用户名: 密码: 验证码:
Ox-LDL诱导单核/内皮细胞共培养系统VEGF上调及其促通透性升高的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的进步和人口的老龄化,冠心病、脑卒中等心脑血管疾病已成为威胁人类健康的主要杀手。作为心脑血管疾病共同病理基础的动脉粥样硬化(Atherosclerosis,AS),一直是人们研究心脑血管疾病发病机制和寻找有效防治措施的突破口。AS病因绝非一种因素所致,可能为多种因素联合作用的结果。这些危险因素参与AS的发病机制尚未完全明了。近年来提出,动脉粥样硬化可能是一种多因素引起的炎症反应。
    内皮通透性增加和血浆脂蛋白(主要是低密度脂蛋白—LDL)水平增高,使脂蛋白易于渗透到内皮下,是AS发展过程中的主要特征之一。其中与发病关系最密切的是Ox-LDL。普遍认为血浆中的LDL通过内皮屏障进入动脉壁,滞留于内皮下层,成为各种修饰的LDL,Ox-LDL刺激相邻的内皮细胞产生致炎信号,释放各种化学刺激剂和细胞因子,如VEGF、M-CSF和MCP-1;使循环单核细胞进入动脉壁,分化为巨噬细胞表达大量的清道夫受体(scavenger receptor,SR),通过清道夫受体无限制摄取氧化修饰的低密度脂蛋白(oxidized low density lipoprotein,Ox-LDL),导致脂质过氧化物的形成,从而转化为单核/巨噬细胞源性泡沫细胞;这些因子进一步激活平滑肌细胞(SMC)使之合成细胞外基质,引起SMC迁移和增殖,纤维组织形成,这种过程反复发生,最终形成AS斑块。从体内AS病灶中得到的修饰LDL,其性状类似与体外LDL用铜离子氧化所得到的Ox-LDL。因此我们以铜离子氧化得到的Ox-LDL刺激单核/巨噬细胞-内皮细胞共培养系统,研究其对内皮细胞功能的影响及其信号转导机制。
    血管内皮生长因子(vascular endothelial growth factor,VEGF)是迄今为止发现的唯一促进血管内皮细胞有丝分裂作用的生长因子,并是唯一具有增加血管通透性作用的生长因子。Williams B.等认为,VEGF通过旁分泌形式作用于内皮细胞,使血管内皮细胞通透性升高,促进了AS的形成。Src酪氨酸激酶家族与细胞内多条信号转导途径有关,其相关基因参与许多重要的生理过程,如生长、分化、黏附、转录等,有研究表明, Src家族酪氨酸激酶信号转导途径参与VEGF的血管生成作用。因此,进一步从分子水平研究Src途径在VEGF引起的内皮通透性增加过程中的作用,对于阐明VEGF促进
    
    
    AS形成的机制具有重要意义。
    本课题设计建立的内皮/巨噬细胞共培养模型,可以较好的模拟体内的生理情况。应用该药理模型,首先在GEArrayTM Q内皮细胞功能芯片上研究了Ox-LDL刺激下单独培养的内皮细胞与单核-内皮细胞共培养系统中内皮细胞基因表达的差异;并进一步研究了Src家族酪氨酸蛋白激酶信号转导途径对VEGF促内皮细胞Ox-LDL通透性升高的影响,旨在进一步阐明VEGF在AS形成中的机制。
    
    第一部分 Ox-LDL刺激单核/内皮细胞共培养系统对
    内皮细胞功能的影响
    
    单独培养的人脐静脉内皮细胞(HUVEC)与单核(U937)细胞/内皮细胞共培养系统用Ox-LDL(40 mg/L)刺激24h后,用Trizol提取总RNA。取5ulRNA溶液,稀释100倍,测量其260nm和280nm下的光吸收值,以此计算260/280比值以及溶液浓度。取总RNA 5μg,用SupurArray公司的GEArrayTM Q系列人内皮细胞生物学功能基因芯片来分析单独培养内皮细胞与共培养系统中内皮细胞在ox-LDL刺激下基因表达的差异,并通过RT-PCR方法对其中部分基因进行验证。
    Ox-LDL刺激内皮细胞基因表达量与空白对照组相比,大于3为表达上调,小于0.33为下调。结果显示:(1)Ox-LDL刺激单独培养的内皮细胞与空白对照组相比,基因表达有31个上调,20个下调;上调显著基因主要有ICAM2、3,VEGF受体1、2,FGF2,IL-11、14、15,ICE等与细胞生长分化及炎症反应相关的基因以及MMP14、2、9、eNOS等与内皮细胞血管屏障功能相关的基因;下调的基因主要有ACE,ACE2,EDN3,EDNRA、B,CASP10,BCL2等与细胞凋亡及诱导血管收缩的基因。(2)Ox-LDL刺激共培养系统后,内皮细胞与空白对照组相比,基因表达上调有40个,下调的有10个。上调的主要是与细胞凋亡及血管收缩相关的基因,如CASPASE1、3、6,ACE,ACE2,END1、2、3,END受体A、B;与炎症及血管屏障相关基因,如IL-14、15、1β、3,MMP1、2等。下调基因包括选择素L,VCAM1,VEGF受体1、3等。(3)Ox-LDL刺激下,共培养系统中内皮细胞与单独培养的内皮细胞相比,基因表达上调23个,下调21个。上调的主要有ACE,ACE2,VEGF受体KDR,MMP,E选择素等。下调的主要有VEGF受体1、3,内皮素1、2,MMP2、9、14等。上述芯片结果,我们通过RT-PCR对部分主要基因进行了验证。
    
    我们通过ELISA实验还发现, Ox-LDL刺激下共培养系统中VEGF蛋白表达量显著高于单独培养的内皮细胞。
    
    第二部分 Src酪氨酸激酶信号转导途径在VEGF诱导内皮细胞对Ox-LDL通透性升高中的作用
    
    按现代生物学的观点,多细胞组织间的协调功能由各组成细胞间的相互作用及对外界环境改变的适时反应所决定。细胞信号转导机制是一非常复杂的过程,尽管关于这方面的研究很多,但可得的资料仍非常有限。
    原癌基因Src是第一个被鉴别出可诱导细胞转化的基因,有研究表明, Src家族酪氨酸激酶参与VEGF诱导的血管生成作用;丝裂原活化蛋白激酶(mitogen—activated protain kinase,MAPK)信号通路是近年来发现广泛存在于各种动物细胞中的一条信号转导途径,对于细胞周期的运行和基因表达具有重
With the social development and population aging, cardiovascular diseases such as coronary heart disease and stroke have become the major threats to human health. Atherosclerosis(AS), having the common pathological basis for cardiovascular diseases,is the key factor in the research of cardiovascular disease prevention and treatment. AS is not caused by only one factor,but by the interaction of several factors. However, the causes of AS are still unknown. One of the recent theories is that AS may be an inflammatory disease resulting from several factors.
    The increasing of the endothelium permeability and the plasma lipoprotein levels(mostly low density lipoprotein, LDL)makes it easy for lipoprotein to permeate underneath endothelium. This is one of the major features during the process of AS developing. The most direct cause of AS is regarded as oxidized low density lipoprotein, Ox-LDL. The prevailing theory is that LDL in plasma enters into artery walls through endothelium barrier,accumulates under endothelium,and be modified as all kinds of modified LDL. Ox-LDL stimulates adjacent endothelial cells to producing inflammation signal,and induce all kinds of chemical stimulations and cytokines,such as VEGF、M-CSF and MCP-1. Also, Ox-LDL induces circular monocytes to enter artery walls,differentiate into macrophage with high expression of scavenger receptor(SR),internalize modified Ox-LDL through SR unlimitedly, result the formation of peroxide lipid, and transform macrophages into monocyte/macrophage-derived foam cells. All these factors further activate smooth muscle cells(SMC), make it become extracellular matrix,induce the migration and proliferation of SMC, and the formation of fibrous tissues. This process repeats until the formation of AS lesion. Modified LDL obtained from AS lesion internally is similar to oxidized LDL by Copper ion oxidization in vitro. Thus, we use Ox-LDL oxidized by Copper ion to stimulate the coculture system of monocyte/macrophage- endothelial cell so as to research its effects on the function of endothelial cell, and its signal transduction process.
    Vascular endothelial growth factor (VEGF) is the only growth factor found up to now which elicits mitosis of vascular endothelial cell, and is the only growth factor which is able
    
    
    to increase the vascular permeability. Williams B. believes that VEGF affects endothelial cell through paracrine,increases permeability of vascular endothelial cell, and elicits the formation of AS. Some research indicate,the signal transduction pathway of Tyrosine kinases of the Src family is part of the cause of VEGF angiogenesis. Thus,the further research on the molecular level about the relationship between Src、VEGF and the formation of AS is very important for the clarification of the causes of AS.
    For in depth research on the factors of AS formation, this project designed a monocyte-endothelial cell coculture system so as to better intimate the physiology situation in human body. This pharmacological model, together with the GEArrayTM Q series Human Endothelial Cell Biology Gene Arrays, is used to study the functional change of endothelial cell and the differentiation of mRNA expression under Ox-LDL stimulation, detect of Tyrosine kinases of the Src family signal transduction pathway, and observe the affects of this pathway related to the increase of Ox-LDL permeability due to VEGF induction for further clarification of VEGF action on the formation of AS.
    
    Part I Changes of endothelial cells functions following Ox-LDL stimulation of monocyte-endothelial cell coculture system
    
    Use Trizol reagent to extract total RNA from singly cultured human umbilical vein endothelial cells(HUVEC)and monocyte(U937)-endothelial cell coculture system that have been stimulated by Ox-LDL(40 mg/L) over 24hr.Take 5ulRNA solution,dilute 100 times,and measure its absorbance at 260nm and 280nm,so as to calculate 260/280 ratio and solution concentration. Take total RNA 5μg,use GEArrayTM Q series Human Endothelial Cell Biology Gene Arrays made by SupurArray corporation to
引文
Vogel RA. Goronary risk factors,endothelial function and atherosclersis:a review[J]. Clin Cardiol 1997;20(5):426-32
    Dvork HF, Brown LF, Detar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular, hyperpermeability, and angiogenesis[J].Am J Pathol 1995;146(5):1029
    Couffinhal T,Kearney M,Witzenbichler B,et al.Vascular endothelial growth factor /vacular permeability factor(VEGF/VPF)in normal and atherosclerotic human arteries[J].Am J Pathol 1997;150(5):1673
    Li J,Perella MA,Tsai TC. Induction of vascular endothelial growth factor gene expression by interleukin-β in rat aortic smooth muscle cell[J]. J Biol Chem 1995;270(1):308
    Williams B, Baker AQ, Gallacher B,et al. AngiogensinII increases vascular permeability factor gene expression by human vascular smooth musle cells[J]. Hypertention 1995;25(5):913
    Qiu Y, Rui YC,Zhang L,et al.VEGF induced hyperpermeability in bovine aortic endothlial cell and inhibitory effect of salvianolic acid B[J]. Acta Pharmacol Sin 2001;22(2):117-120
    Zhang L,Rui YC,Qiu Y et al. Effect of lysophatidylcholine on expression of vascular endothelial growth factor in ECV304 cells[J]. Acta Pharm Sin 2001;22(4):335-339
    Jove R, and Hanafusa H. Cell transformation by the viral src oncogene[J]. Ann Rev Cell Biol 1987;3: 31-56.
    Neru Munshi, Jerome E. Groopman, Parkash S. Gill and Ramesh K. Ganju. c-Src Mediates Mitogenic Signals and Associates with Cytoskeletal Proteins upon Vascular Endothelial Growth Factor Stimulation in Kaposi’s Sarcoma Cells[J]. J Immunology 2000; 164: 1169-1174.
    Jonathan M. Gleadle and Peter J. Ratcliffe. Induction of Hypoxia-Inducible Factor-1, Erythropoietin, Vascular Endothelial Growth Factor, and Glucose Transporter-1 by Hypoxia: Evidence Against a Regulatory Role for Src Kinase[J]. Blood 1997;89(2):
    
    
    503-509.
    Petra Maschberger, Markus Bauer, Jutta Baumann-Siemons, Konrad J. Zangl, Emil V. Negrescu, Armin J. Reininger, and Wolfgang Siess. Mildly Oxidized Low Density Lipoprotein Rapidly Stimulates via Activation of the Lysophosphatidic Acid Receptor Src Family and Syk Tyrosine Kinases and Ca2+ Influx in Human Platelets[J]. J Biol Chem 2000; 275(25): 19159-66.
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s[J]. Nature 1993;362:801.
    Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules[J]. Blood 1994;84:2068.
    Cotran RS. New roles for the endothelium in inflammation and immunity[J]. Am J Pathol 1987;129:407.
    司徒正强,吴军正主编。细胞培养,世界图书出版公司,119.
    Osamu Uyama,Nobutaka Okamura,Masahiro Yanase,et al. Quantitative Evaluation of Vascular Permeability in the Gerbil Brain After Transient Ischemia Using Evans Blue Florescence [J]. J Cerebral Blood Flow and Metabolism 1988;8:282-4.
    Cherish DA, Mecham RP. Integrin: Molecular and biological response to extracellular matrix. San Diego: academic Press Inc USA,1994
    Hynes RO, Integrins: versatility, modulation, and signaling in cell adhension[J]. Cell 1992;69:11-25
    Luscinskas FW, Lawler J. Integrins as dynamics regulators of vascular function[J]. FASEB J 1994;8:929-938
    Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s[J]. Nature 1993;362:801
    H.G. Welgus, E.J. Campbell, Z. Bar-Shavit, R.M. Senior and S.L. Teitelbaum, Human alveolar macrophages produce a fibroblast-like collagenase and collagenase inhibitor[J]. J Clin Invest 1985;76:219–224.
    Hakkert BC, Rentenaar JM, van Mourik JA: Monocytes enhance the bidirectional release of type I plasminogen activator inhibitor by endothelial cells [J]. Blood 1990; 76:2272
    
    Hakkert BC, Rentenaar JM, van Mourik JA: Monocytes enhance endothelial von Willebrand factor release and prostacyclin production with different kinetics and dependency on intercellular contact between these two cell types [J]. Br J Haematol 1992;80:495
    Wharram BL, Fitting K, Kunkel SL, Remick DG, Merritt SE, Wiggins RC: Tissue factor expression in endothelial cell/monocyte cocultures stimulated by lipopolysaccharide and/or aggregated IgG. Mechanisms of cell: cell communication[J]. J Immunol 1991;146:1437
    Grandone E, Taticchi A, Di Santo A, Malandra R, Margaglione M, Di Minno G, Lorenzet R: Mononuclear leukocytes upregulate mitogen release from endothelial cells [J]. Thromb Haemost 1995;73:1085a
    Lukacs NW, Strieter RM, Elner VM, Evanoff HL, Burdick M, Kunkel SL: Intercellular adhesion molecule-1 mediates the expression of monocyte-derived MIP-1 during monocyte-endothelial cell interactions [J]. Blood 1994;83:1174
    Takahashi M, Masuyama J-I, Ikeda U, Kasahara T, Kitagawa S-I, Takahashi Y-I, Shimada K, Kano S: Induction of monocyte chemoattractant protein-1 synthesis in human monocytes during transendothelial migration in vitro[J]. Circ Res 1995;76:750
    Johnson LL, Dyer R, Hape DJ, et al. Matrix metalloproteinase [J]. Curr Opin Chem Biol 1998; 2(4):466-471
    Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metolloproteinase inhibitors[J]. Invest New Drugs 1997;15:61-75
    Elaine N, Vnemori, Napoleone Ferraea, Evgene A.Bauer, et al. vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cell[J]. Journal of Cellular Physiology 1992;153:557-562
    Sica DA. Endothelial cell function: new considerations[J]. European Heart Journal Supplement. 2000; 2(Supplement B):B13-21
    Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases[J]. Science 1995;268:251-255.
    Bolen JB. Nonreceptor tyrosine protein kinases[J]. Oncogene 1993;8:2025-2031.
    Jove R. and Hanafusa H. Cell transformation by the viral src oncogene[J]. Ann Rev
    
    
    Cell Biol 1987;3:31-56.
    Dejana E. Endothelial adherens junction:implications in the control of vascular permeability and angiogenesis[J]. J Clin Invest 1996; 98:1949-53
    Hubbard SR and Till JH. Protein tyrosine kinase structure and function[J]. Annu Rev Biochem 2000; 69:373-98
    Feng-Y.,Venema V.J., Venema R.C., et al. VEGF-induced permeability increase is mediated by cavedae[J]. Invest-Ophthalmol-Vis-Sci 1999;40(1):157-67
    Toyoak Murohara, Jeffrey R.H., Marcy Silver B.S., et al. Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via Nitric Oxide and prostacydin[J]. Circulation 1998;97:99-10
    Osamu Uyama,Nobutaka Okamura,Masahiro Yanase,et al. Quantitative Evaluation of Vascular Permeability in the Gerbil Brain After Transient Ischemia Using Evans Blue Florescence [J]. J Cerebral Blood Flow and Metabolism 1988;8:282-4
    Martin GS and ELAZER RE. VEGF effect on vascular permeability is mediated by synthesis of platelet activating factor [J]. Am J Physiol 1997;272(Heart Circ Physiol 41) :H2746-56.
    Robers KA, Rezai AA, Pinherton KE, Rutledge JC. Effect of environmental tobacco smoke on LDL accumulation in the artery wall[J]. Circulation 1996;94:2248-53.
    Rutledge JC. Temperature and hydrostatic pressure-dependent pathways of low density lipoprotein transport across a microvascular barrier[J]. Am J Physiol 1992; 262:H234-45
    Wu CC, Chang SW, Chen MS, Lee YT. Early changes of vascular permeability in hypercholesterolenic rabbits[J]. Arteroscler Thromb Vasc Biol 1995;15:529-533.
    Connolly PT, DM Heavelman, R Nelson, JV Olander, BL Eppley, JJ Delfino, NR Siegel, RM Limgruber, and J Feder. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis[J]. J Clin Invest 1989;84:1470-78
    Neufeld G, S Tessler, H Gitay-goren, T Cohen, and B Levi. Vascular endothelial growth factor and its receptors[J]. Prog Growth Factor Res 1994;5:89-97.
    Klagsbtum M et al.Vascular endothelial growth factor and its receptors[J]. Cytokine Growth Factor Rev 1996;7(3):259-70
    
    Gu Jw.et al. Hypoxia induced expression of VEGF is reversible in myocardial vascular smooth muscle cells[J]. Am J Physiol 1997;273(2pt2):H628-33
    David RM, Carter LM, and Richard CS. Endothelial contraction and monolayer hyperpermeability are regulated by Src kinase[J]. Am J Physiol (Heart Circ Physiol) 2003;284:H994-1002
    夏春芳,霍勇,尹航,朱国英,庞永正,唐朝枢。白介素10抑制大鼠平滑肌细胞增殖的信号途径[J]。中国动脉硬化杂志 2001;9(3):213-6
    项美香,刘东,陈鹏,吕俊生。PP60c-Src在血管紧张素Ⅱ对大鼠血管平滑肌细胞信息转导中的作用[J]。浙江医科大学学报 2003;32(2):126-30
    Ali Pedram,Mahnaz R,Ellis RL. Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability[J]. J Biol Chem 2002;277(46):44385-98
    Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins[J]. Nature 1990;344:254–257
    Sugiyama S, Kugiyama K, Matsumura T, Suga S, Itoh H, Nakao K, Yasue H. Lipoproteins regulate C-type natriuretic peptide secretion from cultured vascular endothelial cells[J]. Arterioscler Thromb Vasc Biol 1995;15:1968–1974
    Mayumi Inoue; Hiroshi Itoh; Tokuji Tanaka; Tae-Hwa Chun; Kentaro Doi; Yasutomo Fukunaga, et al. Oxidized LDL Regulates Vascular Endothelial Growth Factor Expression in Human Macrophages and Endothelial Cells Through Activation of Peroxisome Proliferator–Activated Receptor-[J]. Arteriosclerosis, Thrombosis, and Vascular Biology 2001;21:560-78
    Belsches-Jablonski AP, Biscardi JS, Peavy DR, Tice DA, Romney DA and Parsons SJ. Src family kinase and HER2 interactions in human breast cancer cell growth and survival[J]. Oncogene 2001;20:1465-75
    Andreev J, Galisteo ML, Kranenburg O, Logan SK, Chiu ES, Okigaki M, Cary LA, Moolenaar WH and Schlessinger J. Src and Pyk2 mediate G-protein-coupled receptor activation of epidermal growth factor receptor(EGFR) but are not required for coupling to
    
    
    the mitogen-actived protein(MAP) kinase signaling cascade[J]. J Biol Chem 2001; 276:20130-5
    Simeonova PP, Wang S, Hulderman T and Luster MI. c-Src-dependent activation of the epidermal growth factor receptor and mitogen-activated protein kinase pathway by arsenic. Role in carcinogenesis[J]. J Biol Chem 2002; 277(4):2945-50
    Aftab DT, Kwan J, and Martin GS. Ras-independent transformation by v-Src[J]. Proc Natl Acad Sci 1997;94(7):3028-33.
    Meng F, and Lowell CA. A beta 1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration[J]. EMBO J 1998;17(15):4391-403.
    Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, and Jove. Stat3 activation by Src induces specific gene regulation and is required for cell transformation[J]. Mol Cell Biol 1998;18(5):2545-52
    Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R, and Finke J. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr virus (EBV)-related lymphoma cell lines[J]. Blood 1996;88(3):809-16.
    Garcia R, Yu CL, Hudnall A, Catlett R, Nelson KL, Smithgall T, Fujita DJ, Ethier SP, and Jove R. Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells.Cell Growth Differ[J]. 1997;(12):1267-76.
    Hansell EJ, Frisch SM, Tremble P, Murnane JP, and Werb Z. Simian virus 40 transformation alters the actin cytoskeleton, expression of matrix metalloproteinases and inhibitors of metalloproteinases, and invasive behavior of normal and ataxia-telangiectasia human skin fibroblasts[J]. Biochem Cell Biol 1995;73(7-8):373-89.
    Vincenti MP, Schroen DJ, Coon CI, Brinckerhoff CE. v-src activation of the collagenase-1 (matrix metalloproteinase-1) promoter through PEA3 and STAT: requirement of extracellular signal-regulated kinases and inhibition by retinoic acid receptors[J]. Mol Carcinog 1998;21(3):194-204.
    Kaplan KB, Swedlow JR, Morgan DO, and Varmus HE. c-Src enhances the spreading of src-/- fibroblasts on fibronectin by a kinase-independent mechanism[J].
    
    
    Genes Dev 1995;9(12):1505-17
    Nada S, Okada M, MacAuley A, Cooper JA, and Nakagawa H. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src[J]. Nature 1991;351(6321):69-72
    Hubbard SR, Till JH. Protein tyrosine kinase structure and function[J]. Annu Rev Biochem 2000;69:373-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700