.
    [27]Hardy R W, Wertz G W. The product of the respiratory syncytial virus M2 gene ORF1 enhances readthrough of intergenic junctions during viral transcription [J]. J Virol,1998,72(1):520-526.
    [28]Bermingham A, Collins P L. The M2-2 protein of human respiratory syncytial virus is a regulatory factor involved in the balance between RNA replication and transcription [J]. Proc Natl Acad Sci U S A 1999,96(20):11259-11264.
    [29]Jin H, Cheng X, Zhou H Z, et al. Respiratory syncytial virus that lacks open reading frame 2 of the M2 gene (M2-2) has altered growth characteristics and is attenuated in rodents [J]. J Virol,2000,74(1):74-82.
    [30]Buchholz U J, Biacchesi S, Pham Q N, et al. Deletion of M2 gene open reading frames 1 and 2 of human metapneumovirus: effects on RNA synthesis, attenuation, and immunogenicity [J]. J Virol,2005,79(11):6588-6597.
    [31]Yu Q, Estevez C N, Roth J P, et al. Deletion of the M2-2 gene from avian metapneumovirus subgroup C impairs virus replication and immunogenicity in Turkeys [J]. Virus Genes,2011,42(3):339-346.
    [32]Schowalter R M, Smith S E, Dutch R E. Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH [J]. J Virol,2006,80(22):10931-10941.
    [33]Herfst S, Mas V, Ver L S, et al. Low-pH-induced membrane fusion mediated by human metapneumovirus F protein is a rare, strain-dependent phenomenon [J]. J Virol,2008,82(17):8891-8895.
    [34]Chen L, Gorman J J, McKimm-Breschkin J, et al. The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion [J]. Structure,2001,9(3):255-266.
    [35]Russell R, Paterson R G, Lamb R A. Studies with cross-linking reagents on the oligomeric form of the paramyxovirus fusion protein [J]. Virology,1994, 199(1):160-168.
    [36]Yin H S, Paterson R G, Wen X, et al. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein [J]. Proc Natl Acad Sci U S A 2005,102(26):9288-9293.
    [37]Yin H S, Wen X, Paterson R G,et al. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation [J]. Nature,2006,439(7072):38-44.
    [38]Homma M, Ouchi M. Trypsin action on the growth of Sendai virus in tissue culture cells. 3. Structural difference of Sendai viruses grown in eggs and tissue culture cells [J]. J Virol,1973,12(6):1457-1465.
    [39]Scheid A, Choppin P W. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity of proteolytic cleavage of an inactive precursor protein of Sendai virus [J]. Virology,1974, 57(2):475-490.
    [40]de Graaf M, Schrauwen E J, Herfst S, et al. Fusion protein is the main determinant of metapneumovirus host tropism [J]. J Gen Virol,2009,90(Pt 6):1408-1416.
    [41]Wertz G W, Collins P L, Huang Y, et al. Nucleotide sequence of the G protein gene of human respiratory syncytial virus reveals an unusual type of viral membrane protein [J]. Proc Natl Acad Sci U S A,1985,82(12):4075-4079.
    [42]Satake M, Coligan J E, Elango N,et al. Respiratory syncytial virus envelope glycoprotein (G) has a novel structure [J]. Nucleic Acids Res,1985,13(21):7795-7812.
    [43]Randhawa J S, Marriott A C, Pringle C R, et al. Rescue of synthetic minireplicons establishes the absence of the NS1 and NS2 genes from avian pneumovirus [J]. J Virol,1997,71(12):9849-9854.
    [44]Bayon-Auboyer M H, Jestin V, Toquin D,et al. Comparison of F-, G- and N-based RT-PCR protocols with conventional virological procedures for the detection and typing of turkey rhinotracheitis virus [J]. Arch Virol,1999, 144(6):1091-1109.
    [45]Jacobs J A, Njenga M K, Alvarez R, et al. Subtype B avian metapneumovirus resembles subtype A more closely than subtype C or human metapneumovirus with respect to the phosphoprotein, and second matrix and small hydrophobic proteins [J]. Virus Res,2003, 92(2):171-178.
    [46]Govindarajan D, Samal S K. Analysis of the complete genome sequence of avian metapneumovirus subgroup C indicates that it possesses the longest genome among metapneumoviruses [J]. Virus Genes,2005,30(3):331-333.
    [47]Govindarajan D, Yunus A S, Samal S K. Complete sequence of the G glycoprotein gene of avian metapneumovirus subgroup C and identification of a divergent domain in the predicted protein [J]. J Gen Virol,2004,85(Pt 12):3671-3675.
    [48]Bennett R S, LaRue R, Shaw D, et al. A wild goose metapneumovirus containing a large attachment glycoprotein is avirulent but immunoprotective in domestic turkeys [J]. J Virol, 2005,79(23):14834-14842.
    [49]Lee E, Song M S, Shin J Y, et al. Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market [J]. Virus Res,2007,128(1-2):18-25.
    [50]Karron R A, Buonagurio D A, Georgiu A F, et al. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant [J]. Proc Natl Acad Sci U S A,1997,94(25):13961-13966.
    [51]Levine S, Klaiber-Franco R, Paradiso P R. Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus [J]. J Gen Virol,1987,68 ( Pt 9):2521-2524.
    [52]Olmsted R A, Collins P L. The 1A protein of respiratory syncytial virus is an integral membrane protein present as multiple, structurally distinct species [J]. J Virol,1989,63(5):2019-2029.
    [53]Collins P L, Wertz G W. The envelope-associated 22K protein of human respiratory syncytial virus: nucleotide sequence of the mRNA and a related polytranscript [J]. J Virol,1985,54(1):65-71.
    [54]Deng Q, Weng Y, Lu W, et al. Topology and cellular localization of the small hydrophobic protein of avian metapneumovirus [J]. Virus Res,2011,160(1-2):102-107.
    [55]Bao X, Kolli D, Liu T, et al. Human metapneumovirus small hydrophobic protein inhibits NF-kappaB transcriptional activity [J]. J Virol,2008,82(16):8224-8229.
    [56]Biacchesi S, Skiadopoulos M H, Yang L, et al. Recombinant human Metapneumovirus lacking the small hydrophobic SH and/or attachment G glycoprotein: deletion of G yields a promising vaccine candidate [J]. J Virol,2004,78(23):12877-12887.
    [57]Biacchesi S, Pham Q N, Skiadopoulos M H, et al. Infection of nonhuman primates with recombinant human metapneumovirus lacking the SH, G, or M2-2 protein categorizes each as a nonessential accessory protein and identifies vaccine candidates [J]. J Virol,2005,79(19):12608-12613.
    [58]Fuentes S, Tran K C, Luthra P, et al. Function of the respiratory syncytial virus small hydrophobic protein [J]. J Virol,2007,81(15):8361-8366.
    [59]Naylor C J, Brown P A, Edworthy N, et al. Development of a reverse-genetics system for Avian pneumovirus demonstrates that the small hydrophobic (SH) and attachment (G) genes are not essential for virus viability [J]. J Gen Virol,2004,85(Pt 11):3219-3227.
    [60]Biacchesi S, Skiadopoulos M H, Tran K C, et al. Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes [J]. Virology,2004,321(2):247-259.
    [61]Ling R, Sinkovic S, Toquin D, et al. Deletion of the SH gene from avian metapneumovirus has a greater impact on virus production and immunogenicity in turkeys than deletion of the G gene or M2-2 open reading frame [J]. J Gen Virol,2008,89(Pt 2):525-533.
    [62]Grdzelishvili V Z, Smallwood S, Tower D, et al. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation [J]. J Virol,2005,79(12):7327-7337.
    [63]Hercyk N, Horikami S M, Moyer S A. The vesicular stomatitis virus L protein possesses the mRNA methyltransferase activities [J]. Virology,1988,163(1):222-225.
    [64]Ogino T, Kobayashi M, Iwama M, et al. Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA [J]. J Biol Chem,2005,280(6):4429-35.
    [65]Wyeth P J, Gough R E, Chettle N, et al. Preliminary observations on a virus associated with turkey rhinotracheitis [J]. Vet Rec,1986,119(6):139.
    [66]McDougall JS, Cook J K. Turkey rhinotracheitis: preliminary investigations [J]. Vet Rec, 1986,118(8):206-207.
    [67]Jones R C, Baxter-Jones C, Wilding G P, et al. Demonstration of a candidate virus for turkey rhinotracheitis in experimentally inoculated turkeys [J]. Vet Rec,1986,119(24):599-600.
    [68]Giravd P, Bennejean G, Guittet M, et al. A possible viral candidate for the aetiology of turkey rhinotracheitis [J]. Vet Rec,1986,118(3):81.
    [69]Collins M S, Gough R E. Characterization of a virus associated with turkey rhinotracheitis [J]. J Gen Virol,1988,69 ( Pt 4):909-16.
    [70]Gough R E, Collins M S, Cox W J, et al. Experimental infection of turkeys, chickens, ducks, geese, guinea fowl, pheasants and pigeons with turkey rhinotracheitis virus [J]. Vet Rec,1988,123(2):58-59.
    [71]Townsend E, Halvorson D A, Nagaraja K V, et al. Susceptibility of an avian pneumovirus isolated from Minnesota turkeys to physical and chemical agents [J]. Avian Dis,2000,44(2):336-342.
    [72]Velayudhan B T, Lopes V C, Noll S L, et al. Avian pneumovirus and its survival in poultry litter [J]. Avian Dis,2003,47(3):764-768.
    [73]Juhasz K, Easton A J. Extensive sequence variation in the attachment (G) protein gene of avian pneumovirus: evidence for two distinct subgroups [J]. J Gen Virol,1994,75 ( Pt 11):2873-2880.
    [74]Collins M S, Gough R E, Alexander D J. Antigenic differentiation of avian pneumovirus isolates using polyclonal antisera and mouse monoclonal antibodies [J]. Avian Pathol,1993,22(3):469-479.
    [75]Cook J K, Jones B V, Ellis M M, et al. Antigenic differentiation of strains of turkey rhinotracheitis virus using monoclonal antibodies [J]. Avian Pathol,1993,22(2):257-273.
    [76]Cook J K, Huggins M B, Orbell S J, et al. Preliminary antigenic characterization of an avian pneumovirus isolated from commercial turkeys in Colorado, USA [J]. Avian Pathology, 1999,28:607-617.
    [77]Shin H J, Cameron K T, Jacobs J A, et al. Molecular epidemiology of subgroup C avian pneumoviruses isolated in the United States and comparison with subgroup a and B viruses [J]. J Clin Microbiol,2002,40(5):1687-1693.
    [78]Lwamba H C, Alvarez R, Wise M G, et al. Comparison of the full-length genome sequence of avian metapneumovirus subtype C with other paramyxoviruses [J]. Virus Res,2005,107(1):83-92.
    [79]Giraud P, Bennejean G, Guittet M, et al. Turkey rhinotracheitis in France: preliminary investigations on a ciliostatic virus [J]. Vet Rec,1986,119(24):606-607.
    [80]Cook J K, Ellis M M, Huggins M B. The pathogenesis of turkey rhinotracheitis virus in turkey poults inoculated with the virus alone or together with two strains of bacteria [J]. Avian Pathol,1991,20(1):155-166.
    [81]Dar A M, Munir S, Goyal S M, et al. A single subtype of avian pneumovirus circulates among Minnesota turkey flocks [J]. J Vet Diagn Invest,2002, 14(5):371-376.
    [82]Alexander D J. Avian Paramyxoviridae--recent developments [J]. Vet Microbiol,1990, 23(1-4):103-114.
    [83]Jones R C, Williams R A, Baxter-Jones C, et al. Experimental infection of laying turkeys with rhinotracheitis virus: distribution of virus in the tissues and serological response [J]. Avian Pathol,1988,17(4):841-850.
    [84]Cook J K, Chesher J, Orthel F, et al. Avian pneumovirus infection of laying hens: experimental studies [J]. Avian Pathol,2000,29(6):545-556.
    [85]Kapczynski D R, King D J. Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commerciallyavailable Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak [J]. Vaccine,2005,23(26):3424-3433.
    [86]Stuart J. Rhinotracheitis: Turkey rhinotracheitis (TRT) in Great Britain[J]. Poultry Science Symposium Series,1989,21:217-24.
    [87]Toquin D, Bayon-auboyer M. H, Eterradossi N, et al.Isolation of a pneumovirus from a Muscovy duck[J].Vet Clin North Am Exot Anim Pract,1999,145:680.
    [88]Bennett R S, McComb B, Shin H J, et al. Detection of avian pneumovirus in wild Canada (Branta canadensis) and blue-winged teal (Anas discors) geese [J]. Avian Dis,2002,46(4):1025-1029.
    [89]Bennett R S, Nezworski J, Velayudhan B T, et al. Evidence of avian pneumovirus spread beyond Minnesota among wild and domestic birds in central North America [J]. Avian Dis,2004,48(4):902-908.
    [90]Majo N, Marti M, O'Loan C J, et al. Ultrastructural study of turkey rhinotracheitis virus infection in turbinates of experimentally infected chickens [J]. Vet Microbiol,1996,52(1-2):37-48.
    [91]Sharma J M, Chary.P, Khatri.M, et al. Pathogenesis and control of avian pneumovirus. IV Symposium on Avian Corona- & Pneumovirus Infections,June 20-23, 2004 [C]. Germany, Rauischholzhausen,c2004
    [92]Turkey rhinotracheitis: leads and lessons[J]. Vet Rec 1986,22;118(8):193.
    [93]Naylor C J, Jones R C. Demonstration of a virulent subpopulation in a prototype live attenuated turkey rhinotracheitis vaccine [J]. Vaccine,1994,12(13):1225-1230.
    [94]Jirjis F F, Noll S L, Halvorson D A, et al. Pathogenesis of avian pneumovirus infection in turkeys [J]. Vet Pathol,2002,39(3):300-310.
    [95]Marien M, Decostere A, Martel A, et al. Synergy between avian pneumovirus and Ornithobacterium rhinotracheale in turkeys [J]. Avian Pathol,2005,34(3):204-211.
    [96]Jones R C. Avian pneumovirus infection: Questions still unanswered [J]. Avian Pathol,1996,25(4):639-648.
    [97]Hess M, Huggins M B, Mudzamiri R, et al. Avian metapneumovirus excretion in vaccinated and non-vaccinated specified pathogen free laying chickens [J]. Avian Pathol,2004,33(1):35-40.
    [98]Sugiyama M, Koimaru H, Shiba M, et al. Drop of egg production in chickens by experimental infection with an avian metapneumovirus strain PLE8T1 derived from swollen head syndrome and the application to evaluate vaccine [J]. J Vet Med Sci,2006,68(8):783-787.
    [99]Catelli E, Cook J K, Chesher J, et al. The use of virus isolation, histopathology and immunoperoxidase techniques to study the dissemination of a chicken isolate of avian pneumovirus in chickens [J]. Avian Pathol,1998,27(6):632-640.
    [100]Shin H J, McComb B, Back A, et al. Susceptibility of broiler chicks to infection by avian pneumovirus of turkey origin [J]. Avian Dis,2000,44(4):797-802.
    [101] Cha, R. M., Khatri M. Sharma J. M. Mucosal immunity in avian Metapneumovirus.In: V. Symposium on Avian Corona- & Pneumoviruses and Complicating Pathogens, May 14-16,2006 [C]. Germany, Rauischholzhausen, c2006.
    [102]Chary P, M. S. Kannan u. Sharma J. M. Role of local cellular immunity in protection against respiratory challenge with Avian Peumovirus. 139th American Veterinary Medical Association Annual Convention,July 13-17, 2002 [C].USA, Tennessee,c2002.
    [103]Sharma JMuHG-S. Immunopathogenesis of Avian Pneumovirus of turkeys. DVG Fachgruppe Geflügelkrankheiten: 4th International Symposium on Turkey Diseases,June 16-19, 2002 [C].Germany,Berlin.c2002.
    [104]Cook J K, Huggins M B, Orbell S J, et al. Infectious bronchitis virus vaccine interferes with the replication of avian pneumovirus vaccine in domestic fowl [J]. Avian Pathol,2001,30(3):233-242.
    [105]Buys S B, du Preez J H, Els H J. Swollen head syndrome in chickens: a preliminary report on the isolation of a possible aetiological agent [J]. J S Afr Vet Assoc,1989,60(4):221-222.
    [106]Buys S B, du Preez J H, Els H J. The isolation and attenuation of a virus causing rhinotracheitis in turkeys in South Africa [J]. Onderstepoort J Vet Res,1989, 56(2):87-98.
    [107]Girud P, F. X. Gros L E, Toqin D., Bouquet J. F. et alTurkey rhinotracheitis virus: Viral identification of the causal agent. Proceedings of the 37th Western Poultry Disease Conference,1988 [C]:61-2.c1988.
    [108]Wilding G P, Baxter-Jones C, Grant M. Ciliostatic agent found in rhinotracheitis [J]. Vet Rec,1986,118(26):735.
    [109]COOK J K, M. B. HUGGINS, S. J. ORBELL u. D. A. SENNE. Preliminary antigenic characterization of an avian Pneumovirus isolated from commercial turkeys in Colorado, USA [J]. Avian Pathol 1999;28:607-617.
    [110]NAYLOR CJaRCJ. Turkey Rhinotracheitis: a review[J]. Vet Bulletin 1993;63: 439-449.
    [111]Cook J K, Cavanagh D. Detection and differentiation of avian pneumoviruses (metapneumoviruses) [J]. Avian Pathol,2002,31(2):117-132.
    [112]Baxter-Jones C, Grant M, Jones R C, et al. A comparison of three methods for detecting antibodies to turkey rhinotracheitis virus [J]. Avian Pathol,1989, 18(1):91-98.
    [113]Patnayak D P, Tiwari A, Goyal S M. Growth of vaccine strains of avian pneumovirus in different cell lines [J]. Avian Pathol,2005,34(2):123-126.
    [114]Chiang S J, Dar A, Goyal S M, et al. Isolation of avian pneumovirus in QT-35 cells [J]. Vet Rec,1998,143(21):596.
    [115]Goyal S M, Chiang S J, Dar A M, et al. Isolation of avian pneumovirus from an outbreak of respiratory illness in Minnesota turkeys [J]. J Vet Diagn Invest,2000,12(2):166-168.
    [116]Williams R A, Savage C E, Jones R C. Development of a live attenuated vaccine against turkey rhinotracheitis [J]. Avian Pathol,1991,20(1):45-55.
    [117]Jirjis F E, Noll S L, Halvorson D A, et al. Avian pneumovirus infection in Minnesota turkeys: experimental reproduction of the disease [J]. Avian Dis,2000,44(1):222-226.
    [118]Cook J K, Ellis M M, Dolby C A, et al. A live attenuated turkey rhinotracheitis virus vaccine. 1. Stability of the attenuated strain [J]. Avian Pathol,1989, 18(3):511-522.
    [119]Tiwari A, Patnayak D P, Goyal S M. Attempts to improve on a challenge model for subtype C avian pneumovirus [J]. Avian Pathol,2006,35(2):117-121.
    [120]Catelli E, Cecchinato M, Savage C E, et al. Demonstration of loss of attenuation and extended field persistence of a live avian metapneumovirus vaccine [J]. Vaccine,2006,24(42-43):6476-682.
    [121]Jirjis F E, Noll S L, Halvorson D A, et al. Immunohistochemical detection of avian pneumovirus in formalin-fixed tissues [J]. J Vet Diagn Invest,2001,13(1): 13-16.
    [122]O'Loan C J, Allan G M, McNair J, et al. TRT virus serology: discrepancy between ELISA and indirect immunofluorescence [J]. Avian Pathol,1990,19(1): 173-180.
    [123]O'Loan C J, Curran W L, McNulty M S. Immuno-gold labelling of turkey rhinotracheitis virus [J]. Zentralbl Veterinarmed B,1992,39(6):459-466.
    [124]Jirjis F F, Noll S L, Halvorson D A, et al. Effects of bacterial coinfection on the pathogenesis of avian pneumovirus infection in turkeys [J]. Avian Dis,2004, 48(1):34-49.
    [125]Guionie O, Toquin D, Sellal E, et al. Laboratory evaluation of a quantitative real-time reverse transcription PCR assay for the detection and identification of the four subgroups of avian metapneumovirus [J]. J Virol Methods,2007,139 (2):150-158.
    [126]Chettle N, Wyeth P, Steward A, et al. Avian rhinotracheitis diagnostic kit [J]. Vet Rec,1990,126(6):148-149.
    [127]Eterradossi N, Picault J P, Drouin P, et al. Pathogenicity and preliminary antigenic characterization of six infectious bursal disease virus strains isolated in France from acute outbreaks [J]. Zentralbl Veterinarmed B,1992,39(9):683-691.
    [128]Alvarez R, Jones L P, Seal B S, et al. Serological cross-reactivity of members of the Metapneumovirus genus [J]. Virus Res,2004,105(1):67-73.
    [129]Baxter-Jones C, Wilding G P, Grant M. Immunofluorescence as a potential diagnostic method for turkey rhinotracheitis [J]. Vet Rec,1986,119(24):600-601.
    [130]Gough R E, Collins M S. Antigenic relationships of three turkey rhinotracheitis viruses [J]. Avian Pathol,1989,18(2):227-238.
    [131]Mekkes D R, de Wit J J. Comparison of three commercial ELISA kits for the detection of turkey rhinotracheitis virus antibodies [J]. Avian Pathol,1998, 27(3):301-305.
    [132]Hafez H M. Comparative investigation on different turkey rhinotracheitis (TRT) virus isolates from different countries [J]. Dtsch Tierarztl Wochenschr,1992, 99(12):486-488.
    [133]Eterradossi N, Toquin D, Guittet M, et al. Evaluation of different turkey rhinotracheitis viruses used as antigens for serological testing following live vaccination and challenge [J]. Zentralbl Veterinarmed B,1995,;42(3):175-186.
    [134]Cook J K, Dolby C A, Southee D J, et al. Demonstration of antibodies to turkey rhinotracheitis virus in serum from commercially reared flocks of chickens [J]. Avian Pathol, 1988,17(2):403-410.
    [135]Williams R A, Savage C E, Worthington K J, et al. Further studies on the development of a live attenuated vaccine against turkey rhinotracheitis [J]. Avian Pathol,1991,20(4):585-596.
    [136]Patnayak D P, Sheikh A M, Gulati B R, et al. Experimental and field evaluation of a live vaccine against avian pneumovirus [J]. Avian Pathol,2002,31(4):377-382.
    [137]Gulati B R, Patnayak D P, Sheikh A M, et al. Protective efficacy of high-passage avian pneumovirus (APV/MN/turkey/1-a/97) in turkeys [J]. Avian Dis,2001, 45(3):593-597.
    [138]Cook J K, Ellis M M. Attenuation of turkey rhinotracheitis virus by alternative passage in embryonated chicken eggs and tracheal organ cultures [J]. Avian Pathol,1990,19(1):181-185.
    [139]Cook J K, Holmes H C, Finney P M, et al. A live attenuated turkey rhinotracheitis virus vaccine. 2. The use of the attenuated strain as an experimental vaccine [J]. Avian Pathol,1989,18(3):523-534.
    [140]Cook J K, Huggins M B, Woods M A, et al. Protection provided by a commercially available vaccine against different strains of turkey rhinotracheitis virus [J]. Vet Rec,1995,136(15):392-393.
    [141]Toquin D, Eterradossi N, Guittet M. Use of a related ELISA antigen for efficient TRT serological testing following live vaccination [J]. Vet Rec,1996,139(3):71-72.
    [142]Cook J K, Orthel F, Orbell S, et al. An experimental turkey rhinotracheitis (TRT) infection in breeding turkeys and the prevention of its clinical effects using live-attenuated and inactivated TRT vaccines [J]. Avian Pathol,1996,25(2):231-243.
    [143]Cha R M, Khatri M, Sharma J M. B-cell infiltration in the respiratory mucosa of turkeys exposed to subtype C avian metapneumovirus [J]. Avian Dis,2007,51(3):764-770.
    [144]Jones R C, Naylor C J, al-Afaleq A, et al. Effect of cyclophosphamide immunosuppression on the immunity of turkeys to viral rhinotracheitis [J]. Res Vet Sci,1992,53(1):38-41.
    [145]Rubbenstroth D, Rautenschlein S. Investigations on the protective role of passively transferred antibodies against avian metapneumovirus infection in turkeys [J]. Avian Pathol,2009,38(6):427-436.
    [146]Rubbenstroth D, Dalgaard T S, Kothlow S, et al. Effects of cyclosporin A induced T-lymphocyte depletion on the course of avian Metapneumovirus (aMPV) infection in turkeys [J]. Dev Comp Immunol,2010,34(5):518-529.
    [147]Patnayak D P, Goyal S M. Cold-adapted strain of avian pneumovirus as a vaccine in one-day-old turkeys and the effect of inoculation routes [J]. Avian Dis,2004,48(1):155-159.
    [148]Patnayak D P, Goyal S M. Duration of immunity produced by a live attenuated vaccine against avian pneumovirus type C [J]. Avian Pathol,2004,33(5):465-469.
    [149]Worthington K J, Sargent B A, Davelaar F G, et al. Immunity to avian pneumovirus infection in turkeys following in ovo vaccination with an attenuated vaccine [J]. Vaccine,2003,21(13-14):1355-1362.
    [150]Tarpey I, Huggins M B. Onset of immunity following in ovo delivery of avian metapneumovirus vaccines [J]. Vet Microbiol,2007,124(1-2):134-139.
    [151]Van de Zande S, Nauwynck H, Naylor C, et al. Duration of cross-protection between subtypes A and B avian pneumovirus in turkeys [J]. Vet Rec,2000,147(5):132-134.
    [152]Patnayak D P, Goyal S M. Duration of immunity engendered by a single dose of a cold-adapted strain of Avian pneumovirus [J]. Can J Vet Res,2006,70(1):65-67.
    [153]Van de Zande S, Nauwynck H, Cavanagh D, et al. Infections and reinfections with avian pneumovirus subtype A and B on Belgian turkey farms and relation to respiratory problems [J]. Zentralbl Veterinarmed B,1998,45(10):621-626.
    [154]Andral B, Louzis C, Trap D, et al. Respiratory disease (rhinotracheitis) in turkeys in Brittany, France, 1981-1982. I. Field observations and serology [J]. Avian Dis,1985,29(1):26-34.
    [155]Hafez H M. Serological surveillance for antibodies against different avian infectious agents on turkey flocks naturally infected with turkey rhinotracheitis [J]. Zentralbl Veterinarmed B,1990,37(5):369-376.
    [156]Alwan W H, Record F M, Openshaw P J. Phenotypic and functional characterization of T cell lines specific for individual respiratory syncytial virus proteins [J]. J Immunol,1993,150(12):5211-5218.
    [157]Wathen M W, Brideau R J, Thomsen D R. Immunization of cotton rats with the human respiratory syncytial virus F glycoprotein produced using a baculovirus vector [J]. J Infect Dis,1989,159(2):255-264.
    [158]Taylor G, Thomas L H, Furze J M, et al. Recombinant vaccinia viruses expressing the F, G or N, but not the M2, protein of bovine respiratory syncytial virus (BRSV) induce resistance to BRSV challenge in the calf and protect against the development of pneumonic lesions [J]. J Gen Virol,1997,78 ( Pt 12):3195-3206.
    [159]Whitehead S S, Hill M G, Firestone C Y, et al. Replacement of the F and G proteins of respiratory syncytial virus (RSV) subgroup A with those of subgroup B generates chimeric live attenuated RSV subgroup B vaccine candidates [J]. J Virol,1999,73(12):9773-9780.
    [160]Gaddum R M, Cook R S, Furze J M, et al. Recognition of bovine respiratory syncytial virus proteins by bovine CD8+ T lymphocytes [J]. Immunology, 2003,108(2):220-229.
    [161]Plotnicky-Gilquin H, Robert A, Chevalet L, et al. CD4(+) T-cell-mediated antiviral protection of the upper respiratory tract in BALB/c mice following parenteral immunization with a recombinant respiratory syncytial virus G protein fragment [J]. J Virol,2000,74(8):3455-3463.
    [162]Gulati B R, Cameron K T, Seal B S, et al. Development of a highly sensitive and specific enzyme-linked immunosorbent assay based on recombinant matrix protein for detection of avian pneumovirus antibodies [J]. J Clin Microbiol,2000, 38(11):4010-4014.
    [163]Chary P, Njenga M K, Sharma J M. Protection by recombinant viral proteins against a respiratory challenge with virulent avian metapneumovirus [J]. Vet Immunol Immunopathol,2005,108(3-4):427-432.
    [164]Kapczynski D R, Sellers H S. Immunization of turkeys with a DNA vaccine expressing either the F or N gene of avian metapneumovirus [J]. Avian Dis,2003,47(4):1376-1383.
    [165]Qingzhong Y, Barrett T, Brown T D, et al. Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F) [J]. Vaccine,1994,12(6):569-573.
    [166]Nakaya T, Cros J, Park M S, et al. Recombinant Newcastle disease virus as a vaccine vector [J]. J Virol,2001,75(23):11868-11873.
    [167]Huang Z, Elankumaran S, Yunus A S, et al. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV [J]. J Virol,2004,78(18):10054-10063.
    [168]Hu H, Roth J P, Estevez C N, et al. Generation and evaluation of a recombinant Newcastle disease virus expressing the glycoprotein (G) of avian metapneumovirus subgroup C as a bivalent vaccine in turkeys [J]. Vaccine, 2011,14.
    [169]Zhao H, Peeters B P. Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication [J]. J Gen Virol,2003,84(Pt 4):781-788.
    [170]Engel-Herbert I, Werner O, Teifke J P, et al. Characterization of a recombinant Newcastle disease virus expressing the green fluorescent protein [J]. J Virol Methods,2003,108(1):19-28.
    [171]Peeters B P, de Leeuw O S, Koch G, et al. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence [J]. J Virol,1999,73(6):5001-5009.
    [172]He B, Paterson R G, Ward C D, et al. Recovery of infectious SV5 from cloned DNA and expression of a foreign gene [J]. Virology,1997,237(2):249-260.
    [173]Reed LJ, and H. Muench. A simple method for estimating fifty percent endpoints[J]. Am J Hygiene 1938,27:493-497.
    [174]Huang Z, Panda A, Elankumaran S, et al. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence [J]. J Virol,2004,78(8):4176-4184.
    [175]Swayne D E, Suarez D L, Schultz-Cherry S, et al. Recombinant paramyxovirus type 1-avian influenza-H7 virus as a vaccine for protection of chickens against influenza and Newcastle disease [J]. Avian Dis,2003,47(3 Suppl):1047-1050.
    [176]Bayon-Auboyer M H, Arnauld C, Toquin D, et al. Nucleotide sequences of the F, L and G protein genes of two non-A/non-B avian pneumoviruses (APV) reveal a novel APV subgroup [J]. J Gen Virol,2000,81(Pt 11):2723-2733.
    [177]Toquin D, Guionie O, Jestin V, et al. European and American subgroup C isolates of avian metapneumovirus belong to different genetic lineages [J]. Virus Genes,2006,32(1):97-103.
    [178]Ganapathy K, Bufton A, Pearson A, et al. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods [J]. Vaccine,2010,28(23):3944-3948.
    [179]Jones R C. Viral respiratory diseases (ILT, aMPV infections, IB): are they ever under control? [J]. Br Poult Sci,2010,51(1):1-11.
    [180]Catelli E, Lupini C, Cecchinato M, et al. Field avian metapneumovirus evolution avoiding vaccine induced immunity [J]. Vaccine,2010,28(4):916-921.
    [181]Cecchinato M, Catelli E, Lupini C, et al. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction [J]. Vet Microbiol,2010,146(1-2):24-34.
    [182]Brown P A, Lupini C, Catelli E, et al. A single polymerase (L) mutation in avian metapneumovirus increased virulence and partially maintained virus viability at an elevated temperature [J]. J Gen Virol,2011,92(Pt 2):346-354.
    [183]Chacon J L, Mizuma M, Vejarano M P, et al. Avian metapneumovirus subtypes circulating in Brazilian vaccinated and nonvaccinated chicken and turkey farms [J]. Avian Dis,2011,55(1):82-89.
    [184]Cha R M, Khatri M, Sharma J M. Protection against avian metapneumovirus subtype C in turkeys immunized via the respiratory tract with inactivated virus [J]. Vaccine,2011,29(3):459-465.
    [185]Kapczynski D R. Development of a virosome vaccine against avian metapneumovirus subtype C for protection in turkeys [J]. Avian Dis,2004,48(2): 332-343.
    [186]Kapczynski D R, Perkins L L, Sellers H S. Mucosal vaccination with formalin-inactivated avian metapneumovirus subtype C does not protect turkeys following intranasal challenge [J]. Avian Dis,2008,52(1):28-33.
    [187]Naylor C J, Ling R, Edworthy N, et al. Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates [J]. J Gen Virol,2007,88(Pt 6):1767-1775.
    [188]Naylor C J, Lupini C, Brown P A. Charged amino acids in the AMPV fusion protein have more influence on induced protection than deletion of the SH or G genes [J]. Vaccine,2010,28(41):6800-6807.
    [189]Pedersen J C, Senne D A, Woolcock P R, et al. Phylogenetic relationships among virulent Newcastle disease virus isolates from the 2002-2003 outbreak in California and other recent outbreaks in North America [J]. J Clin Microbiol, 2004,42(5):2329-2334.
    [190]Hitchner S B. History of biological control of poultry diseases in the USA [J]. Avian Dis,2004,48(1):1-8.
    [191]Ge J, Deng G, Wen Z, et al. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses [J]. J Virol, 2007,81(1):150-158.
    [192]Nayak B, Rout S N, Kumar S, et al. Immunization of chickens with Newcastle disease virus expressing H5 hemagglutinin protects against highly pathogenic H5N1 avian influenza viruses [J]. PLoS One,2009,4(8):e6509.
    [193]Park M S, Steel J, Garcia-Sastre A, et al. Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease [J]. Proc Natl Acad Sci U S A,2006,103(21):8203-8208.
    [194]Veits J, Wiesner D, Fuchs W, et al. Newcastle disease virus expressing H5 hemagglutinin gene protects chickens against Newcastle disease and avian influenza [J]. Proc Natl Acad Sci U S A,2006,103(21):8197-8202.
    [195]Yu Q, Estevez C, Song M, et al. Generation and biological assessment of recombinant avian metapneumovirus subgroup C (aMPV-C) viruses containing different length of the G gene [J]. Virus Res,2010,147(2):182-188.
    [196]Wyatt L S, Moss B, Rozenblatt S. Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells [J]. Virology,1995,210(1):202-205.
    [197]Estevez C, King D, Seal B, et al. Evaluation of Newcastle disease virus chimeras expressing the Hemagglutinin-Neuraminidase protein of velogenic strains in thecontext of a mesogenic recombinant virus backbone [J]. Virus Res,2007, 129(2):182-190.
    [198]Alexander D J. Newcastle disease and other avian paramyxoviruses [J]. Rev Sci Tech,2000, 19(2):443-462.
    [199]Kolakofsky D, Roux L, Garcin D, et al. Paramyxovirus mRNA editing, the "rule of six" and error catastrophe: a hypothesis [J]. J Gen Virol,2005,86(Pt 7):1869-1877.
    [200]Krishnamurthy S, Huang Z, Samal S K. Recovery of a virulent strain of newcastle disease virus from cloned cDNA: expression of a foreign gene results in growth retardation and attenuation [J]. Virology,2000,278(1):168-182.
    [201]Govindarajan D, Kim S H, Samal S K. Contribution of the attachment G glycoprotein to pathogenicity and immunogenicity of avian metapneumovirus subgroup C [J]. Avian Dis,2010,54(1):59-66.
    [202]Tarpey I, Huggins M B, Davis P J, et al. Cloning, expression and immunogenicity of the avian pneumovirus (Colorado isolate) F protein [J]. Avian Pathol,2001,30(5):471-474.
    [203]DiNapoli J M, Kotelkin A, Yang L, et al. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens [J]. Proc Natl Acad Sci U S A,2007,104(23):9788-9793.
    [204]Martinez-Sobrido L, Gitiban N, Fernandez-Sesma A, et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector . J Virol,2006,80(3):1130-1139.
    [205]Khattar S K, Samal S, Devico A L, et al. Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs [J]. J Virol,2011, 85(20):10529-10541.
    [206]Crowe J E, Jr. Human metapneumovirus as a major cause of human respiratory tract disease [J]. Pediatr Infect Dis J,2004,23(11 Suppl):S215-221.
    [207]Falsey A R, Erdman D, Anderson L J, et al. Human metapneumovirus infections in young and elderly adults [J]. J Infect Dis,2003,187(5):785-790.
    [208]van den Hoogen B G, de Jong J C, Groen J, et al. A newly discovered human pneumovirus isolated from young children with respiratory tract disease [J]. Nat Med,2001,7(6):719-724.
    [209]Toquin D, de Boisseson C, Beven V, et al. Subgroup C avian metapneumovirus (MPV) and the recently isolated human MPV exhibit a common organization but have extensive sequence divergence in their putative SH and G genes [J]. J Gen Virol,2003,84(Pt 8):2169-2178.
    [210]Govindarajan D, Samal S K. Sequence analysis of the large polymerase (L) protein of the US strain of avian metapneumovirus indicates a close resemblance to that of the human metapneumovirus [J]. Virus Res,2004,105(1):59-66.
    [211]van den Hoogen B G, Bestebroer T M, Osterhaus A D, et al. Analysis of the genomic sequence of a human metapneumovirus [J]. Virology,2002,295(1):119-132.
    [212]Van de Zande S, Nauwynck H, Pensaert M. The clinical, pathological and microbiological outcome of an Escherichia coli O2:K1 infection in avian pneumovirus infected turkeys [J]. Vet Microbiol,2001,81(4):353-365.
    [213]Rubbenstroth D, Ryll M, Behr K P, et al. Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus [J]. Avian Pathol,2009,38(6):497-507.
    [214]Patnayak D P, Gulati B R, Sheikh A M, et al. Cold adapted avian pneumovirus for use as live, attenuated vaccine in turkeys [J]. Vaccine,2003,21(13-14):1371-1374.
    [215]Brown P A, Bonci M, Ricchizzi E, et al. Identification of two regions within the subtype A avian metapneumovirus fusion protein (amino acids 211-310 and 336-479) recognized by neutralizing antibodies [J]. Virus Res,2009,146(1-2):13-18.
    [216]Naylor C J, Worthington K J, Jones R C. Failure of maternal antibodies to protect young turkey poults against challenge with turkey rhinotracheitis virus [J]. Avian Dis,1997,41(4):968-971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700