用户名: 密码: 验证码:
不同MHC单倍型SPF鸡MHC I类和II类分子的差异表达与MD致病性的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡主要组织相容性复合体(Major histocompatablity complex, MHC)与各种传染性疾病抗性或易感性有关,且与鸡恶性淋巴组织增生性疾病马立克氏病(Marek's disease,MD)关系尤为密切。不同MHC-B单倍型对MD抗性不同。前期根据4个微卫星位点的基因型,建立了6种纯合BW/G(n)系鸡群,本研究在此基础上,通过对后4代各5个个体中BF和BG1基因多态外显子进行直接测序,同时以B2、B19和B5/B21单倍型为免疫原,制备了3种同种免疫抗血清,用血清学方法对鸡群进行了验证,成功地获得了6种MHC-B单倍型鸡群,不存在个体差异,具有高度的遗传稳定性。
     随后以建立的MHC-B单倍型鸡群为基础来研究MHC基因座中BF基因和BLB基因的表达。BF基因包括BF1和BF2两个基因,BLB基因也包括BLB1和BLB2两个基因,本研究建立了能鉴别检测B2和B19单倍型鸡中BF和BLB双拷贝基因表达的特异性TaqMan qRT-PCR方法,并发现在MDV感染后期(77dpi),不同单倍型鸡脾脏中BF和BLB双拷贝基因转录水平呈现出不同的变化,且BF2和BLB2基因分别为优势表达基因,这可能与双拷贝基因的启动子序列结构有关。
     为了分析MD抗性较强的BW/G3系鸡群(MHC B2单倍型)和敏感性较强的BW/G7系鸡群(B19单倍型)接种马立克氏病毒(MDV)后鸡群脾脏中MHC I类蛋白表达量的差异,本研究利用原核表达系统体外表达了BF基因较为保守的序列,制备出一种能检测不同B单倍型MHC I类蛋白的通用抗体,利用此抗体对BW/G3和BW/G7系各3只健康鸡和MDV攻毒后11周各5只攻毒鸡的脾脏进行Western blot,利用ImageQuant5.2软件半定量分析其中MHC I类蛋白含量的变化。结果发现抗性鸡BW/G3和敏感鸡BW/G7脾脏中MHC I类蛋白的表达量都发生上调,且易感鸡中的表达量高于抗性鸡,为进一步揭示病毒性肿瘤病的致病机理提供了思路。
     为了进一步研究脾脏中不同淋巴细胞和法氏囊中BF和BLB双拷贝基因的表达与MD致病性的关系,本研究选取BW/G3(B2单倍型)和BW/G7系(B19单倍型)鸡群,各分为正常组和攻毒组,每组18只,攻毒组腹腔接种MDV Md5毒,攻毒后利用流式细胞术检测外周血和脾脏中CD4+和CD8+T细胞比例以及B细胞含量的变化并对脾脏进行了细胞分选,根据real-time荧光定量PCR方法检测脾脏不同类型细胞和法氏囊中的病毒载量,同时结合临床症状、相对体增重、大体病变、脾脏和法氏囊的石蜡切片、HE染色观察和脾脏中病毒抗原免疫组化等方法分析两种鸡群的致病性差异。然后在病毒感染后的6个不同时间点采样,利用建立的TaqMan qRT-PCR方法检测脾脏B细胞、CD4+T细胞、CD8+T细胞和法氏囊中MHC BF和BLB双拷贝基因的表达差异,并用SAS统计学软件进行数理统计。结果表明,BW/G3系(B2单倍型)和BW/G7系(B19单倍型)在MDV感染后,病毒拷贝数无显著差异,但脾脏中BW/G7系中病毒抗原明显高于BW/G3系。而且在不同单倍型鸡脾脏中,MDV主要感染的细胞种类有差异,并且引起了不同类型细胞数量发生改变。MDV感染后,在脾脏3类细胞中,MDV感染后诱导两种单倍型鸡中BF1基因的表达同时上调,BF2基因在较抗性鸡(BW/G3系)中表达下调而在易感鸡(BW/G7系)中上调,对于BLB基因,主要在B细胞中表达,且MDV对其表达具有抑制的趋势。在法氏囊中,BF1基因仅在易感鸡(BW/G7系)中表达上调,而BF2基因在两系中的表达全部上调。因此MDV与MHC I类分子有密切的关系,而BLB虽为MD的候选抗病基因,但MDV对其表达具有较小的影响。
     本研究首先为我国研究各种传染性疾病、致病机理以及防控措施提供了宝贵的实验材料,同时也为研究各种疾病引起的宿主免疫应答机制提供了一定的理论依据。
There exists a strong and reproducible association between chicken majorhistocompatablity complex (MHC) haplotypes and the resistance to all kinds of diseases. Themost accepted example is related to lymphoproliferative tumor Marek’s disease (MD). Inearlier stage, we had successfully established six SPF BW/G(n) lines chickens carryingdifferent MHC-B haplotypes based on genotypes at four MHC microsatellite DNA markers.In this study, the sequences of the polymorphic exons of duplicated BF and BG genes insubsequent4generations (5chickens of each haplotype) were determined by direct sequence.We prepared three kinds of anti-BF and anti-BG allo-antisera, and serologically confirmed theMHC-B haplotypes using serological typing method simultaneously. It was shown that therewas a highly genetic stability with no individual difference for the six haplotype lines.
     The expression of duplicated MHC-B BF and BLB genes were studied based onestablished MHC-B haplotypes. BF loci contain BF1and BF2genes, and BLB loci containBLB1and BLB2genes. In this study, we developed specific TaqMan probed real-timequantitative reverse transcription PCR (TaqMan qRT-PCR) methods based on the diagnosticnucleotide polymorphisms present in duplicated BF or BLB genes of B2and B19haplotypes.Spleen mRNA samples of MD-infected and control chickens of B2and B19haplotypes wereused to validate these TaqMan qRT-PCR methods. We observed that there was differenttranscribed change for duplicated BF and BLB genes of spleens in both lines during the latestage of the MDV infection (77dpi); furthermore, BF2and BLB2gene was dominantlytranscribed. Our findings verified the impact of diversified promoter sequences on thefunction of duplicated BF or BLB genes.
     To semi-quantitatively analyze differential expressions of MHC class I proteins ofMDV-infected and control chickens of MD-resistent BW/G3and MD-susceptible BW/G7lines, we cloned and expressed class I α chain protein coded by conserved BF sequences usingprokaryotic expression system and prepared the polyclonal antibody of the rabbit serum todetect MHC class I protein of different MHC-B haplotypes. The differential expression ofMHC class I protein of MDV-infected (5chickens of each line) and control chickens (3chickens of each line) of BW/G3and BW/G7lines were semi-quantitatively analyzed using the ImageQuant5.2software. As showed by Western blotting, the expression of MHC class Igenes of the resistant and susceptible chickens were up-regulated during the late stage of theinfection, and the expression of MHC class I genes of susceptible chickens was higher thanresistant chickens.
     In order to further study the association of the expression of duplicated BF or BLB genesin different kinds of splenocytes and bursa of Fabricius with the pathogenicity of MD, oneday old BW/G3(B2haplotype) and BW/G7(B19haplotype) chickens were divided intocontrol and infection group (18chickens of each group), The infection groups were infectedwith MDV Md5strain. After infection, the ration of CD4/CD8lymphocytes of PBL andspleens and B cells composition of spleens were detected using flow cytometry. In addition,three kinds of spleen lymphocytes were sorted using flow cytometry. MDV meq gene mRNAlevels of sorting cells and bursa of Fabricius were assessed by real-time fluorescencequantitative PCR. The disease resistance/susceptibility of BW/G3and BW/G7lines wereanalysed by clinical symptom, relative weight gain rate, the gross lesion, histological and pathologicalchanges (HE staining) of spleens and bursa of Fabricius and immunohistochemistry of viralantigens in spleens. The differential expression of duplicated BF or BLB genes of splenocytesB cell, CD4+and CD8+T cell and bursa of Fabricius were deceted using TaqMan qRT-PCRmethods per sampling time point and data were analysed using the SAS System. All of theresults above indicated that there was no significant difference of virus copy numbers betweenBW/G3line (B2haplotype) and BW/G7line (B19haplotype) after MDV infection, but theantigen amounts in BW/G7line spleens were dramatically higher than BW/G3line. The kindsof cells of spleens infected MDV were different between the lines, and the change of amountof different kinds of cells was induced correspondingly. The significantly up-regulatedtranscriptions of BF1gene in three kinds of spleen lymphocytes were detected in both lines ofchickens after MDV infection. The mRNA level of BF2gene was reduced in the MD mediumresistant chickens (BW/G3line), but increased in the susceptible chickens (BW/G7line). Inaddition, BLB genes mainly expressed in B cells, and the expression can be inhibited due toMDV infection. For bursa of Fabricius, the expression of BF1was up-regulated in thesusceptible chickens (BW/G7lines); meanwhile, the expression of BF2gene was increased inboth lines. So there was the close relationship between MHC I molecular and MDV, while the expression of BLB loci as the candidate gene for MD resistance was less affected by MDV.
     In conclusion, this study provides the basic information to explore the possibility ofMHC haplotypes to be used for the challenge experiments to investigate particularly thepathogenic mechanisms of and control measures to disease. In addition, it also helpsunderstanding the theoretical basis to study the host immune response mechanism after virusinfection.
引文
[1] Charles, J., A. Janeway, P. Travers, et al. Immunobiology: the immune system in health and disease[J].Current Biology Ltd,2005.
    [2] Briles, W. E., G. W. Mc and M. R. Irwin. On multiple alleles effecting cellular antigens in thechicken[J]. Genetics,1950,35(6):633-652.
    [3] Schierman, L. W. and A. W. Nordskog. Relationship of blood type to histocompatibility in chickens[J].Science,1961,134(3484):1008-1009.
    [4] Guillemot, F., A. Billault, O. Pourquie, et al. A molecular map of the chicken major histocompatibilitycomplex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer[J]. TheEMBO Journal,1988,7(9):2775-2785.
    [5] Kaufman, J., H. Volk and H. J. Wallny. A "minimal essential Mhc" and an "unrecognized Mhc": twoextremes in selection for polymorphism[J]. Immunological Reviews,1995,143(1):63-88.
    [6] Miller, M. M., R. Goto, R. Zoorob, et al. Regions of homology shared by Rfp-Y and majorhistocompatibility B complex genes[J]. Immunogenetics,1994,39(1):71-73.
    [7] Bacon, L. D., R. L. Witter, L. B. Crittenden, et al. B-haplotype influence on Marek's disease, Roussarcoma, and lymphoid leukosis virus-induced tumors in chickens[J]. Poultry science,1981,60(6):1132-1139.
    [8] Kaufman, J., S. Milne, T. W. Gobel, et al. The chicken B locus is a minimal essential majorhistocompatibility complex[J]. Nature,1999,401(6756):923-925.
    [9] Beck, S., D. Geraghty, H. Inoko, et al. Complete sequence and gene map of a human majorhistocompatibility complex[J]. Nature,1999,401(6756):921-923.
    [10] Pamer, E. and P. Cresswell. Mechanisms of MHC class I-restricted antigen processing[J]. Annualreview of immunology,1998,16(1):323-358.
    [11] Lanier, L. L. NK cell receptors[J]. Annual review of immunology,1998,16(1):359-393.
    [12] Frangoulis, B., I. Park, F. Guillemot, et al. Identification of the Tapasin gene in the chicken majorhistocompatibility complex[J]. Immunogenetics,1999,49(4):328-337.
    [13] Nonaka, M., C. Namikawa, Y. Kato, et al. Major histocompatibility complex gene mapping in theamphibian Xenopus implies a primordial organization[J]. Proceedings of the National Academy ofSciences,1997,94(11):5789-5791.
    [14] Henry, J., M. M. Miller and P. Pontarotti. Structure and evolution of the extended B7family[J].Immunology today,1999,20(6):285-288.
    [15] Briles, W., R. W. Briles, R. E. Taffs, et al. Resistance to a malignant lymphoma in chickens is mappedto subregion of major histocompatibility (B) complex[J]. Science,1983,219(4587):977-979.
    [16] Kaufman, J. and H. J. Wallny. Chicken MHC molecules, disease resistance and the evolutionary originof birds[J]. Current Topics in Microbiology and Immunology,1996,212:129-141.
    [17] Kandil, E., C. Namikawa, M. Nonaka, et al. Isolation of low molecular mass polypeptidecomplementary DNA clones from primitive vertebrates. Implications for the origin of MHC classI-restricted antigen presentation[J]. The Journal of Immunology,1996,156(11):4245-4253.
    [18] Rammensee, H. G., T. Friede and S. Stevanovi. MHC ligands and peptide motifs: first listing[J].Immunogenetics,1995,41(4):178-228.
    [19] Bumstead, N. Genomic mapping of resistance to Marek's disease[J]. Avian Pathology,1998,27(S1):78-81.
    [20] Skj dt, K., C. Koch, M. Crone, et al. Analysis of chickens for recombination within the MHC (B‐complex)[J]. Tissue Antigens,1985,25(5):278-282.
    [21] Germain, R. N., D. M. Bentley and H. Quill. Influence of allelic polymorphism on the assembly andsurface expression of class II MHC (Ia) molecules[J]. Cell,1985,43(1):233-242.
    [22] Momburg, F., J. Roelse, J. C. Howard, et al. Selectivity of MHC-encoded peptide transporters fromhuman, mouse and rat[J]. Nature,1994,367(6464):648-651
    [23] Joly, E., A. Le Rolle, A. Gonzélez, et al. Co-evolution of rat TAP transporters and MHC class I RT1-Amolecules[J]. Current biology,1998,8(3):169-180.
    [24] Walker, B. A., L. G. Hunt, A. K. Sowa, et al. The dominantly expressed class I molecule of the chickenMHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes[J]. Proceedings ofthe National Academy of Sciences,2011,108(20):8396-8401.
    [25] Pharr, G. T., J. B. Dodgson, H. D. Hunt, et al. Class II MHC cDNAs in15I5B-congenic chickens[J].Immunogenetics,1998,47(5):350-354.
    [26] Bacon, L. D., N. Ismail and J. V. Motta. Allograft and antibody responses of15I5-B congenicchickens[J]. Progress in clinical and biological research,1987,238:219-233.
    [27] Shiina, T., W. E. Briles, R. M. Goto, et al. Extended gene map reveals tripartite motif, C-type lectin,and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease[J].The Journal of Immunology,2007,178(11):7162-7172.
    [28] Delany, M. E., C. M. Robinson, R. M. Goto, et al. Architecture and organization of chickenmicrochromosome16: order of the NOR, MHC-Y, and MHC-B subregions[J]. The Journal ofheredity,2009,100(5):507-514.
    [29] Pink, J., W. Droege, K. Hala, et al. A three-locus model for the chicken major histocompatibilitycomplex[J]. Immunogenetics,1977,5(1):203-216.
    [30] Yonash, N., M. G. Kaiser, E. D. Heller, et al. Major histocompatibility complex (MHC) related cDNAprobes associated with antibody response in meat-type chickens[J]. Animal genetics,1999,30(2):92-101.
    [31] Hosomichi, K., M. M. Miller, R. M. Goto, et al. Contribution of mutation, recombination, and geneconversion to chicken MHC-B haplotype diversity[J]. The Journal of Immunology,2008,181(5):3393-3399.
    [32] Goto, R. M., Y. Wang, R. L. Taylor, Jr., et al. BG1has a major role in MHC-linked resistance tomalignant lymphoma in the chicken[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2009,106(39):16740-16745.
    [33] Miller, M. M., R. Goto, S. Young, et al. Immunoglobulin variable-region-like domains of diversesequence within the major histocompatibility complex of the chicken[J]. Proceedings of the NationalAcademy of Sciences,1991,88(10):4377-4381.
    [34] Salomonsen, J., D. Dunon, K. Skj dt, et al. Chicken major histocompatibility complex-encoded BGantigens are found on many cell types that are important for the immune system[J]. Proceedings of theNational Academy of Sciences,1991,88(4):1359-1363.
    [35] Bacon, L. D., H. D. Hunt and H. H. Cheng. A review of the development of chicken lines to resolvegenes determining resistance to diseases[J]. Poultry science,2000,79(8):1082-1093.
    [36] Briles, W., N. Bumstead, D. Ewert, et al. Nomenclature for chicken major histocompatibility (B)complex[J]. Immunogenetics,1982,15(5):441-447.
    [37] Briles, W. E. and R. W. Briles. Identification of haplotypes of the chicken major histocompatibilitycomplex (B)[J]. Immunogenetics,1982,15(5):449-459.
    [38] Schat, K. A., R. L. Taylor, Jr. and W. E. Briles. Resistance to Marek's disease in chickens withrecombinant haplotypes to the major histocompatibility (B) complex[J]. Poultry science,1994,73(4):502-508.
    [39] Briles, W., R. W. Briles, W. McGibbon, et al. Identification of B alloalleles associated with resistanceto Marek's disease, Commission of the European Communities.1980.
    [40] Blankert, J., G. Albers, W. Briles, et al. The effect of serologically defined major histocompatibilitycomplex haplotypes on Marek's disease resistance in commercially bred white leghorn chickens[J]. AvianDiseases,1990,34(4):818-823.
    [41] Boonyanuwat, K., S. Thummabutra, N. Sookmanee, et al. Influences of major histocompatibilitycomplex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens[J]. AnimalScience Journal,2006,77(3):285-289.
    [42] Bacon, L. D. Influence of the major histocompatibility complex on disease resistance andproductivity[J]. Poultry science,1987,66(5):802-811.
    [43] Bacon, L. D., D. B. Hunter, H. M. Zhang, et al. Retrospective evidence that the MHC (B haplotype) ofchickens influences genetic resistance to attenuated infectious bronchitis vaccine strains in chickens[J].Avian Pathology,2004,33(6):605-609.
    [44] Miller, T. K., D. D. Bowman and K. A. Schat. Inhibition of the in vitro development of Eimeria tenellain chick kidney cells by immune chicken splenocytes[J]. Avian Diseases,1994,38(3):418-427.
    [45] Macklin, K. S., S. J. Ewald and R. A. Norton. Major histocompatibility complex effect on cellulitisamong different chicken lines[J]. Avian Pathology,2002,31(4):371-376.
    [46] Juul-Madsen, H. R., O. L. Nielsen, T. Krogh-Maibom, et al. Major histocompatibility complex-linkedimmune response of young chickens vaccinated with an attenuated live infectious bursal disease virusvaccine followed by an infection[J]. Poultry science,2002,81(5):649-656.
    [47] Caron, L., H. Abplanalp and R. Taylor Jr. Resistance, susceptibility, and immunity to Eimeria tenellain major histocompatibility (B) complex congenic lines[J]. Poultry science,1997,76(5):677-682.
    [48] Cotter, P. F., R. L. Taylor, Jr. and H. Abplanalp. B-complex associated immunity to Salmonellaenteritidis challenge in congenic chickens[J]. Poultry science,1998,77(12):1846-1851.
    [49] Nordskog, A. and G. Gebriel. Genetic aspects of Rous sarcoma-induced tumor expression inchickens[J]. Poultry science,1983,62(5):725-732.
    [50] Schierman, L. and W. Collins. Influence of the major histocompatibility complex on tumor regressionand immunity in chickens[J]. Poultry science,1987,66(5):812-818.
    [51] Plachy, J. Hierarchy of the B (MHC) haplotypes controlling resistance to rous sarcomas in a model ofinbred lines of chickens[J]. Folia Biol (Praha),1984,30(6):412-425.
    [52] Collins, W. M., W. E. Briles, R. M. Zsigray, et al. TheB locus (MHC) in the chicken: Association withthe fate of RSV-induced tumors[J]. Immunogenetics,1977,5(1):333-343.
    [53] Pevzner, I., A. W. Nordskog and M. L. Kaeberle. Immune response and the B blood group locus inchickens[J]. Genetics,1975,80(4):753-759.
    [54] Kaufman, J., J. Jacob, I. Shaw, et al. Gene organisation determines evolution of function in the chickenMHC[J]. Immunological reviews,1999,167(1):101-117.
    [55] Miller, M. M., L. D. Bacon, K. Hala, et al.2004Nomenclature for the chicken majorhistocompatibility (B and Y) complex[J]. Immunogenetics,2004,56(4):261-279.
    [56] Shaw, I., T. J. Powell, D. A. Marston, et al. Different evolutionary histories of the two classical class Igenes BF1and BF2illustrate drift and selection within the stable MHC haplotypes of chickens[J]. TheJournal of Immunology,2007,178(9):5744-5752.
    [57] Juul-Madsen, H. R., T. S. Dalgaard and M. Afanassieff. Molecular characterization of major and minorMHC class I and II genes in B21-like haplotypes in chickens[J]. Animal genetics,2000,31(4):252-261.
    [58] Wallny, H. J., D. Avila, L. G. Hunt, et al. Peptide motifs of the single dominantly expressed class Imolecule explain the striking MHC-determined response to Rous sarcoma virus in chickens[J]. Proceedingsof the National Academy of Sciences of the United States of America,2006,103(5):1434-1439.
    [59] O'Neill, A. M., E. J. Livant and S. J. Ewald. The chicken BF1(classical MHC class I) gene showsevidence of selection for diversity in expression and in promoter and signal peptide regions[J].Immunogenetics,2009,61(4):289-302.
    [60] Livant, E. J., J. R. Brigati and S. J. Ewald. Diversity and locus specificity of chicken MHC B class Isequences[J]. Animal genetics,2004,35(1):18-27.
    [61] Lima-Rosa, C. A., C. W. Canal, A. F. Streck, et al. B-F DNA sequence variability in Brazilian(blue-egg Caipira) chickens[J]. Animal genetics,2004,35(4):278-284.
    [62] Viertlboeck, B. C., F. A. Habermann, R. Schmitt, et al. The chicken leukocyte receptor complex: ahighly diverse multigene family encoding at least six structurally distinct receptor types[J]. The Journal ofImmunology,2005,175(1):385-393.
    [63] Laun, K., P. Coggill, S. Palmer, et al. The leukocyte receptor complex in chicken is characterized bymassive expansion and diversification of immunoglobulin-like loci[J]. PLoS genetics,2006,2(5): e73.
    [64] Jacob, J. P., S. Milne, S. Beck, et al. The major and a minor class II beta-chain (B-LB) gene flank theTapasin gene in the B-F/B-L region of the chicken major histocompatibility complex[J].Immunogenetics,2000,51(2):138-147.
    [65] Salomonsen, J., D. Marston, D. Avila, et al. The properties of the single chicken MHC classical classII alpha chain (B-LA) gene indicate an ancient origin for the DR/E-like isotype of class II molecules[J].Immunogenetics,2003,55(9):605-614.
    [66] Spallanzani, I. O. L. HLA and disease association[J]. The Journal of Headache and Pain2000,1(Suppl2): S109-S113.
    [67] Hill, A. V. S. The immunogenetics of human infectious diseases[J]. Annual review ofimmunology,1998,16(1):593-617.
    [68] Carrington, M., G. W. Nelson, M. P. Martin, et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04disadvantage[J]. Science,1999,283(5408):1748-1752.
    [69] Carrington, M. and S. J. O'Brien. The Influence of HLA Genotype on AIDS[J]. Annual review ofmedicine,2003,54(1):535-551.
    [70] Altfeld, M., E. T. Kalife, Y. Qi, et al. HLA alleles associated with delayed progression to AIDScontribute strongly to the initial CD8+T cell response against HIV-1[J]. PLoS medicine,2006,3(10): e403.
    [71] Hansen, M., J. Van Zandt and G. Law. Differences in susceptibility to Marek's disease in chickenscarrying two different B locus blood group alleles[J]. Poultry Science,1967,46:1268(abstr).
    [72] Lamont, S. J. The chicken major histocompatibility complex and disease[J]. Revue scientifique ettechnique1998,17(1):128-142.
    [73] Liu, W., M. M. Miller and S. J. Lamont. Association of MHC class I and class II gene polymorphismswith vaccine or challenge response to Salmonella enteritidis in young chicks[J].Immunogenetics,2002,54(8):582-590.
    [74] Schou, T. W., A. Permin, H. R. Juul-Madsen, et al. Gastrointestinal helminths in indigenous and exoticchickens in Vietnam: association of the intensity of infection with the Major Histocompatibility Complex[J].Parasitology,2007,134(4):561-573.
    [75] Joiner, K., F. Hoerr, E. van Santen, et al. The avian major histocompatibility complex influencesbacterial skeletal disease in broiler breeder chickens[J]. Veterinary Pathology2005,42(3):275-281.
    [76] Hudson, J., F. Hoerr, S. Parker, et al. Quantitative measures of disease in broiler breeder chicks ofdifferent major histocompatibility complex genotypes after challenge with infectious bursal disease virus[J].Avian Diseases,2002,46(3):581-592.
    [77] Plachy, J., J. Pink and K. Hala. Biology of the chicken MHC (B complex)[J]. Critical reviews inimmunology,1992,12(1-2):47-79.
    [78] Heller, E., Z. UNI and L. Bacon. Serological evidence for major histocompatibility complex (Bcomplex) antigens in broilers selected for humoral immune response[J]. Poultry science,1991,70(4):726-732.
    [79] Juul-Madsen, H. R., T. S. Dalgaard, C. M. Rontved, et al. Immune response to a killed infectiousbursal disease virus vaccine in inbred chicken lines with different major histocompatibility complexhaplotypes[J]. Poultry science,2006,85(6):986-998.
    [80] Zhou, H. and S. J. Lamont. Chicken MHC class I and II gene effects on antibody response kinetics inadult chickens[J]. Immunogenetics,2003,55(3):133-140.
    [81] Wang, X. and G. Erf. Apoptosis in feathers of Smyth line chickens with autoimmune vitiligo[J].Journal of autoimmunity,2004,22(1):21-30.
    [82] Wick, G., L. Andersson, K. Hala, et al. Avian models with spontaneous autoimmune diseases[J].Advances in immunology,2006,92:71-117.
    [83] Kaufman, J. The simple chicken major histocompatibility complex: life and death in the face ofpathogens and vaccines[J]. Philosophical Transactions of the Royal Society of London. Series B: BiologicalSciences,2000,355(1400):1077-1084.
    [84] Taylor, R. L., Jr. Major histocompatibility (B) complex control of responses against Rous sarcomas[J].Poultry science,2004,83(4):638-649.
    [85] Plachy, J., K. Hála, J. Hejnar, et al. src-specific immunity in inbred chickens bearing v-src DNA-andRSV-induced tumors[J]. Immunogenetics,1994,40(4):257-265.
    [86] Hofmann, A., J. Plachy, L. Hunt, et al. v-src oncogene-specific carboxy-terminal peptide isimmunoprotective against Rous sarcoma growth in chickens with MHC class I allele B-F12[J].Vaccine,2003,21(32):4694-4699.
    [87] Kantor, F. S., A. Ojeda and B. Benacerraf. Studies on artificial antigens[J]. The Journal ofExperimental Medicine,1963,117(1):55-69.
    [88] McDevitt, H. O. and A. Chinitz. Genetic control of the antibody response: relationship betweenimmune response and histocompatibility (H-2) type[J]. Science,1969,163(3872):1207-1208.
    [89] Haeri, M., L. R. Read, B. N. Wilkie, et al. Identification of peptides associated with chicken majorhistocompatibility complex class II molecules of B21and B19haplotypes[J]. Immunogenetics,2005,56(11):854-859.
    [90] Cumberbatch, J. A., D. Brewer, I. Vidavsky, et al. Chicken major histocompatibility complex class IImolecules of the B haplotype present self and foreign peptides[J]. Animal genetics,2006,37(4):393-396.
    [91] Osterrieder, N., J. P. Kamil, D. Schumacher, et al. Marek's disease virus: from miasma to model[J].Nature Reviews Microbiology,2006,4(4):283-294.
    [92] Vallejo, R. L., L. D. Bacon, H. C. Liu, et al. Genetic mapping of quantitative trail loci affectingsusceptibility to Marek's disease virus induced tumors in F2intercross chickens[J]. Genetics,1998,148(1):349-360.
    [93] Omar, A. R. and K. A. Schat. Syngeneic Marek's disease virus (MDV)-specific cell-mediated immuneresponses against immediate early, late, and unique MDV proteins[J]. Virology,1996,222(1):87-99.
    [94] Niikura, M., H. C. Liu, J. B. Dodgson, et al. A comprehensive screen for chicken proteins that interactwith proteins unique to virulent strains of Marek's disease virus[J]. Poultry science,2004,83(7):1117-1123.
    [95] Neisig, A., R. Wubbolts, X. Zang, et al. Allele-specific differences in the interaction of MHC class Imolecules with transporters associated with antigen processing[J]. The Journal of Immunology,1996,156(9):3196-3206.
    [96] Kaufman, J. and J. Salomonsen. The "minimal essential MHC" revisited: both peptide-binding andcell surface expression level of MHC molecules are polymorphisms selected by pathogens in chickens[J].Hereditas,1997,127(1-2):67-73.
    [97] Garcia-Camacho, L., K. A. Schat, R. Brooks, et al. Early cell-mediated immune responses to Marek'sdisease virus in two chicken lines with defined major histocompatibility complex antigens[J]. Veterinaryimmunology and immunopathology,2003,95(3-4):145-153.
    [98] Sharma, J. Natural killer cell activity in chickens exposed to Marek's disease virus: inhibition ofactivity in susceptible chickens and enhancement of activity in resistant and vaccinated chickens[J]. AvianDiseases,1981,25(4):882-893.
    [99] Rogers, S. L., T. W. Gobel, B. C. Viertlboeck, et al. Characterization of the chicken C-type lectin-likereceptors B-NK and B-lec suggests that the NK complex and the MHC share a common ancestral region[J].The Journal of Immunology,2005,174(6):3475-3483.
    [100] Scalzo, A., N. A. Fitzgerald, C. R. Wallace, et al. The effect of the Cmv-1resistance gene, which islinked to the natural killer cell gene complex, is mediated by natural killer cells[J]. The Journal ofImmunology,1992,149(2):581-589.
    [101] Parham, P. MHC class I molecules and KIRs in human history, health and survival[J]. NatureReviews Immunology,2005,5(3):201-214.
    [102] Rajagopalan, S. and E. O. Long. Understanding how combinations of HLA and KIR genes influencedisease[J]. The Journal of Experimental Medicine,2005,201(7):1025-1029.
    [103] Carrington, M. and M. Martin. The impact of variation at the KIR gene cluster on human disease[J].Current Topics in Microbiology and Immunology,2006,298:225-257.
    [104] Kovacic, M. B., M. Martin, X. Gao, et al. Variation of the killer cell immunoglobulin-like receptorsand HLA-C genes in nasopharyngeal carcinoma[J]. Cancer Epidemiology Biomarkers&Prevention,2005,14(11):2673-2677.
    [105] Hunt, H. D., B. Lupiani, M. M. Miller, et al. Marek's disease virus down-regulates surface expressionof MHC (B Complex) Class I (BF) glycoproteins during active but not latent infection of chicken cells[J].Virology,2001,282(1):198-205.
    [106] Levy, A. M., I. Davidson, S. C. Burgess, et al. Major histocompatibility complex class I isdownregulated in Marek's disease virus infected chicken embryo fibroblasts and corrected by chickeninterferon[J]. Comparative Immunology, Microbiology and Infectious Diseases,2003,26(3):189-198.
    [107] Biggs, P. The history and biology of Marek's disease virus[J]. Current Topics in Microbiology andImmunology,2001,255:1-24.
    [108] Morrow, C. and F. Fehler. Marek's disease: a worldwide problem[J]. Marek's Disease, An EvolvingProblem,2004:49-61.
    [109] Osterrieder, K. and J. Vautherot. The genome content of Marek's disease-like viruses[J]. Marek'sDisease, An Evolving Problem,2004:17-31.
    [110] Calnek, B. Marek's disease--a model for herpesvirus oncology[J]. Critical reviews inmicrobiology,1986,12(4):293-320.
    [111] Calnek, B. Pathogenesis of Marek's disease virus infection[J]. Current topics in microbiology andimmunology,2001,255:25-55.
    [112] Baigent, S. J. and F. Davison. Marek's disease virus: biology and life cycle[J]. Marek’s disease. Anevolving problem, Elsevier Academic Press, Compton, UK,2004:62-77.
    [113] Calnek, B. and R. Witter. Marek's disease[J]. Diseases of poultry,1984:325-360.
    [114] Davison, F. and P. Kaiser. Immunity to Marek's disease[J]. Marek's disease: an evolving problem. F.Davison, and V. Nair, eds. Elsevier Compton, United Kingdom,2004:126-139.
    [115] Akbari, M. R., H. R. Haghighi, J. R. Chambers, et al. Expression of antimicrobial peptides in cecaltonsils of chickens treated with probiotics and infected with Salmonella enterica serovar typhimurium[J].Clinical and Vaccine Immunology,2008,15(11):1689-1693.
    [116] Abdul-Careem, M. F., K. Haq, S. Shanmuganathan, et al. Induction of innate host responses in thelungs of chickens following infection with a very virulent strain of Marek's disease virus[J].Virology,2009,393(2):250-257.
    [117] Qureshi, M. A., C. L. Heggen and I. Hussain. Avian macrophage: effector functions in health anddisease[J]. Developmental&Comparative Immunology,2000,24(2-3):103-119.
    [118] Calnek, B., H. K. Adldinger and D. E. Kahn. Feather follicle epithelium: a source of enveloped andinfectious cell-free herpesvirus from Marek's disease[J]. Avian Diseases,1970,14(2):219-233.
    [119] Schat, K., C. Chen, W. Shek, et al. Surface antigens on Marek's disease lymphoblastoid tumor celllines[J]. Journal of the National Cancer Institute,1982,69(3):715-720.
    [120] Barrow, A. D., S. C. Burgess, S. J. Baigent, et al. Infection of macrophages by a lymphotropicherpesvirus: a new tropism for Marek's disease virus[J]. Journal of general virology,2003,84(10):2635-2645.
    [121] Abdul-Careem, M., B. Hunter, L. Lee, et al. Host responses in the bursa of Fabricius of chickensinfected with virulent Marek's disease virus[J]. Virology,2008,379(2):256-265.
    [122] Johnson, E. A., C. Burke, T. Fredrickson, et al. Morphogenesis of Marek's disease virus in featherfollicle epithelium[J]. Journal of the National Cancer Institute,1975,55(1):89-99.
    [123] Xing, Z. and K. A. Schat. Inhibitory effects of nitric oxide and gamma interferon on in vitro and invivo replication of Marek's disease virus[J]. Journal of Virology,2000,74(8):3605-3612.
    [124] Xing, Z. and K. Schat. Expression of cytokine genes in Marek's disease virus‐infected chickens andchicken embryo fibroblast cultures[J]. Immunology,2000,100(1):70-76.
    [125] Bogdan, C. Nitric oxide and the immune response[J]. Nature immunology,2001,2(10):907-916.
    [126] Djeraba, A., E. Musset, N. Bernardet, et al. Similar pattern of iNOS expression, NO production andcytokine response in genetic and vaccination-acquired resistance to Marek's disease[J]. Veterinaryimmunology and immunopathology,2002,85(1-2):63-75.
    [127] Jarosinski, K. W., R. Yunis, P. H. O'Connell, et al. Influence of genetic resistance of the chicken andvirulence of Marek's disease virus (MDV) on nitric oxide responses after MDV infection[J]. AvianDiseases,2002,46(3):636-649.
    [128] Kaiser, P., G. Underwood and F. Davison. Differential cytokine responses following Marek's diseasevirus infection of chickens differing in resistance to Marek's disease[J]. Journal of Virology,2003,77(1):762-768.
    [129] Abdul-Careem, M. F., B. D. Hunter, P. Parvizi, et al. Cytokine gene expression patterns associatedwith immunization against Marek's disease in chickens[J]. Vaccine,2007,25(3):424-432.
    [130] Jarosinski, K. W., B. L. Njaa, P. H. O'connell, et al. Pro-inflammatory responses in chicken spleenand brain tissues after infection with very virulent plus Marek's disease virus[J]. ViralImmunology,2005,18(1):148-161.
    [131] Buscaglia, C., P. H. O'Connell, K. W. Jarosinski, et al. Selection for Increased Nitric OxideProduction Does Not Increase Resistance to Marek's Disease in a Primary Broiler Breeder Line[J]. AvianDiseases,2009,53(3):336-340.
    [132] Sharma, J. and W. Okazaki. Natural killer cell activity in chickens: target cell analysis and effect ofantithymocyte serum on effector cells[J]. Infection and Immunity,1981,31(3):1078-1085.
    [133] Heller, E. and K. Schat. Enhancement of natural killer cell activity by Marek's disease vaccines1[J].Avian Pathology,1987,16(1):51-60.
    [134] Sarson, A. J., M. F. Abdul-Careem, L. R. Read, et al. Expression of Cytotoxicity-Associated Genes inMarek's Disease Virus—Infected Chickens[J]. Viral Immunology,2008,21(2):267-272.
    [135] Kaiser, P., T. Y. Poh, L. Rothwell, et al. A genomic analysis of chicken cytokines and chemokines[J].Journal of interferon&cytokine research,2005,25(8):467-484.
    [136] Biron, C. A. Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innateand adaptive immune responses to viral infections[J]. Seminars in Immunology,1998,10(5):383-390.
    [137] Jarosinski, K. W., W. Jia, M. J. Sekellick, et al. Cellular Responses in Chickens Treated with IFN-αOrally or Inoculated with Recombinant Marek's Disease Virus Expressing IFN-α[J]. Journal of interferon&cytokine research,2001,21(5):287-296.
    [138] Sarson, A. J., P. Parvizi, D. Lepp, et al. Transcriptional analysis of host responses to Marek's diseasevirus infection in genetically resistant and susceptible chickens[J]. Animal genetics,2008,39(3):232-240.
    [139] Fukui, A., N. Inoue, M. Matsumoto, et al. Molecular cloning and functional characterization ofchicken toll-like receptors[J]. Journal of Biological Chemistry,2001,276(50):47143-47149.
    [140] Kogut, M. H., M. Iqbal, H. He, et al. Expression and function of Toll-like receptors in chickenheterophils[J]. Developmental&Comparative Immunology,2005,29(9):791-807.
    [141] Boyd, A., V. Philbin and A. Smith. Conserved and distinct aspects of the avian Toll-like receptor(TLR) system: implications for transmission and control of bird-borne zoonoses[J]. Biochemical SocietyTransactions,2007,35(Pt6):1504-1507.
    [142] Jenkins, K. A., J. W. Lowenthal, W. Kimpton, et al. The in vitro and in ovo responses of chickens toTLR9subfamily ligands[J]. Developmental&Comparative Immunology,2009,33(5):660-667.
    [143] Carriel-Gomes, M. C., J. M. Kratz, M. A. Barracco, et al. In vitro antiviral activity of antimicrobialpeptides against herpes simplex virus1, adenovirus, and rotavirus[J]. Memórias do Instituto OswaldoCruz,2007,102(4):469-472.
    [144] Selsted, M. E. and A. J. Ouellette. Mammalian defensins in the antimicrobial immune response[J].Nature immunology,2005,6(6):551-557.
    [145] Ganz, T. Defensins: antimicrobial peptides of innate immunity[J]. Nature ReviewsImmunology,2003,3(9):710-720.
    [146] Schat, K. and C. Markowski-Grimsrud. Immune responses to Marek's disease virus infection[J].Current topics in microbiology and immunology,2001,255:91-120.
    [147] Calnek, B. Marek's disease vaccines[J]. Developments in biological standardization,1982,52:401-405.
    [148] Burgess, S., J. Young, B. Baaten, et al. Marek's disease is a natural model for lymphomasoverexpressing Hodgkin's disease antigen (CD30)[J]. Proceedings of the National Academy of Sciences ofthe United States of America,2004,101(38):13879-13884.
    [149] Schat, K. A. and Z. Xing. Specific and nonspecific immune responses to Marek's disease virus[J].Developmental&Comparative Immunology,2000,24(2-3):201-221.
    [150] Markowski-Grimsrud, C. J. and K. A. Schat. Cytotoxic T lymphocyte responses to Marek's diseaseherpesvirus-encoded glycoproteins[J]. Veterinary immunology and immunopathology,2002,90(3-4):133-144.
    [151] Weinstock, D., K. A. Schat and B. W. Calnek. Cytotoxic T lymphocytes in reticuloendotheliosis virus‐infected chickens[J]. European journal of immunology,1989,19(2):267-272.
    [152] Merkle, H., J. Cihak and U. L sch. The cytotoxic T lymphocyte response in reticuloendotheliosisvirus-infected chickens is mediated by αβand not by γδ T cells[J]. Immunobiology,1992,186(3):292-303.
    [153] Omar, A. and K. Schat. Characterization of Marek’s disease herpesvirus‐specific cytotoxic Tlymphocytes in chickens inoculated with a non‐oncogenic vaccine strain of MDV[J].Immunology,1997,90(4):579-585.
    [154] Schat, K. A., W. D. Pratt, R. Morgan, et al. Stable transfection of reticuloendotheliosisvirus-transformed lymphoblastoid cell lines[J]. Avian Diseases,1992,36(2):432-439.
    [155] Nazerian, K., L. Lee, N. Yanagida, et al. Protection against Marek's disease by a fowlpox virusrecombinant expressing the glycoprotein B of Marek's disease virus[J]. Journal of Virology,1992,66(3):1409.
    [156] Omar, A., K. Schat, L. Lee, et al. Cytotoxic T lymphocyte response in chickens immunized with arecombinant fowlpox virus expressing Marek's disease herpesvirus glycoprotein B[J]. Veterinaryimmunology and immunopathology,1998,62(1):73-82.
    [157] Bacon, L. D., H. D. Hunt and H. H. Cheng. Genetic resistance to Marek's disease[J]. Current Topicsin Microbiology and Immunology,2001,255:121-141.
    [158] Bumstead, N. and J. Kaufman. Genetic resistance to Marek's disease[J]. Marek's disease, an evolvingproblem F. Davison, and V. Nair, eds. Elsevier Academic Press Amsterdam,2004:112-125.
    [159] Briles, W., H. A. Stone and R. Cole. Marek's disease: effects of B histocompatibility alloalleles inresistant and susceptible chicken lines[J]. Science,1977,195(4274):193-195.
    [160] Dalgaard, T. S., S. Hojsgaard, K. Skjodt, et al. Differences in chicken major histocompatibilitycomplex (MHC) class Ialpha gene expression between Marek's disease-resistant and-susceptible MHChaplotypes[J]. Scandinavian journal of immunology,2003,57(2):135-143.
    [161] Koch, M., S. Camp, T. Collen, et al. Structures of an MHC class I molecule from B21chickensillustrate promiscuous peptide binding[J]. Immunity,2007,27(6):885-899.
    [162] Li, S., D. Zadworny, S. Aggrey, et al. Mitochondrial PEPCK: a highly polymorphic gene with allelesco‐selected with Marek’s disease resistance in chickens[J]. Animal genetics,1998,29(5):395-397.
    [163] Liu, H. C., M. Niikura, J. Fulton, et al. Identification of chicken lymphocyte antigen6complex, locusE (LY6E, alias SCA2) as a putative Marek's disease resistance gene via a virus-host protein interactionscreen[J]. Cytogenetic and genome research,2003,102(1-4):304-308.
    [164] Xu, S., N. Yonash, R. L. Vallejo, et al. Mapping quantitative trait loci for binary traits using aheterogeneous residual variance model: an application to Marek's disease susceptibility in chickens[J].Genetica,1998,104(2):171-178.
    [165] Heifetz, E., J. Fulton, N. O'Sullivan, et al. Mapping quantitative trait loci affecting susceptibility toMarek's disease virus in a backcross population of layer chickens[J]. Genetics,2007,177(4):2417-2431.
    [166] Cheng, H., Y. Zhang and W. Muir. Evidence for widespread epistatic interactions influencing Marek’sdisease virus viremia levels in chicken[J]. Cytogenetic and genome research,2007,117(1-4):313-318.
    [167] Heifetz, E., J. Fulton, N. O'Sullivan, et al. Mapping QTL affecting resistance to Marek's disease in anF6advanced intercross population of commercial layer chickens[J]. BMC Genomics,2009,10(1):20.
    [168] Gimeno, I. M., R. L. Witter, H. D. Hunt, et al. Marek's disease virus infection in the brain: virusreplication, cellular infiltration, and major histocompatibility complex antigen expression[J]. VeterinaryPathology2001,38(5):491-503.
    [169] Abdul-Careem, M. F., B. D. Hunter, A. J. Sarson, et al. Host responses are induced in feathers ofchickens infected with Marek's disease virus[J]. Virology,2008,370(2):323-332.
    [170] Fulton, J. E., H. R. Juul-Madsen, C. M. Ashwell, et al. Molecular genotype identification of theGallus gallus major histocompatibility complex[J]. Immunogenetics,2006,58(5-6):407-421.
    [171] Sironi, L., J. L. Williams, A. Stella, et al. Genomic study of the response of chicken to highlypathogenic avian influenza virus[J]. BMC Proceedings,2011,5(Suppl4): S25.
    [172]牛成明.MHC特异单倍型SPF鸡群的建立及其对MD抗性的研究[D].北京:中国农业科学院研究生院,2009.
    [173] Sambrook, J.黄培堂译,2002[M].分子克隆实验指南(第三版)(上,下册).北京:科学出版社,2001:463-471.
    [174] Maniatis, T. Molecular cloning: a laboratory manual/J. Sambrook, EF Fritsch, T. Maniatis[M]. NewYork: Cold Spring Harbor Laboratory Press,1989.
    [175] Kroemer, G., F. Guillemot and C. Auffray. Genetic organization of the chicken MHC[J]. ImmunologicResearch,1990,9(1):8-19.
    [176] Juul-Madsen, H. R., J. E. Hedemand, J. Salomonsen, et al. Restriction fragment length polymorphismanalysis of the chicken B-F and B-L genes and their association with serologically defined B haplotypes[J].Animal genetics,1993,24(4):243-247.
    [177] Goto, R. M., M. Afanassieff, J. Ha, et al. Single-strand conformation polymorphism (SSCP) assaysfor major histocompatibility complex B genotyping in chickens[J]. Poultry science,2002,81(12):1832-1841.
    [178] Zheng, D., G. O'Keefe, L. Li, et al. A PCR method for typing B-L beta II family (class II MHC)alleles in broiler chickens[J]. Animal genetics,1999,30(2):109-119.
    [179] Emara, M. G., H. Kim, J. Zhu, et al. Genetic diversity at the major histocompatibility complex (B)and microsatellite loci in three commercial broiler pure lines[J]. Poultry science,2002,81(11):1609-1617.
    [180] Li, X. X., L. X. Han and J. L. Han. No specific primer can independently amplified the completeexon2of chicken BLB1or BLB2genes[J]. International Journal of Poultry Science,2010,9(2):192-197.
    [181]周刚.禽白血病分子诊断及MHC单倍型鸡系对禽白血病的抗性研究[D].北京:中国农业科学院研究生院,2010.
    [182] Pharr, G. T., L. D. Bacon and J. B. Dodgson. Analysis of B-L beta-chain gene expression in twochicken cDNA libraries[J]. Immunogenetics,1993,37(5):381-385.
    [183] Sung, A. M., A. W. Nordskog, S. J. Lamont, et al. Isolation and characterization of cDNA clones forchicken major histocompatibility complex class II molecules[J]. Animal genetics,1993,24(4):227-233.
    [184] Zoorob, R., G. Behar, G. Kroemer, et al. Organization of a functional chicken class II B gene[J].Immunogenetics,1990,31(3):179-187.
    [185] Lian, L., L. J. Qu, J. X. Zheng, et al. Expression profiles of genes within a subregion of chickenmajor histocompatibility complex B in spleen after Marek's disease virus infection[J]. Poultryscience,2010,89(10):2123-2129.
    [186] Dalgaard, T. S., L. Vitved, K. Skjodt, et al. Molecular characterization of major histocompatibilitycomplex class I (B-F) mRNA variants from chickens differing in resistance to Marek's disease[J].Scandinavian journal of immunology,2005,62(3):259-270.
    [187]王远强,丁元,徐东海,等.基于氨基酸结构信息的MHCⅠ类抗原表位的定量构效关系建模[J].免疫学杂志,2011,27(10):829-832.
    [188] Basta, S. and J. R. Bennink. A survival game of hide and seek: cytomegaloviruses and MHC class Iantigen presentation pathways[J]. Viral Immunology,2003,16(3):231-242.
    [189] Morgan, R. W., L. Sofer, A. S. Anderson, et al. Induction of host gene expression following infectionof chicken embryo fibroblasts with oncogenic Marek's disease virus[J]. Journal of Virology,2001,75(1):533-539.
    [190] Thanthrige-Don, N., L. R. Read, M. F. Abdul-Careem, et al. Marek's disease virus influences theexpression of genes associated with IFN-gamma-inducible MHC class II expression[J]. ViralImmunology,2010,23(2):227-232.
    [191] Chang, S., J. R. Dunn, M. Heidari, et al. Genetics and vaccine efficacy: host genetic variationaffecting Marek's disease vaccine efficacy in White Leghorn chickens[J]. Poultry science,2010,89(10):2083-2091.
    [192] Chen, Y., S. L. Carpenter and S. J. Lamont. A functional role for the Y box in regulating an MHCclass II B gene promoter in chicken lymphocytes[J]. Immunogenetics,2000,51(10):882-886.
    [193] Chen, Y., H. S. Lillehoj, C. H. Hsu, et al. Functional characterization of a chicken majorhistocompatibility complex class II B gene promoter[J]. Immunogenetics,1997,45(4):242-248.
    [194]殷震.刘景华,第2版.北京:科学出版社,1997,1:997.
    [195] Islam, A., B. Harrison, B. F. Cheetham, et al. Differential amplification and quantitation of Marek'sdisease viruses using real-time polymerase chain reaction[J]. Journal of virological methods,2004,119(2):103-113.
    [196] Islam, A., C. Wong, S. Walkden-Brown, et al. Immunosuppressive effects of Marek's disease virus(MDV) and herpesvirus of turkeys (HVT) in broiler chickens and the protective effect of HVT vaccinationagainst MDV challenge[J]. Avian Pathology,2002,31(5):449-461.
    [197] Schat, K. A., C. Chen, B. W. Calnek, et al. Transformation of T-lymphocyte subsets by Marek'sdisease herpesvirus[J]. Journal of Virology,1991,65(3):1408-1413.
    [198] Calnek, B., K. Schat, L. Ross, et al. Further characterization of Marek's disease virus‐infectedlymphocytes. I. In vivo infection[J]. International Journal of Cancer,1984,33(3):389-398.
    [199] Lee, S. I., K. Ohashi, T. Morimura, et al. Re-isolation of Marek’s disease virus from T cell subsets ofvaccinated and non-vaccinated chickens[J]. Archives of virology,1999,144(1):45-54.
    [200] Burgess, S. C., B. H. Basaran and T. F. Davison. Resistance to Marek's Disease Herpesvirus-inducedLymphoma is Multiphasic and Dependent on Host Genotype[J]. Veterinary Pathology,2001,38(2):129-142.
    [201] Calnek, B. and J. Spencer. Marek's disease virus and lymphoma[J]. Oncogenic herpesviruses,1980,1:103-143.
    [202] Schat, K. A. and Z. Xing. Specific and nonspecific immune responses to Marek's disease virus[J].Developmental and comparative immunology,2000,24(2-3):201-221.
    [203] Dalgaard, T., M. K. Boving, K. Handberg, et al. MHC expression on spleen lymphocyte subsets ingenetically resistant and susceptible chickens infected with Marek's disease virus[J]. ViralImmunology,2009,22(5):321-327.
    [204] Heidari, M., H. M. Zhang and S. Sharif. Marek's disease virus induces Th-2activity during cytolyticinfection[J]. Viral Immunology,2008,21(2):203-214.
    [205] Sarson, A. J., M. F. Abdul-Careem, L. R. Read, et al. Expression of cytotoxicity-associated genes inMarek's disease virus-infected chickens[J]. Viral Immunology,2008,21(2):267-272.
    [206] Ljunggren, H. G. and K. Karre. In search of the 'missing self': MHC molecules and NK cellrecognition[J]. Immunology today,1990,11(7):237-244.
    [207] Holling, T. M., E. Schooten and P. J. van Den Elsen. Function and regulation of MHC class IImolecules in T-lymphocytes: of mice and men[J]. Human immunology,2004,65(4):282-290.
    [208] Niikura, M., T. Kim, H. D. Hunt, et al. Marek's disease virus up-regulates major histocompatibilitycomplex class II cell surface expression in infected cells[J]. Virology,2007,359(1):212-219.
    [209] Schat, K. A., B. W. Calnek and J. Fabricant. Influence of the bursa of Fabricius on the pathogenesisof Marek's disease[J]. Infection and Immunity,1981,31(1):199-207.
    [210] Olah, I. and B. Glick. Follicle‐associated epithelium and medullary epithelial tissue of the bursa ofFabricius are two different compartments[J]. The anatomical record,1992,233(4):577-587.
    [211] Calnek, B., R. Harris, C. Buscaglia, et al. Relationship between the immunosuppressive potential andthe pathotype of Marek's disease virus isolates[J]. Avian Diseases,1998,42(1):124-132.
    [212] Liu, J., S. Lin, L. Xia, et al. MEQ and V-IL8: cellular genes in disguise?[J]. Actavirologica,1999,43(2-3):94.
    [213] Parcells, M. S., S. F. Lin, R. L. Dienglewicz, et al. Marek's disease virus (MDV) encodes aninterleukin-8homolog (vIL-8): characterization of the vIL-8protein and a vIL-8deletion mutant MDV[J].Journal of Virology,2001,75(11):5159-5173.
    [214] Kim, I. J., M. Gagic and J. M. Sharma. Recovery of antibody-producing ability and lymphocyterepopulation of bursal follicles in chickens exposed to infectious bursal disease virus[J]. AvianDiseases,1999,43(3):401-413.
    [215] Kim, I. J., S. K. You, H. Kim, et al. Characteristics of bursal T lymphocytes induced by infectiousbursal disease virus[J]. Journal of Virology,2000,74(19):8884-8892.
    [216] Morimura, T., K. Cho, Y. Kudo, et al. Anti-viral and anti-tumor effects induced by an attenuatedMarek’s disease virus in CD4-or CD8-deficient chickens[J]. Archives of virology,1999,144(9):1809-1818.
    [217] Ngai, P., S. McCormick, C. Small, et al. Gamma interferon responses of CD4and CD8T-cell subsetsare quantitatively different and independent of each other during pulmonary Mycobacterium bovis BCGinfection[J]. Infection and Immunity,2007,75(5):2244-2252.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700