用户名: 密码: 验证码:
钛酸钡陶瓷的压电晶粒尺寸效应及压电物性改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电材料是一类能够实现电能与机械能相互转换的重要的功能材料。压电材料可以分为单晶材料、陶瓷材料、聚合物材料以及复合材料等,其中压电陶瓷由于具有制备工艺简单、成本较低以及容易获得较大的尺寸和加工成各种形状等优点而得到了广泛的应用。在所有的压电陶瓷体系中,锆钛酸铅(PZT)陶瓷凭借其优异的压电性能一直占据着压电陶瓷材料市场的主导地位。然而,由于PZT陶瓷在生产制备过程中要使用大量毒性较大且易挥发的铅氧化物,会对人类以及生态环境产生严重的影响。因此,研究发展环境友好的无铅压电陶瓷体系是一项紧迫而有重大意义的任务。
     钛酸钡(BaTiO3)陶瓷是一类典型的无铅压电陶瓷材料,也是最早被发现在极化后具有压电性的多晶材料。在压电陶瓷发展的早期,BaTiO3陶瓷曾作为压电材料得到了较为广泛的应用。但是,此后由于压电性能优异的PZT陶瓷的发现,BaTiO3陶瓷逐渐退出了压电陶瓷材料的市场。然而,近年有关BaTiO3以及BaTiO3基压电陶瓷的压电性能的研究取得了一系列重大的进展。这些进展显示,BaTiO3基压电陶瓷作为无铅压电陶瓷材料具有重要的发展潜能。
     根据文献报道,具有强压电活性的BaTiO3陶瓷一般都具有较高的致密度和较小的晶粒尺寸。由此可以推断,与BaTiO3陶瓷的介电常数类似,BaTiO3陶瓷的压电常数与其晶粒尺寸也存在着密切的关系。BaTiO3陶瓷的介电晶粒尺寸效应已经得到了较为深入的研究,用于解释BaTiO3陶瓷中介电晶粒尺寸效应起源的畴壁模型也得到了较为广泛的认可。但是,对于BaTiO3陶瓷的压电晶粒尺寸效应的研究目前仍不透彻。一方面体现在人们对BaTiO3陶瓷中强压电活性的起源的理解还不够充分;另一方面体现在,尽管目前得到的高性能BaTiO3压电陶瓷大部分都具有较小的晶粒尺寸(约为1μm,但在近期的研究中作者所在研究小组在某些具有较大晶粒尺寸的BaTiO3陶瓷中也获得了较高的压电活性。因此,系统的研究BaTiO3陶瓷的压电晶粒尺寸效应是十分必要的。它不但可以有助于深入认识BaTiO3陶瓷中强压电活性的起源,而且还有助于通过晶粒尺寸效应获得具有更高压电性能的BaTiO3陶瓷材料。
     为了能更全面准确地理解BaTiO3陶瓷中的压电晶粒尺寸效应,本论文分别以通过传统固相反应方法制得的微米级普通BaTiO3粉和通过水热法合成的纳米级BaTiO3粉为原料、利用普通烧结或放电等离子体烧结(SPS)制备了三类具有不同晶粒尺寸的致密度较高的BaTiO3陶瓷。通过对比研究发现,三类BaTiO3陶瓷呈现出非常类似的介电常数ε'随晶粒尺寸而变化的行为(介电晶粒尺寸效应),即介电常数随着晶粒尺寸的减小而增大、在1μm附近达到最大值。但是利用不同原料和烧结工艺得到的BaTiO3陶瓷所呈现出的压电系数d33随晶粒尺寸而变化的行为(压电晶粒尺寸效应)却有着较大的差异,虽然利用不同的原料和烧结工艺得到的BaTiO3陶瓷的d33最大值均可达到400pC/N以上。利用微米级BaTiO3粉进行普通烧结得到的BaTiO3陶瓷的室温d33随晶粒尺寸的减小而逐渐增大,在晶粒尺寸为1μm左右时达到最大值410pC/N。利用微米级BaTiO3粉进行SPS烧结获得的BaTiO3陶瓷的d33随晶粒尺寸的增大先增加后降低,在晶粒尺寸为4.5μm时达到峰值432pC/N。利用纳米级BaTiO3粉进行SPS烧结获得的BaTiO3陶瓷的d33随晶粒尺寸的增大而单调增加,在晶粒尺寸为9.6μm时达到425pC/N。前述三类BaTiO3陶瓷中介电晶粒尺寸效应与压电晶粒尺寸效应的不同行为表明,BaTiO3陶瓷的强压电活性的起源机制和高介电性能的起源机制之间应该存在着一定的差别。通过对比分析利用不同原料和烧结工艺得到的BaTiO3陶瓷的压电活性与其电滞回线和畴壁密度,作者发现剩余极化量Pr而非畴壁密度的大小对BaTiO3陶瓷的压电晶粒尺寸效应有决定性的影响。较大的剩余极化是在BaTiO3陶瓷中获得较高的压电性能的必要条件。一般说来,BaTiO3陶瓷的剩余极化会随着晶粒尺寸的增加而增大,但是剩余极化还会受到诸多外部因素如晶体缺陷等的影响。在高温下烧结的BaTiO3陶瓷容易产生氧空位等的缺陷,而缺陷在畴壁或晶界处聚集会对畴壁的运动产生钉扎作用从而降低剩余极化。由于使用通过不同工艺所得到的BaTiO3粉体和利用不同的烧结方式制备BaTiO3陶瓷时所需要的烧结温度相差较大,所得到的相应的BaTiO3陶瓷的剩余极化随晶粒尺寸表现出不同的变化趋势。对于普通烧结制备的BaTiO3陶瓷,其较高的烧结温度导致剩余极化随晶粒尺寸的增大而逐渐降低;而相对较低的烧结温度使得SPS烧结制备的BaTiO3陶瓷的剩余极化随着晶粒尺寸的增加而增大。由此可知,因烧结温度的差异而导致的剩余极化随晶粒尺寸不同的变化关系是造成BaTiO3陶瓷中不同形式的压电晶粒尺寸效应的根源所在。
     除上述关于压电晶粒尺寸效应的研究之外,本论文对利用水热纳米BaTiO3粉进行SPS烧结得到的BaTiO3陶瓷的场致应变的晶粒尺寸效应也进行了系统的研究。通过研究发现该类BaTiO3陶瓷的场致应变与介电性能和压电性能同样、呈现对晶粒尺寸较强的依赖性。然而,与介电晶粒尺寸效应和压电晶粒尺寸效应不同的是,BaTiO3陶瓷的场致应变随晶粒尺寸的增加而逐渐升高、在晶粒尺寸为5μm左右时达到最大值0.28%,此后随着晶粒尺寸的继续增加而急剧降低。作者认为,该研究结果在以下两方面有着重要的意义:(1)可以指导我们通过调节晶粒尺寸在极化BaTiO3陶瓷中获得到与软性PZT陶瓷相接近的高场致应变值;(2)明确了BaTiO3陶瓷的强压电活性与大场致应变具有不同的起源机制。根据实验数据,作者推测可恢复的非1800电畴的转向对于场致应变起着至关重要的作用。一般来讲,通常铁电陶瓷中的非180°电畴的转向可分为两类,即可恢复的转向和不可恢复的转向。对于BaTiO3陶瓷材料而言,在小晶粒的陶瓷中可恢复的非1800电畴数目虽然较多,但由于晶界较强的限制作用而使得场致应变较低;在大晶粒的陶瓷中虽然晶界的限制作用减弱,但可恢复的非180°电畴数目减少,并且对场致应变没有贡献的1800电畴数目增多,从而场致应变也较小。因而,只有在中等晶粒尺寸的样品中可恢复的非180°电畴的转向与晶界的限制作用达到适度的平衡时,才可以获得到较高的场致应变值。
     本论文还探讨了在室温下具有正交相晶体结构的Ba(Ti,Sn)O3陶瓷的晶粒尺寸效应。研究发现,室温下处于正交相的Ba(Ti,Sn)O3陶瓷的介电常数随着晶粒尺寸的增大而减小,压电常数d33随晶粒尺寸的增大而增大,场致应变则随着晶粒尺寸的增大先增大后减小。该研究结果表明,BaTiO3基陶瓷的晶粒尺寸效应与其所处于的铁电相的晶体结构关系不大,并再次验证了上述‘'BaTiO3基陶瓷中的高介电性能、强压电活性和大场致应变在起源机制方面存在较大的差异”的结论。BaTiO3基陶瓷的高介电性来源于小晶粒中较高的畴壁密度,强压电活性则来源于大晶粒中较大的剩余极化,而大的场致应变则受到可以恢复的非1800电畴与晶界两方面共同的影响。
     为了达到降低Ba(Ti,Sn)O3陶瓷的烧结温度同时提高其压电性能和温度稳定性的目的,本论文开展了利用少量CuO对Ba(Ti,Sn)O3陶瓷进行改性的研究。研究结果表明,利用少量CuO改性的Ba(Ti,Sn)O3陶瓷不但具有较低的烧结温度和较高的压电活性,同时还具有良好的温度稳定性和抗热老化性能。CuO改性的Ba(Ti,Sn)O3陶瓷的平面机电耦合系数kp在-10°C至50℃的温度范围内维持在50%左右,在居里温度以下进行热老化试验前后的室温压电性能几乎没有变化。为了深入地理解CuO改性的Ba(Ti,Sn)O3陶瓷良好的温度稳定性和抗热老化性能的原因,作者进一步对CuO改性的BaTiO3陶瓷随时间的老化行为进行了系统的研究。研究发现,经时间老化的CuO改性BaTiO3陶瓷的电滞回线会从正常铁电体的单电滞回线变为类似于反铁电体的双电滞回线。作者推测,引起CuO改性BaTiO3陶瓷的这种经时老化行为的主要原因是由于在烧结过程中部分Cu2+会占据Ti4+位从而与氧空位形成缺陷偶极子,而缺陷偶极子随时间会与自发极化的方向趋于一致,从而对畴壁移动产生强大的恢复力作用。因此,CuO改性BaTiO3陶瓷在经过短时间老化后会具有较为稳定的电畴结构。据此类推,CuO改性Ba(Ti,Sn)O3陶瓷的良好的温度稳定性和抗热老化性能应该与其较为稳定的电畴结构有很大关系。
Piezoelectric materials are an important class of electronic materials that can realize the conversion between electrical energy and mechanical energy. Piezoelectric materials can be divided into single crystals, ceramics, polymers and composites. Among all these piezoelectric materials, piezoelectric ceramics are widely used owning to their relatively simple fabrication process, low cost as well as the easiness of being fabricated into different shapes and up to a large scale. Because of the excellent piezoelectric properties, Pb(Zr,Ti)O3(PZT) ceramics are currently taking the largest share of global market of piezoelectric materials. However, due to the toxicity of lead oxide which is widely used during the fabrication of PZT ceramics, there is an increasing demand to fabricate high-performance lead-free candidates to replace PZT.
     BaTiO3is one typical kind of lead-free piezoelectric materials and BaTiO3ceramics are also historically the first polycrystalline piezoelectric materials. BaTiO3ceramics were widely used during the early stage of piezoelectric ceramics. However, after the discovery of PZT, BaTiO3ceramics were rarely used as piezoelectric materials. Nevertheless, there have been several breakthroughs in the piezoelectric properties of BaTiO3and BaTiO3-based ceramics recently. All these progresses indicate that BaTiO3-based ceramics possess a high possibility of becoming good candidates of lead-free piezoelectric materials.
     Most of the BaTiO3ceramics with high piezoelectric properties show high density and fine grain size according to literature. Therefore, it can be speculated that, being similar to the dielectric properties, the piezoelectric properties of BaTiO3ceramics also show strong grain-size dependence. The dielectric grain-size effect in BaTiO3ceramics has been studied extensively and the domain wall model for dielectric grain-size effect has been widely accepted. However, the study of piezoelectric grain-size effect in BaTiO3ceramics is still not thorough. For one thing, the mechanism of the high piezoelectric properties in those fine-grained BaTiO3ceramics is still unclear; for another, although the high-performance BaTiO3ceramics usually show fine grain size, some coarse-grained BaTiO3ceramics were also found to exhibit high piezoelectric properties in our recent study. Therefore, it is of great interest to explore the piezoelectric grain-size effect not only for the underlying mechanisms of high piezoelectric properties but also for even higher piezoelectric properties in BaTiO3ceramics.
     In order to understand the piezoelectric grain-size effect in BaTiO3ceramics more thoroughly and accurately, three groups of dense BaTiO3ceramics were fabricated by conventional sintering and sparking plasma sintering (SPS) respectively using conventional micro-sized BaTiO3powders and hydrothermally synthesized nano-sized BaTiO3powders as raw materials. By comparison, it was found that three groups of BaTiO3ceramics show similar grain-size dependence of permittivity ε', i.e., the permittivity increases with the decrease of average grain size and reaches the maximum value around1μm. However, three groups of BaTiO3ceramics show quite different grain-size dependences of piezoelectric constant d33, despite that the maximum d33of BaTiO3ceramics prepared from different powders and by different sintering methods are all over400pC/N. For BaTiO3ceramics prepared from micro-sized BaTiO3powder by conventional sintering,d33increases with the decrease of grain size and reaches the maximum value of410pC/N around1μm; for BaTiO3ceramics prepared from micro-sized BaTiO3powder by SPS, d/33first increases and then decreases with the increase of grain size and shows a peak value of432pC/N around4.5μm; for BaTiO3ceramics prepared from nano-sized BaTiO3powder by SPS, d33keeps increasing with the increase of grain size and reaches425pC/N around9.6μm. The differences between dielectric and piezoelectric grain-size effects in three groups of BaTiO3ceramics demonstrate that the mechanisms of high permittivity and high piezoelectricity in BaTiO3ceramics should be different. By comparing the piezoelectric properties, P-E hysteresis loops and domain wall density of BaTiO3ceramics prepared from different powders and by different sintering methods, it is concluded that the remnant polarization, instead of the domain wall density, determines the piezoelectric properties in BaTiO3ceramics. Large remnant polarization is essential for high d33in BaTiO3ceramics. Generally, the remnant polarization of BaTiO3ceramics increases with increasing grain size, but it can also be easily influenced by other factors such as defects. When sintered at high temperatures, BaTiO3ceramics can easily produce considerable amount of defects such as oxygen vacancies, which tend to aggregate along the domain boundaries or grain boundaries and could produce a strong pinning effect on the domain wall movement, thus decrease the remnant polarization significantly. Owing to their different sintering temperatures, BaTiO3ceramics prepared form different powders and by different sintering methods show different grain-size dependences of the remnant polarization. For conventionally sintered BaTiO3ceramics, the remnant polarization decreases with the increase of grain size because of their high sintering temperatures; while the relatively low sintering temperatures make the remnant polarization of SPSed BaTiO3increase with the increase of grain size. Thus it can be concluded that the different grain-size dependences of remnant polarization caused by different sintering temperatures is the cause of different piezoelectric grain size effects in BaTiO3ceramics.
     Besides piezoelectric grain-size effect, the grain-size dependence of electric field-induced strain of BaTiO3ceramics prepared from nano-sized powders by SPS was also systematically studied. Being similar to the permittivity and d33, the electric field-induced strain was also found to show strong grain-size dependence. However, being different from the dielectric and piezoelectric grain-size effects, the electric field-induced strain first increases with the increase of grain size and then decreases significantly after a peak value of0.28%around5μm. It is thought that the results are of great importance from the following two aspects:(1) Through grain size optimization, a large electric field-induced strain which is close to that of soft PZT ceramics was obtained successfully in poled BaTiO3ceramics;(2) It is made clear that high piezoelectricity and large electric field-induced strain have different mechanisms in BaTiO3ceramics. According to the experimental results, it is speculated that the recoverable non-1800domain reorientation plays an important role in electric field-induced strain. Generally, there are two kinds of non-1800domain reorientations in ferroelectric ceramics upon an electric field, i.e., the recoverable and unrecoverable domain reorientations. For BaTiO3ceramics, small grains have more recoverable non-1800domains but also more restriction from grain boundaries; coarse grains have less restriction from grain boundaries but less recoverable non-1800domains. Therefore, only BaTiO3ceramics with intermediate grain size, which have a better trade-off between recoverable non-180°domain reorientation and restriction from grain boundaries, can exhibit large electric field-induced strain.
     The grain-size effect of orthorhombic Ba(Ti,Sn)O3ceramics were also studied systematically. For orthorhombic Ba(Ti,Sn)O3ceramics, the permittivity decreases with the increase of grain size, the d33increases with the increase of grain size, and the electric field-induced strain first increases and then decreases with the increase of grain size. These results indicate that the grain-size effects in BaTiO3based ceramics are irrelevant of their ferroelectric phases, and once again verify that high permittivity, strong piezoelectricity and large electric field-induced strain in BaTiO3based ceramics have different mechanisms. For BaTiO3based ceramics, high permittivity mainly comes from the high domain wall density in fine grains, and strong piezoelectricity is closely related to the high remnant polarization, while the large electric field-induced strain is influenced by both recoverable non-1800domains and grain boundaries.
     In order to lower the sintering temperature and enhance the piezoelectric properties, Ba(Ti,Sn)O3ceramics were modified by a small amount of CuO. It was found that CuO-modified Ba(Ti,Sn)O3ceramics not only show lower sintering temperature and enhanced piezoelectric properties, but also exhibit much better temperature stability and thermal ageing stability. The planar electromechanical coupling factor kp keeps around50%in the temperature range of-10℃and50℃, moreover, the room temperature piezoelectric properties of CuO-modified Ba(Ti,Sn)O3ceramics are not influenced by thermal ageing below Curie temperature. In order to understand the mechanism of the good temperature stability and thermal ageing stability of CuO-modified Ba(Ti,Sn)O3ceramics, the ageing behaviour of CuO-modified BaTiO3ceramics were studied systematically. It was found that the P-E hysteresis loops of CuO-modified BaTiO3ceramics developed quickly with time from typical ferroelectric single hysteresis loops into double hysteresis loops which are commonly observed in antiferroelectrics. It is speculated that this kind of ageing behaviour is caused by that during sintering Ti4+may be partially replaced by Cu2+which will form a defect dipole with oxygen vacancy, these defect dipoles tend to align with spontaneous polarizations with time and the aligned defect dipoles can exert a strong restoring fore on domain wall movement. Therefore, CuO-modified BaTiO3ceramics can show stable domain structure after ageing. Accordingly, the good temperature stability and thermal ageing stability of CuO-modified Ba(Ti,Sn)O3ceramics were also thought to be closely related to their stable domain structure.
引文
[1]方俊鑫,殷之文,电介质物理学,科学出版社,北京(1998).
    [2]王春雷,李吉超,赵明磊,压电铁电物理,科学出版社,济南(2009).
    [3]李翰如,电介质物理导论,成都科技大学出版社,成都(1990).
    [4]孙目珍,电介质物理基础,华南理工大学出版社,广州(2002).
    [5]B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).
    [6]张沛霖,钟维烈,压电材料与器件物理,山东科学技术出版社,济南(1994).
    [7]钟维烈,铁电体物理学,科学出版社,北京(1998).
    [8]G. H. Haertling, "Ferroelectric ceramics:History and Technology", J. Am. Ceram. Soc.,82(4),797-818(1999).
    [9]L. Jin, F. Li and S. J. Zhang, "Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures", J. Am. Ceram. Soc., 97(1),1-27 (2014).
    [10]J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt", Phys. Rev., 17 (4),475-481 (1921).
    [11]G. Arlt, "Twinning in Ferroelectric and Ferroelastic Ceramics:Stress Relief",J. Mater. Sci.,25 (6) 2655-66 (1990).
    [12]M. C. McQuarrie, W. R. Buessem, "The Aging Effect in Barium Titanate", Am. Ceram. Soc. Bull.,34,402 (1955).
    [13]K. W. Plessner, "Ageing of the Dielectric Properties of Barium Titanate Ceramics", Proc. Phys. Soc. B, (12),1261-1268 (1956).
    [14]A. V. Turik, A. I. Chernobabov, "Orientational Contribution to the Dielectric, Piezoelectric, and Elastic Properties of a Ferroelectric Ceramic", Sov. Phys. Solid State (Eng. Transl.),22 (9),1127-1130 (1977).
    [15]S. P. Li, W. W. Cao, and L. E. Cross, "The Extrinsic Nature of Nonlinear Behavior Observed in Lead Zirconate Titanate Ferroelectric Ceramic", J. Appl. Phys.,69 [10] 7219-24 (1991).
    [16]Q. M. Zhang, H. Wang, N. Kim, and L. E. Cross, "Direct Evaluation of Domain-Wall and Intrinsic Contributions to the Dielectric and Piezoelectric Response and Their Temperature Dependence on Lead Zirconate-Titanate Ceramics", J. Appl. Phys.,75 [1] 454-9 (1991).
    [17]M. Demartin and D. Damjanovic, "Dependence of the Direct Piezoelectric Effect in Coarse and Fine Grain Barium Titanate Ceramics on Dynamic and Static Pressure", Appl. Phys. Lett.,68 [21] 3046-8 (1996).
    [18]D. Damjanovic, "Stress and Frequency Dependence of the Direct Piezoelectric Effect in Ferroelectric Ceramics", J. Appl. Phys.,82 [4] 1788-97 (1997).
    [19]D. Damjanovic, "Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics", J. Am. Ceram. Soc.,88 [10] 2663-76 (2005).
    [20]G. Arlt and N. A. Pertsev, "Force constant and effective mass of 90°domain walls in ferroelectric ceramics,"J. Appl. Phys.,70 [4] 2283-9 (1991).
    [21]A. G. Luchaninov, A. V. Shil'nikov, L. A. Shuvalov, and I. Ju. Shipkova, "The Domain Processes and Piezoeffect in Polycrystalline Ferroelectrics", Ferroelectrics,98 (1),123-126 (1989).
    [22]D. Damjanovic, M. Demartin, "The Rayleigh Law in Piezoelectric Ceramics", J. Phys. D:Appl. Phys.,29 (7),2057-2060 (1996).
    [23]D. Damjanovic, M. Demartin, "Contribution of the Irreversible Displacement of Domain Walls to the Piezoelectric Effect in Barium Titanate and Lead Zirconate Titanate Ceramics",J. Phys.:Condens. Matter,9 (23),4943-4953 (1997).
    [24]W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications-Status and Perspective", J. Electroceram.,29,71-93 (2012).
    [25]S. Roberts, "Dielectric and Piezoelectric Properties of Barium Titanate", Phys. Rev.,71 (12),890-895 (1947).
    [26]W. P. Mason, "Electrostrictive Effect in Barium Titanate Ceramics", Phys. Rev., 74 (9),1134-1147 (1948).
    [27]B. Jaffe, R. S. Roth, S. Marzullo, "Piezoelectric Properties of Lead Zirconate-Lead Titanate Solid-Solution Ceramics", J. Appl. Phys.,25 (6), 809-810(1954).
    [28]B. Jaffe, R. S. Roth, S. Marzullo, "Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide:Tin Oxide and Lead Titanate-Lead Hafnate", J. Res. Natl. Inst. Stan.,55,239-254 (1955).
    [29]B. Jaffe, USA Patent No.2 708 244 (1955).
    [30]F. Kulcsar, USA Patent No.2 911 370 (1959).
    [31]T. R. Gururaja, USA Patent No.5 345 139 (1994).
    [32]F. Kulcsar, "Electromechanical Properties of Lead Titanate Zirconate Ceramics Modified with Certain Three-or Five-Valent Additions", J. Am. Ceram. Soc.,42 (7),343-349 (1959).
    [33]G. A. Smolenskii, A. I. Agranovskaya, "Dielectric Polarization of a Number of Complex Compounds", Sov. Phys.-Solid State (Engl. Transl.) 1 (10),1429-1437 (1960).
    [34]H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering", Jpn. J. Appl. Phys.,45 (9B),7405-7408 (2006).
    [35]H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Considerations for BaTiO3 Ceramics with High Piezoelectric Properties Fabricated by Microwave Sintering Method", Jpn. J. Appl. Phys.47 (11),8468-8471 (2008).
    [36]T. Karaki, K Yan, and M. Adachi, "Barium Titanate Piezoelectric Ceramics Manufactured by Two-Step Sintering", Jpn. J. Appl. Phys.,46,7035-7038 (2007).
    [37]S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura, "Preparation of [110] Grain Oriented Barium Titanate Ceramics by Templated Grain Growth Method and Their Piezoelectric Properties", Jpn. J. Appl. Phys.,46 (10B),7039-7043 (2007).
    [38]S. R Shao, J. L. Zhang, Z. Zhang, P. Zheng, M. L. Zhao, J. C. Li, and C. L. Wang, "High Piezoelectric Properties and Domain Configuration in BaTiO3 Ceramics Obtained Through the Solid-State Reaction Route", J. Phys. D:Appl. Phys.,41 (12),125408 (2008).
    [39]Y. Huan, X. Wang, J. Fang, and L. Li, "Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two-step Sintering", J. Am. Ceram. Soc.,96 (11),3369-3371 (2013).
    [40]W. F. Liu and X. B. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett.,103 (25),257602 (2009).
    [41]J. Suchanicz, "Investigations of the Phase Transitions in Na0.5Bi0.5TiO3", Ferroelectrics,172,455-458 (1995).
    [42]J. Suchanicz, "X-ray Diffraction Study of the Phase Transitions in Nao.5Bio.5Ti03", Ferroelectrics,165,249-253 (1995).
    [43]J. Suchanicz, "Peculiarities of Phase Transitions in Na0.5Bi0.5TiO3", Ferroelectrics,190,77-81 (1997).
    [44]K. Sakata, T. Takenaka and Y. Naitou, "Phase Relations, Dielectric and Piezoelectric Properties of Ceramics in the System (Bi0.5Na0.5)TiO3-PbTiO3", Ferroelectrics,131,219-226 (1992).
    [45]J. Kreisel, A. M. Glazer, P. Bouvier and G. Lucazeau, "High-Pressure Raman Study of a Relaxor Ferroelectric:The Na0.5Bi0.5TiO3 perovskite", Phys. Rev. B, 63,174106(2001).
    [46]Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, "Lead-Free Piezoceramics", Nature,432 (7013),84-87 (2004).
    [47]H. Kniekamp and W. Heywang, "Depolarisationseffekte in Polykristallin Gesintertem BaTiO3", Naturwissenschaften,41 (3),61 (1954).
    [48]K. Kinoshita and A. Yamaji, "Grain-size Effects on Dielectric Properties in Barium Titanate Ceramics",J. Appl. Phys.,47,371-373 (1976).
    [49]T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, and T. Tsurumi, "Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics", Jpn. J. Appl. Phys.,47 (9),7607-7611 (2008).
    [50]P. Zheng, J. L. Zhang, Y. Q. Tan, and C. L. Wang, "Grain-Size Effects on Dielectric and Piezoelectric Properties of Poled BaTiO3 Ceramics", Acta Mater., 60,5022-5030 (2012).
    [51]W. R. Buessem, L. E. Cross, and A. K. Goswami, "Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate", J. Am. Ceram. Soc.,49 (1), 33-36 (1966).
    [52]G. Arlt, D. Hennings, and G. de With, "Dielectric Properties of Fine-Grained Barium Titanate Ceramics", J. Appl. Phys.,58 (4),1619-1625 (1985).
    [53]T. Hungria, J. Galy and A. Castro, "Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo-Ferroelectric Materials", Adv. Eng. Mater.,11,615(2009).
    [1]H. Kniekamp and W. Heywang, "Depolarisationseffekte in Polykristallin Gesintertem BaTiO3" Naturwissenschaften 41 (3),61-61 (1954).
    [2]K. Kinoshita and A. Yamaji, "Grain-size Effects on Dielectric Properties in Barium Titanate Ceramics,"J. Appl Phys.47,371-373 (1976).
    [3]R. J. Brandmayr, A. E. Brown, and A. M. Dunlap, "U.S. Technical Report No. ECOM-2614, May 1965 (unpublished)," (1965).
    [4]T. Karaki, K. Yan, T. Miyamoto, and M. Adachi, "Lead-Free Piezoelectric Ceramics with Large Dielectric and Piezoelectric Constants Manufactured from BaTiO3 Nano-Powder," Jpn. J. Appl. Phys.46 (4), L97-L98 (2007).
    [5]T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, and T. Tsurumi, "Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics," Jpn. J. Appl. Phys.47 (9),7607-7611 (2008).
    [6]T. Hoshina, Y. Kigoshi, S. Hatta, H. Takeda, and T. Tsurumi, "Domain Contribution to Dielectric Properties of Fine-Grained BaTiO3 Ceramics," Jpn. J. Appl. Phys.48 (9),09KC01 (2009).
    [7]W. R. Buessem, L. E. Cross, and A. K. Goswami, "Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,"J. Am. Ceram. Soc.49 (1), 33-36(1966).
    [8]G. Arlt, D. Hennings, and G. de With, "Dielectric Properties of Fine-Grained Barium Titanate Ceramics," J. Appl. Phys.58 (4),1619-1625 (1985).
    [9]H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, and S. Tsurekawa, "Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering," Jpn. J. Appl. Phys.45 (1), L30-L32 (2006).
    [10]H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Piezoelectric Properties of BaTiO3 Ceramics with High Performance Fabricated by Microwave Sintering," Jpn. J. Appl. Phys.45 (9B),7405-7408 (2006).
    [11]H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, "Considerations for BaTiO3 Ceramics with High Piezoelectric Properties Fabricated by Microwave Sintering Method," Jpn. J. Appl. Phys.47 (11),8468-8471 (2008).
    [12]Y. Huan, X. Wang, J. Fang, and L. Li, "Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two-step Sintering",J. Am. Ceram. Soc.,96 (11),3369-3371 (2013).
    [13]S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura, "Preparation of [110] Grain Oriented Barium Titanate Ceramics by Templated Grain Growth Method and Their Piezoelectric Properties," Jpn. J. Appl. Phys.46 (10B),7039-7043 (2007).
    [14]S. F. Shao, J. L. Zhang, Z. Zhang, P. Zheng, M. L. Zhao, J. C. Li, and C. L. Wang, "High Piezoelectric Properties and Domain Configuration in BaTiO3 Ceramics Obtained Through the Solid-State Reaction Route," J. Phys. D:Appl. Phys.41 (12),125408 (2008).
    [15]W. F. Liu and X. B. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett.103 (25),257602 (2009).
    [16]W. Pan, Y. X. Li, Y Q. Lu, "Enhanced Piezoelectric Properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Lead-Free Ceramics by Optimizing Calcination and Sintering Temperature," J. Eur. Ceram. Soc.31 (11),2005-2012 (2011).
    [17]C. A. Randall, N. Kim, J. Kucera, W. W. Cao, and T. R. Shrout, "Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotropic-Phase-Boundary Lead Zirconate Titanate Ceramics," J. Am. Ceram. Soc.81,677-88 (1998).
    [18]A. J. Bell, A. J. Moulson, and L. E. Cross, "The Effect of Grain Size on the Permittivity of BaTiO3," Ferroelectrics 54,147-150 (1984).
    [19]B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).
    [20]R. C. Devries and J. E. Burke, "Microstructure of Barium Titanate Ceramics," J. Am. Ceram. Soc.40 (6),200-206 (1957).
    [21]G. Arlt and P. Sasko, "Domain Configuration and Equilibrium Size of Domains in BaTiO3 Ceramics," J. Appl. Phys.51 (9),4956-4960 (1980).
    [22]G. Arlt, "Twinning in Ferroelectric and Ferroelastic Ceramics:Stress Relief," J. Mater. Sci.25 (6),2655-2666 (1990).
    [23]J. F. Chou, M. H. Lin, and H. Y. Lu, "Ferroelectric Domains in Pressureless-Sintered Barium Titanate," Acta Mater.48 (13),3569-3579 (2000).
    [24]W. W. Cao and C. A. Randall, "Grain Size and Domain Size Relations in Bulk Ceramic Ferroelectric Materials", J. Phys. Chem. Solids 57,1499-1505 (1996).
    [25]Q. M Zhang, H. Wang, N. Kim, and L. E. Cross, "Direct Evaluation of Domain-Wall and Intrinsic Contributions to the Dielectric and Piezoelectric Response and Their Temperature Dependence on Lead Zirconate-Titanate Ceramics,"J. Appl. Phys.75 (1),454-459 (1991).
    [26]M. Demartin and D, Damjanovic, "Dependence of the Direct Piezoelectric Effect in Coarse and Fine Grain Barium Titanate Ceramics on Dynamic and Static Pressure,"Appl. Phys. Lett.68 (21),3046-3048 (1996).
    [27]D. Damjanovic, "Stress and Frequency Dependence of the Direct Piezoelectric Effect in Ferroelectric Ceramics,"J. Appl. Phys.82 (4) 1788-1797 (1997).
    [28]D. Damjanovic, "Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics," J. Am. Ceram. Soc.88 (10),2663-2676 (2005).
    [29]G. Arlt and N. A. Pertsev, "Force Constant and Effective Mass of 90°Domain Walls in Ferroelectric Ceramics," J. Appl. Phys.70 (4),2283-2289 (1991).
    [30]A. G. Luchaninov, A. V Shil'nikov, L. A. Shuvalov, and I. Ju. Shipkova, "The domain Processes and Piezoeffect in Polycrystalline Ferroelectrics," Ferroelectrics 98 (1) 123-126 (1989).
    [31]M. C. McQuarrie, W. R. Buessem, "The Aging Effect in Barium Titanate," Am. Ceram. Soc. Bull.34,402 (1955).
    [32]K. W. Plessner, "Ageing of the Dielectric Properties of Barium Titanate Ceramics," Proc. Phys. Soc. B (12),1261-1268 (1956).
    [33]A. V. Turik, A. I. Chemobabov, "Orientational Contribution to the Dielectric, Piezoelectric, and Elastic Properties of a Ferroelectric Ceramic," Sov. Phys. Solid State (Eng. Transl.) 22 (9),1127-1130 (1977).
    [34]Walter J. Merz, "The Electric and Optical Behavior of BaTiO3 Single-Domain Crystals," Phys. Rev.76 (8),1221-1225 (1949).
    [35]H. Diamond, "Variation of Permittivity with Electric Field in Perovskite-Like Ferroelectrics," J. Appl. Phys.32 (5),909-915 (1961).
    [36]A. V. Turik, "Contribution to the Theory of the Dielectric Constant of Ferroelectric Ceramics," Bull. Acad. Sci. Ussr. Phys. Ser.29,91 (1965).
    [37]D. A. Hall, "Nonlinearity in piezoelectric ceramics,"J. Mater. Sci.36,4575-4601 (2001).
    [38]Q. M. Zhang, W. Y. Pan, S. J. Jang, and L. E. Cross, "Domain Wall Excitations and Their Contributions to the Weak-Signal Response of Doped Lead Zirconate Titanate Ceramics," J. Appl. Phys.64 (11),6445-6451 (1988).
    [39]P. Zheng, J. L. Zhang, Y. Q. Tan, and C. L. Wang, "Grain-Size Effects on Dielectric and Piezoelectric Properties of Poled BaTiO3 Ceramics", Acta Mater. 60,5022-5030(2012).
    [40]N. Uchida and T. Ikeda, "Temperature and Bias Characteristics of Pb(Zr,Ti)O3 Families Ceramics," Jpn. J. Appl. Phys.4 (11),867-880 (1965).
    [41]H. Yan, F. Inam, G. Viola, H. Ning, H. Zhang, Q. Jiang, T. Zeng, Z. Gao, and M. J. Reece, "The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops", J. Adv Dielectrics 1 107-118(2011).
    [42]D. Berlincourt and H. A. Krueger, "Domain Processes in Lead Titanate Zirconate and Barium Titanate Ceramics," J. Appl. Phys.30,1804-1810 (1959).
    [43]E. C. Subbaraol, M. C. McQuarriel and W. R. Buessem, "Domain Effects in Polycrystalline Barium Titanate," J. Appl Phys.28,1194-1200 (1957).
    [44]G. Arlt, "The Influence of Microstructure on the Properties of Ferroelectric Ceramics," Ferroelectrics 104,217-227 (1990).
    [45]H. T. Martirena and J. C. Burfoot, "Grain-size Effects on Properties of Some Ferroelectric Ceramics," J. Phys. C:Solid State Phys.7,3182-3192 (1974).
    [46]M. J. Haun, "Thermodynamic Theory of the Lead Zirconate-Titanate Solid Solution System," PhD Thesis. The Pennsylvania State University, University Park, PA,1988.
    [47]A. Chen and Y. Zhi, "Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3," Phys. Rev. B 62 (1),228-236 (1999).
    [48]B. S. Kang, S. K. Choi and C. H. Park, "Diffuse Dielectric Anomaly in Perovskite-Type Ferroelectric Oxides in the Temperature Range of 400-700℃," J. Appl. Phys.94,1904-1911 (2003).
    [49]I. K. Yoo, and S. B. Desu, "Fatigue Parameters of Lead Zirconate Titanate Thin Films," Mater. Res. Soc. Symp. Proc.243,323 (1992).
    [50]J. F. Scott and C. A. Paz de Arajuo, "Ferroelectric Memories," Science 246, 1400-1405 (1989).
    [51]L. He, and D. Vanderbilt, "First-Principles Study of Oxygen-Vacancy Pinning of Domain Walls in PbTiO3," Phys. Rev. B 68,134103 (2003).
    [52]Y. Choi, T. Hoshina, H. Takeda, and T. Tsurumi, "Effect of Oxygen Vacancy and Oxygen Vacancy Migration on Dielectric Response of BaTiO3-Based Ceramics," Jpn. J. Appl. Phys.50,031504 (2011).
    [53]T. Oyama, N. Wada, and H. Takagi, "Trapping of Oxygen Vacancy at Grain Boundary and its Correlation with Local Atomic Configuration and Resultant Excess Energy in Barium Titanate:A Systematic Computational Analysis," Phys. Rev.B,82,134107(2010).
    [1]B. Jaffe, W. R. Cook, H. Jaffe, "Piezoelectric Ceramics", Academic Press, London, UK,1971.
    [2]W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications-Status and Perspective" J. Electroceram.,29 (1),71-93 (2012).
    [3]R. E. Newnham, "Properties of Materials, Anisotropy, Symmetry, Structure", Oxiford University Press, Oxiford, UK,2005.
    [4]J. Kuwata, K. Uchino, S. Nomura, "Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals", Jpn. J. Appl. Phys. Part 1 21, 1298-1302(1982).
    [5]W. Y. Pan, C. Q. Dam, Q. M. Zhang, L. E. Cross, "Large Displacement Transducers Based on Electric Field Forced Phase Transitions in the Tetragonal (Pbo.97Lao.o2) (Ti,Zr,Sn)O3 Family of Ceramics", J. Appl. Phys.66,6014-6023 (1989).
    [6]S. E. Park, T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals", J. Appl. Phys.82,1804-1811 (1997).
    [7]T. Takenaka, K. I. Maruyama, K. Sakata, "(Bi1/2Na1/2) TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics", Jpn. J. Appl. Phys.30,2236-2239 (1991).
    [8]P. W. Rehrig, S. E. Park, S. T. McKinstry, G. L. Messing, B. Jones, T. R. Shrout, "Piezoelectric Properties of Zirconium-Doped Barium Titanate Single Crystals Grown by Templated Grain Growth", J. Appl. Phys.86,1657-1661 (1999).
    [9]Z. Yu, R. Guo, A. S. Bhalla, "Orientation Dependence of the Ferroelectric and Piezoelectric Behavior of Ba(Ti1-xZr)O3 Single Crystals", Appl. Phys. Lett.77, 1535-1537(2000),
    [10]X. B. Ren, "Large Electric-Field-Induced Strain in Ferroelectric Crystals by Point-Defect Mediated Reversible Domain Switching", Nature Materials 3, 91-94 (2004).
    [11]E. Burcsu, G. Ravichandran, K. Bhattacharya, "Large Strain Electrostrictive Actuation in Barium Titanate", Appl. Phys. Lett.77,1698-1700 (2000).
    [12]W. Cao, "The Strain Limits on Switching", Nature Materials 4,727-728 (2005).
    [13]E. M. Sabolsky, A. R. James, S. Kwon, S. T. McKinstry, G. L. Messing, "Piezoelectric Properties of<001> Textured Pb(Mg1/3Nb2/3)O3-PbTiO3 Ceramics", Appl. Phys. Lett.78,2551-2553 (2001).
    [14]S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, J. Rodel, "Giant Strain in Lead-Free Piezoceramics Bi0.5Na0.5TiO3-BaTi03-Ko.5Nao.5NbO3 System", Appl. Phys. Lett.91,112906 (2007).
    [15]S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rodel, D. Damjanovic, "High-Strain Lead-free Antiferroelectric Electrostrictors", Adv. Mater.21,4716-4720 (2009).
    [16]A. Chen, Z. Yu, Z. Jing, R. Guo, A. S. Bhalla, L. E. Cross, "Piezoelectric and Electrostrictive Strain Behavior of Ce-doped BaTiO3 Ceramics", Appl. Phys. Lett.80,3424-3426 (2002).
    [17]H. Kniekamp and W. Heywang, "Depolarisationseffekte in Polykristallin Gesintertem BaTiO3" Naturwissenschaften 41 (3),61-61 (1954).
    [18]K. Kinoshita, A. Yamaji, "Grain-size Effects on Dielectric Properties in Barium Titanate Ceramics",J. Appl. Phys.47,371-373 (1976).
    [19]G. Arlt, D. Hennings, G. de With, "Dielectric Properties of Fine-grained Barium Titanate Ceramics",J. Appl. Phys.58,1619-1625 (1985).
    [20]T. Hoshina, K. Takazaki, J. Y. Li, T. Kasama, H. Kakemoto, T. Tsurumi, "Domain Size Effect on Dielectric Properties of Barium Titanate Ceramics", Jpn. J. Appl. Phys.47,7607-7611 (2008).
    [21]P. Zheng, J. L. Zhang, Y. Q. Tan, and C. L. Wang, "Grain-Size Effects on Dielectric and Piezoelectric Properties of Poled BaTiO3 Ceramics", Acta Mater. 60,5022-5030 (2012).
    [22]Y. Huan, X. Wang, J. Fang, and L. Li, "Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two-step Sintering",J. Am. Ceram. Soc.,96 (11),3369-3371 (2013).
    [23]G. Viola, T. Saunders, X. Wei, K. B. Chong, H. Luo, M. J. Reece, H. Yan, "Contribution of Piezoelectric Effect, Electrostriction and Ferroelectric/Ferroelastic Switching to Strain-Electric Field Response of Dielectrics",J. Adv. Dielectr.3,1350070 (2013).
    [24]F. Li, L. Jin, Z. Xu, S. J. Zhang, "Electrostrictive Effect in Ferroelectrics:An Alternative Approach to Improve Piezoelectricity", Appl. Phys. Rev.1,011103 (2014).
    [25]G. Arlt, P. Sasko, "Domain Configuration and Equilibrium Size of Domains in BaTiO3 Ceramics", J. Appl. Phys.51,4956-4960 (1980).
    [26]H. Kungla, M. J. Hoffmann, "Effects of Sintering Temperature on Microstructure and High Field Strain of Niobium-Strontium Doped Morphotropic Lead Zirconate Titanate", J. Appl. Phys.107,054111 (2010).
    [27]H. Kungla, M. J. Hoffmann, "Temperature Dependence of Poling Strain and Strain Under High Electric Fields in LaSr-doped Morphotropic PZT and its Relation to Changes in Structural Characteristics", Acta Mater.55,5780-5791 (2007).
    [28]L. X. Zhang, W. Chen, X. Ren, "Large Recoverable Electrostrain in Mn-doped (Ba,Sr) TiO3 Ceramics", Appl. Phys. Lett.85,5658-5660 (2004).
    [29]G. Arlt, "Twinning in Ferroelectric and Ferroelastic Ceramics:Stress Relief," J. Mater. Sci.25 (6),2655-2666 (1990).
    [1]张沛霖,钟维烈,压电材料与器件物理,山东科学技术出版社,济南(1994).
    [2]B. Jaffe, W. R. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, London (1971).
    [3]W. F. Liu and X. B. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics", Phys. Rev. Lett.103 (25),257602 (2009).
    [4]S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura, "Preparation of [110] Grain Oriented Barium Titanate Ceramics by Templated Grain Growth Method and Their Piezoelectric Properties", Jpn. J. Appl. Phys.46 (10B),7039-7043 (2007).
    [5]S. E. Park, S. Wada, L. E. Cross and T. R. Shrout, "Crystallographically Engineered BaTiO3 Single Crystals for High-Performance Piezoelectrics", J. Appl. Phys.86,2746-2750 (1999).
    [6]P. Zheng, J. L. Zhang, S. F. Shao, Y. Q. Tan and C. L. Wang, "Piezoelectric Properties and Stabilities of CuO-Modified Ba(Ti,Zr)O3 ceramics", Appl. Phys. Lett.94,032902 (2009).
    [7]J. L. Zhang, Z. Zhang, S. F. Shao, P. Zheng and C. L. Wang, "High Piezoelectric Performance and Physical Mechanism of CuO-Modified Ba(Ti,Sn)O3 ceramics", J. Adv. Dielec.,1,79-84 (2011).
    [8]P. Zheng, J. L. Zhang, Y. Q. Tan, and C. L. Wang, "Grain-Size Effects on Dielectric and Piezoelectric Properties of Poled BaTiO3 Ceramics", Acta Mater. 60,5022-5030 (2012).
    [9]Y. Huan, X. Wang, J. Fang, and L. Li, "Grain Size Effects on Piezoelectric Properties and Domain Structure of BaTiO3 Ceramics Prepared by Two-step Sintering",J. Am. Ceram. Soc.,96 (11),3369-3371 (2013).
    [10]K. Kinoshita and A. Yamaji, "Grain-size Effects on Dielectric Properties in Barium Titanate Ceramics", J. Appl. Phys.47,371-373 (1976).
    [11]G. Picht, H. Kungl, M. Baurer and M. J. Hoffman, "High Electric Field Induced Strain in Solid-State Route Processed Barium Titanate Ceramics", Func. Mater. .,3,59-64(2010).
    [1]P. Zheng, J. L. Zhang, S. F. Shao, Y. Q. Tan and C. L. Wang, "Piezoelectric Properties and Stabilities of CuO-Modified Ba(Ti,Zr)O3 ceramics", Appl. Phys. Lett.94,032902 (2009).
    [2]J. L. Zhang, Z. Zhang, S. F. Shao, P. Zheng and C. L. Wang, "High Piezoelectric Performance and Physical Mechanism of CuO-Modified Ba(Ti,Sn)O3 ceramics", J. Adv. Dielec.,1,79-84 (2011).
    [3]W. F. Liu and X. B. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics", Phys. Rev. Lett.103 (25),257602 (2009).
    [4]P. Wang, Y. X. Li and Y. Q. Lu, "Enhanced Piezoelectric Properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 Lead-free Ceramics by Optimizing Calcination and Sintering Temperature",J. Euro. Ceram. Soc.31,2005-2012 (2011).
    [5]B. Jaffe, W. R. Cook, H. Jaffe, "Piezoelectric Ceramics", Academic Press, London, UK,1971.
    [6]P. V. Lambeck and G. H. Jonker, "Ferroelectric Domain Stabilization in BaTiO3 by Bulk Ordering of Defects", Ferroelectrics,22,729-731 (1978).
    [7]Q. Tan, J. X. Li and D. Viehland, "Role of Lower Valent Substituent-Oxygen Vacancy Complexes in Polarization Pinning in Potassium-Modified Lead Zirconate Titanate", Appl. Phys. Lett.75,418-420 (1999).
    [8]G. Arlt and H. Neumamn, "Internal bias in ferroelectric ceramics:Origin and Time Dependence", Ferroelectrics 87,109-120 (1988).
    [9]L. X. Zhang, W. Chen and X. B. Ren, "Large Recoverable Electrostrain in Mn-doped (Ba,Sr) TiO3 Ceramics", Appl. Phys. Lett.85,5658-5660 (2004).
    [10]W. F. Liu, W. Chen, L. Yang, L. X. Zhang, Y. Wang, C. Zhou, S. T. Li and X. B. Ren, "Double Hysteresis Loop in Cu-Doped K0.5Na0.5NbO3 Lead-Free Piezoelectric Ceramics", Appl. Phys. Lett.90,232903 (2007).
    [11]L. X. Zhang and X. B. Ren, "Aging Behavior in Single-Domain Mn-Doped BaTiO3 Crystals:Implication for a Unified Microscopic Explanation of Ferroelectric Aging", Phys. Rev. B 73,094121 (2006).
    [12]X. B. Ren, "Large Electric-Field-Induced Strain in Ferroelectric Crystals by Reversible Domain Switching", Nat. Mater.3,91-94 (2004).
    [13]U. Robels and G. Arlt, "Domain Wall Clamping in Ferroelectrics by Orientation of Defects", J. Appl. Phys.73,3454-3460 (1993).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700