用户名: 密码: 验证码:
新型硼酸盐非线性光学晶体的生长与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于能够扩展现有激光器的输出频率,无机非线性光学(NLO)晶体材料在光通讯、信号传输等领域有广泛的应用。探索具有大的倍频系数、宽的透光范围、高的光损伤阈值、稳定的物化性能的晶体,具有重要的理论意义和应用价值。本论文的主要研究目的是探索新型硼酸盐非线性光学晶体。
     首先,对Cd_3Zn_3B_4O_(12)晶体进行了系统研究。分别采用固相法和液相法合成了Cd_3Zn_3B_4O_(12)纯相多晶原料,解决了单相原料的合成难题。采用助熔剂法,试验了二十四种助熔剂,六十个比例的样品,对Cd_3Zn_3B_4O_(12)晶体的生长进行了探索研究。以B_2O_3自助熔剂,按照Cd:Zn:B=1:1:1.5的配比,获得了Cd_3Zn_3B_4O_(12)毫米级单晶;以PbO-0.85PbF2作为助熔剂,得到了较大尺寸的晶体。对晶体进行的差热、红外和拉曼分析、粉末倍频效应、化学稳定性等测试表明,Cd_3Zn_3B_4O_(12)晶体有较强的倍频效应,性能稳定不潮解,具有较好的潜在应用前景。
     其次,对不同配比的硼酸锌镉化合物,进行了晶体生长及其性能的研究。采用固相法和液相法合成了CdZn_2B_2O_6的纯相多晶原料,并分别用泡生法和坩埚下降法生长出CdZn_2B_2O_6单晶,证实了CdZn_2B_2O_6的存在。研究结果表明CdZn_2B_2O_6与Cd_3Zn_3B_4O_(12)的晶体结构相似,且XRD、红外和拉曼谱图十分接近。单晶结构解析表明,Cd~(2+)离子和Zn~(2+)离子占据晶胞中的相同位置,随机无序分布,Cd和Zn占位度的不同导致形成不同比例的硼酸锌镉。从实验和理论上证实两种化合物都存在,也解释了两者性质相似的原因,从而解决了CdZn_2B_2O_6和Cd_3Zn_3B_4O_(12)两种硼酸锌镉化合物的学术争议。CdZn_2B_2O_6粉末非线性效应为KDP微晶的2.6倍,物理化学性质稳定,是有潜在应用前途的非线性光学晶体。
     最后,从改变CdO-ZnO-B_2O_3体系中CdO或者ZnO入手,进行新型硼酸盐晶体的探索研究。考察了九个体系中的四十余种不同计量比的样品,生长出了Ba_(2.80)Zn_(0.20)B_6O_(12)、CdZn_2KB_2O_6F硼酸盐新晶体,进行了结构解析和性能的研究。纠正和补充了文献中有关Ba_2ZnB_6O_(12)晶体的XRD和结构等报道。同时,分别采用SrB_2O_4、Bi_4B_2O_9、CdB_2O_4和BaB_2O_4助熔剂,进行了ZnO单晶的生长研究。
     此外,本论文还对CsLiB_6O_(10)晶体进行了化学侵蚀及开裂机理的研究。
Owing to expanding the frequency range of solid laser sources, the inorganic nonlinear optical (NLO) borate crystals have been widely used in optical communication, laser medicine and signal processing. Numerous investigations have been undertaken on new NLO crystals, which are characterized by a large NLO coefficient, a broad optical transparency range, a high damage threshold and high optical quality. In present dissertation, the aim is to find some new NLO borate crystals.
     Firstly, the growth and properties of Cd_3Zn_3B_4O_(12) crystal have been studied in detail. Cd_3Zn_3B_4O_(12) polycrystals were synthesized by solid-state and wet chemical reaction method successfully, and the latter is the more effective way to prepare single-phase compound. Cd_3Zn_3B_4O_(12) single crystals have been grown by the flux method. Twenty-four fluxes and sixty samples have been used for the crystal growth. The experiment results show that Cd_3Zn_3B_4O_(12) crystals with millimeter grade were grown from the self-flux B_2O_3 (Cd:Zn:B=1:1:1.5); and larger crystals were obtained from the PbO-0.85PbF2 fluxes easily. The grown crystals were characterized by Differential Scanning Calorimetry and Thermogravimetric (DSC/TG), Infrared and Raman analysis, NLO effect and chemical stability. The analytical results indicate that Cd_3Zn_3B_4O_(12) crystal exhibits an excellent NLO effect, and is very stable in neutral solution and not hygroscopic in air at room temperature.
     Secondly, crystal growth in other different ratio compounds has been investigated in the CdO-ZnO-B_2O_3 system. The experimental results show that the wet chemical method is a better way than the solid-state reaction method to prepare pure cadmium dizinc diborate compound. The CdZn_2B_2O_6 single crystals have been grown by the Kyropoulos method and the vertical Bridgman method for the first time. The properties of the CdZn_2B_2O_6 are similar to these of Cd_3Zn_3B_4O_(12), including the crystal structure, XRD, Infrared and Raman analysis. The Cd~(2+) and Zn~(2+) cations in the two compounds share the same site in the unit cell and the distribution is disordered, thus the occupancy positions differences of the Cd2+ or Zn2+ cations result in different ratios of Cd and Zn in the crystals. The Cd and Zn ratios of CdZn_2B_2O_6 and Cd_3Zn_3B_4O_(12) crystals were assigned to be 1:2 and 1:1, based on the result of the Ionic Coupled Plasma Atom Emission Spectrometer (ICP-AES) analysis. The theoretic analysis and experimental results denote the existence of the two crystals, and provide a satisfying explanation on the similar properties. The powder NLO coefficient of the CdZn_2B_2O_6 crystal is 2.6 times as large as that of KH_2PO_4 (KDP) crystal, and this stable crystal is a promising material for NLO applications in ultraviolet-transparent range.
     Lastly, starting with the change of CdO or ZnO in the CdO-ZnO-B_2O_3 system, new NLO borate crystals have been researched using high-temperature solid-phase and wet chemical reactions, crystal growth and powder NLO effect methods. Over forty samples in nine systems have been studied, such as BaO-ZnO-B_2O_3, SrO-ZnO-B_2O_3, CaO-ZnO-B_2O_3, MgO-ZnO-B_2O_3, Yb_2O_3-ZnO-B_2O_3, La_2O_3-ZnO-B_2O_3, Gd2O3-ZnO-B_2O_3, CdO-SrO-B_2O_3 and so on. The growth and properties of Ba_(2.80)Zn_(0.20)B_6O_(12) and CdZn_2KB_2O_6F new borate crystals have been investigated. The XRD and crystal structure of Ba_2ZnB_6O_(12) crystal have been corrected, and the analysis of differential thermal, Infrared and Raman have been supplemented. At the same time, ZnO single crystal has been grown from the SrB_2O_4, Bi4B2O9, CdB2O4 and BaB_2O_4 fluxes respectively.
     In addition, the etching patterns on different surfaces of CsLiB_6O_(10) (CLBO) crystal and its cracking mechanism have been investigated. The cracking evolution of CLBO crystal immerged in pure water was exhibited and discussed finally.
引文
[1] Franken P A, Hill A E, Peters C W, et al. Generation of optical harmonics. Phys Rev Lett, 1961, 7:118-119.
    [2] Jones B H. Deep-UV applications await improved nonlinear optics. Laser Focus World, 1998, 8:127-130.
    [3]张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社, 2005:208-258.
    [4] Park H, Barbier J. Crystal structures of the new borate fluorides BaMBO3F2 (M=Ga,Al). J Solid State Chem, 2000, 155:354-358.
    [5] Hu Z G, Yoshimura M, Muramatsu K, et al. A new nonlinear optical crystal BaAlBO3F2 (BABF). Jpn J Appl Phys, 2002, 41:L1131-L1133.
    [6] Keszler D A, Akella A, Schaffers K I, et al. New borate structure for nonlinear optical (NLO) applications. Mater Res Soc Symp Proc, 1994, 329:15-22.
    [7] Brovkin A A, Nishikova L V. Structure of magnesium borate fluoride (Mg5(BO3)3F) and its relation with the sturcture of leucophoenicite Mn7[SiO4]2[Si4(OH)2]. Kristallografiya, 1975, 20:415-418.
    [8] Brovkin A A, Nishikova L V. Crystal structure of magnesium fluoroborate (α-Mg2BO3F) and possibility of the isomorphic replacement (3F)3- (BO3)3- in it. Kristallografiya, 1975, 20:740-745.
    [9] Mei L F, Wang Y B, Chen C T, et al. Nonlinear optical materials based on MBe2BO3F2 (M=sodium, potassium). J Appl Phys, 1993, 74:7014-7015.
    [10] Mei L F, Wang Y B, Chen C T. Crystal structures of sodium beryllium borate fluoride. Mater Res Bull, 1994, 29:81-87.
    [11] Baidina I A, Bakakin V V, Batsanova L R, et al. The X-ray diffraction study of boratofluoroberyllates of the composition MBe2BO3F2, where M is sodium, potassium, rubidium or cesium. Zh Strukt Khim, 1975, 16:1050-1053.
    [12] Baidina I A, Bakakin V V, Podberezskaya N V, et al. Crystal structures of beryllium fluoride borate Be2(BO3)F. Zh Strukt Khim, 1978, 19:125-129.
    [13]吴以成. B3O7基团型硼酸盐非线性光学晶体研究进展.人工晶体学报, 2001, 30:43-48.
    [14] Dewey C F, Cook W R, Hodgson R T, et al. Frequency doubling in KB5O8·4H2O and NH4B5O8·4H2O to 217.3nm. Appl Phys Lett, 1975, 26:714-716.
    [15]卢绍芳,何美云,黄金陵.偏硼酸钡低温相的晶体结构.物理学报, 1982, 31:948-955.
    [16] Frohlich R. Crystal structure of the low-temperature form of BaB2O4. Z Kristallogr, 1984, 168:109-112.
    [17] Chen C T, Wu Y C, Jiang A D, et al. New nonlinear-optical crystal: LiB3O5. J Opt Soc Am B, 1989, 6:616-621.
    [18] Wu Y C, Takatomo S, Sadao N, et al. CsB3O5: A new nonlinear optical crystal. Appl Phys Lett, 1993, 62:2614-2616.
    [19] Sasaki T, Mori Y, Kuroda I, et al. Cesium lithium borate: a new nonlinear optical crystal. Acta Crystallogr, 1995, C51:2222-2224.
    [20] Mori Y, Kuroda I, Nakajima S, et al. Growth of a nonlinear optical crystal: cesium lithium borate. J Cryst Growth, 1995, 156:307-309.
    [21] Hellwig H, Liebertz J, Bohaty L. Exceptional large nonlinear optical coefficients in the monoclinic bismuth borate BiB3O6 (BIBO). Solid State Commun, 1999, 109:249-251.
    [22] Teng B, Wang J Y, Wang Z P, et al. Crystal growth, thermal and optical performance of BiB3O6. J Cryst Growth, 2001, 233:282-286.
    [23] Becker P, Liebertz J, Bohaty L. Top-seeded growth of bismuth triborate, BiB3O6. J Cryst Growth, 1999, 203:149-155.
    [24] Chen C T, Xu Z Y, Deng D Q, et al. The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal. Appl Phys Lett, 1996, 68:2930-2932.
    [25] Chen C T, Kanai T, Wang X Y, et al. High-average-power light source below 200 nm from a KBe2BO3F2 prism-coupled device. Opt Lett, 2008, 33:282-284.
    [26] Chen C T, Wang Y B, Wu B C, et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature, 1995, 373:322-324.
    [27] Aka G, KahnHarari A, Vivien D, et al. A new non-linear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB). Eur J Solid State Inorg Chem, 1996, 33:727-736.
    [28] Iwai M, Kobayashi T, Furuya H, et al. Crystal growth and optical characterization of Rare-earth (Re) calcium oxyborate ReCa4O(BO3)3 (Re = Y or Gd) as new nonlinear optical material. Jpn J Appl Phys, 1997, 36:L276-L279.
    [29]潘世烈,吴以成,陈创天,等. BaBPO5晶体的生长研究.人工晶体学报, 2002, 31:1-4.
    [30] Smith R W, Keszler D A. The noncentrosymmetric orthoborate BaZn2(BO3)2. J Solid State Chem, 1992, 100:325-330.
    [31] Smith R W, Koliha L J. A new noncentrosymmetric orthoborate [Ba2Zn(BO3)2]. Mater Res Bull, 1994, 29:1203-1210.
    [32] Li M, Chen X A, Chang X A, et al. Synthesis, Crystal structure and optical properties of non-centrosymmetric borate, Bi2ZnB2O7. J Synth Cryst, 2007, 36:1005-1010.
    [33] Oseledchik Y S, Prosvirnin A L, Pisarevskiy A I, et al. New nonlinear optical crystals: strontium and lead tetraborates. Opt Mater, 1995, 4:669-674.
    [34] Pan F, Shen G Q, Wang R J, et al. Growth, characterization and nonlinear optical properties of SrB4O7 crystals. J Cryst Growth, 2002, 241:108-114.
    [35] Nicholls J F H, Chai B H T, Russell D, et al. Optical properties and crystal growth of lead tetraborate. Opt Mater, 1997, 8:185-191.
    [36] Hu Z G, Higashiyama T, Yoshimura M, et al. A new nonlinear optical borate crystal K2Al2B2O7 (KAB). Jpn J Appl Phys Part 2 Lett, 1998, 37:L1093-L1094.
    [37] Becker P. Borate Materials in Nonlinear Optics. Adv Mater, 1998, 10:979-992.
    [38] Harrison D E, Hummel F A. The system ZnO·CdO·B2O3 phase relationships and fluorescence. J Electrochem Soc, 1959, 106:24-26.
    [39] Laueiro Y, Camps M D, Veiga M I, et al. Synthesis and structural chanracterization of solid solutions ZnxCd1-xB4O7 (x=1, 0.75, 0.5, 0.25, 0). Eur J Solid State Inorg Chem, 1988, 25:381-386.
    [40] Whitaker A, Channell A D. Phase equilibria in the system CdO-ZnO-B2O3 at 850°C. J Mater Sic, 1993, 28:2489-2493.
    [41]潘峰.新型短波长硼酸盐非线性光学晶体材料及其结构性能: [博士学位论文].北京:清华大学, 2002年:76-83.
    [42] Sun T Q, Pan F, Wang R J, et al. A non-linear optical crystal, Cd3Zn3(BO3)4. Acta Cryst, 2003, C59:i107-i108.
    [43] Yuan X, Wang R J, Shen D Z, et al. Cd1.17Zn0.83B2O5, a new cadmium zinc borate. Acta Cryst, 2005, E61:i196-i198.
    [44] Yuan X, Shen D Z, Wang X Q, et al. Studies on NLO borate crystals in CdO-ZnO-B2O3 system. J Cryst Growth, 2006, 292:485-463.
    [45]袁欣,沈德忠,王晓青,等.微波水热法合成CZBO晶体的研究.人工晶体学报, 2006, 35:15-19.
    [46]干福熹.信息材料.天津:天津大学出版社, 2000:548-550.
    [47]邢光彩,蒋民华,邵宗书,等.络合物型非线性光学新晶体—二氯二硫脲合镉(BTCC).中国激光, 1987, 14:302-308.
    [48]陶绪堂,蒋民华,许东,等.一种全新的金属—有机络合物型非线性光学晶体—一水二氯硫代氨基脲合镉.科学通报, 1987, 33:1234-1237.
    [49] Zhang N, Jiang M H, Yuan D R, et al. A new nonlinear optical material-organometallic complex tri-allylthiourea cadmium chloride. Chin Phys Lett, 1989, 6:280-283.
    [50]袁多荣,张囡,陶绪堂,等.一组新型非线性光学晶体—ATCC、ATCB和ATMC.人工晶体学报, 1989, 18:267-273.
    [51]张克从,张乐潓.晶体生长.北京:科学出版社, 1981:311-312.
    [52]张克从,张乐潓.晶体生长科学与技术(上册).北京:科学出版社, 1997:336-523.
    [53]闵乃本.晶体生长物理基础.上海:上海科技出版社, 1982.
    [54]姚连增.晶体生长基础.合肥:中国科学技术大学出版社, 1995.
    [55]张玉龙,唐磊.人工晶体—生长技术、性能与应用.北京:北京化学工业出版社, 2005.
    [56] [英] B. R.潘普林主编,刘如冰,沈德忠,张红武,戚立昌译.晶体生长.北京:北京中国建筑出版社, 1981:138-224.
    [57]江爱栋.熔盐法生长晶体中的助熔剂选择.人工晶体学报, 1988, Z1:280.
    [58]侯印春.光功能晶体.北京:中国计量出版社, 1991:107-119.
    [59]袁欣.新型非线性光学晶体硼酸锌镉(CZBO)的研究: [博士学位论文].北京:清华大学, 2005年:37-41.
    [60]陈小明,蔡继文.单晶结构分析原理与实践.北京:科学出版社, 2007:33-39.
    [61]魏志宏.添加3ZnO-2B2O3玻璃以降低Ca-Nd-Ti微波陶瓷烧结温度: [硕士学位论文].台北:国立清华大学, 1988年:4-19.
    [62] Muneyuki N, Fumio K, Masashi Y, et al. Growth of high-quality CsLiB6O10 crystals from materials mixed in aqueous solution. Japan J Appl Phys, 2004, 43:1073-1075.
    [63]荆煦瑛,陈式隶,么恩云.红外光谱实用指南.天津:天津科学技术出版社, 1992:357-361.
    [64]陈允魁.红外吸收光谱法及其应用.上海:上海交通大学出版社, 1993: 63-84; 121-143.
    [65]潘秀宏,金蔚青,洪勇. BBO单晶生长过程中气相包裹体形成的实时观察研究.空间科学学报, 2005, 25:543-546.
    [66]张国春,吴以成,傅佩珍,潘世烈,陈创天. Na3Sm2(BO3)3的晶体生长及热学和光谱性质.人工晶体学报, 2003, 32:636-639.
    [67]张建秀,张承乾,黄庆杰,等.氟硼铍酸钾晶体的生长、表面形貌和缺陷.人工晶体学报, 2003, 32:8-12.
    [68]万松明,傅佩珍,吴以成,等.助熔剂法生长CaLa2B10O19晶体.人工晶体学报, 2003, 31:432-435.
    [69] Mulliken R S. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys, 1934, 2:782-793; Electronic structures of molecules XI. electroaffinity, molecular orbitals and dipole moments. J Chem Phys, 1935, 3:573-585.
    [70] Viting L M. The physicochemical principles of identifying solvents for growing single crystals from the melt. Doctoral Dissertation, Moscow State University, 1981.
    [71]刘景和,李建利,洪元佳,等. Nd:KGd(WO4)2激光晶体生长.硅酸盐学报, 2001, 29:254-258.
    [72]王英伟,程灏波,朱忠丽,等. KGd(WO4)2激光晶体结构与振动光谱.无机材料学报, 2005, 20:1296-1300.
    [73]李静,王继扬,胡晓波,等. Tb:Yal3(BO3)4晶体的生长与光谱性质.压电与声光, 2003, 25:393-395.
    [74]刘耀刚,王继扬,王保林,等.作为NAB助熔剂的钼酸钾体系的研究.山东大学学报(自然科学版), 1984, 1:73-79.
    [75]董胜明,刘信华,孙连科.三硼酸锂晶体生长中添加剂的探索研究.人工晶体学报, 2000, 29:136.
    [76]唐鼎元.紫外非线性光学材料硼酸盐晶体生长的研究进展.结构化学, 1995, 14:454-462.
    [77] Rulmont A, Almou M. Vibrational-spectra of metaborates with infinite chain structure- LiBO2, CaB2O4, SrB2O4. Spectrochim Acta A, 1989, 45:603-610.
    [78]徐培苍,李如璧,王永强,等.地质学中的拉曼光谱.陕西科学技术出版社, 1996, 44.
    [79]滕冰,胡小波,王继扬,等. BiB3O6晶体的拉曼光谱.光电子激光, 2004, 15:734-738.
    [80] Delley B, Ellis D E. Efficient and accurate expansion methods for molecules in local density models. J Chem Phys, 1982, 76:1949-1960.
    [81] Wu K C, Chen C T. Theoretical studies for novel non-linear optical crystals. J Cryst Growth, 1996, 166:533-536.
    [82] Chen C T, Wang Y B, Xia Y N, et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach. J Appl Phys, 1995, 77:2268-2272.
    [83]吕孟凯.固态化学.济南:山东大学出版社, 1996:383.
    [84]陈创天,叶宁,林峧,等.运用晶体非线性光学效应的阴离子基团理论探索新型紫外非线性光学材料.自然科学进展, 2000, 10:673-683.
    [85] Chen C, Lin Z, Wang Z. The development of new borate-based UV nonlinear optical crystals. Appl Phys, 2005, B 80:1-25.
    [86] Chen C T, Wu Y C, Li R K. The relationship between the structural type of anionic group and SHG effect in boron-oxygen compounds. Chin Phys Lett, 1985, 2:389-392.
    [87] Chen C T, Wu Y C, Li R K. The development of new nonlinear optical crystals in the borate series. J Cryst Growth, 1990, 99:790-798.
    [88] Chen C T, Wu Y C, Li R K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int Rev Phys Chem, 1989, 8:65-91.
    [89] Rulmont A, Almou M. Vibrational spectra of metaborates with infinite chain structure: lithium metaborate (LiBO2), calcium metaborate (CaB2O4), strontium metaborate (SrB2O4). Spectrochim Acta A, 1989, 45A:603-610.
    [90] Huang F, Huang L. Picosecond optical parametric amplification inβ-BaB2O4. IEEE J Quantum Electron, 1994, 30:2601-2607.
    [91]林远坤,蓝国祥,王华馥.β-BaB2O4晶体高压相变的拉曼光谱研究.化学物理学报, 1993, 6:257-261.
    [92] Busche S, Bluhm K. Synthesis and crystal structure of dibarium zinc biscyclotriborate Ba2Zn(B3O6)2. Z Naturforsch B: Chem Sci, 1996, 51:309-312.
    [93] Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun, 1997, 103:459-463.
    [94] Bagnall D M, Chen Y F, Zhu Z, et al. Hight temperature excitonic stimulated emission from ZnO epitaxial layers. Appl Phys Lett, 1998, 73:1038-1040.
    [95] Reynolds D C, Look D C, Jogai B. Opticaly pumped ultraviolet lasing from ZnO. Solid State Commun, 1996, 99:873-875.
    [96] Segawa Y, Ohtomo A, Kawasaki M, et al. Growth of ZnO thin film by laser MBE Lasing of exciton at room temperature. Phys Status Solidi B: Basic Res, 1997, 202:669-672.
    [97] Robert F S. Will UV lasers beat the blues? Science, 1997, 276:895.
    [98] Nielsen J W, Dearborn E F. The growth of large single crystals of zinc oxide. J phys Chem, 1962, 64:1762-1763.
    [99] Laudise R A, Ballman A A. Hydrothermal synthesis of zinc oxide and zinc sulfide. J Phys Chem, 1960, 64:688-691.
    [100] Ohshimaa E, Oginoa H, Niikurab I, et al. Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method. J Cryst Growth, 2004, 260:166-170.
    [101] Chase A B, Judith O A. Localized cooling in flux crystal growth. J Am Ceram Soc, 1967, 6:325-328.
    [102] Wanklyn B M. The growth of ZnO crystals from phosphate and vanadate flux. J Cryst Growth, 1970, 7:107-108.
    [103] Sharma S D, Subhash K C. Growth of ZnO hollow needles. J Cryst Growth, 1971, 10:121-128.
    [104] Ushio M, Sumiyoshi Y. Synthesis of ZnO single crystal by the flux method. J Mater Sci, 1993, 28:218-224.
    [105] Kunihiko O, Hajime S, Satoshi K. Crystal growth of ZnO. J Cryst Growth, 2002, 237-239:509-513.
    [106] Zargarova M I, Kasumova M F, Abdullaev G K. The bismuth zinc double borate in the Bi2O3-B2O3-ZnO System. Russ J Inorg Chem, 1987, 32:737-739.
    [107]王国富,涂朝阳. BaB2O4-CdO和BaB2O4-ZnO二元系相图的研究.无机化学学报, 1989, 5(3): 85-89.
    [108] Li X H, Xu J Y, Jin M, et al. Growth of ZnO single crystals by an induced nucleation from a high temperature solution of the ZnO-PbF2 system. Crys Res Technol, 2007, 42(3):221-226.
    [109] Mori Y, Kuroda I, Nakajima S, et al. New nonlinear-optical crystal cesium lithium borate. Appl Phys Lett, 1995, 67:1818-1820.
    [110] Yap Y K, Inagaki M, Nakajima S, et al. High-power fourth- and fifth-harmonic generation of a Nd:YAG laser by means of a CsLiB6O10. Opt Lett, 1996, 21:1348-1350.
    [111] Pan F, Wang X Q, Shen G Q, et al. Cracking mechanism in CLBO crystals at room temperature. J Cryst Growth, 2002, 241:129-134.
    [112] Gihan R, Choon S Y, Thomas P J H, et al. Growth and characterization of CsLiB6O10(CLBO) crystals. J Cryst Growth, 1998, 191:492-500.
    [113]张秀荣,张顺兴,柴耀.新型非线性光学晶体硼酸铯锂的研究.人工晶体学报, 1998, 27:26-30.
    [114] Taguchi A, Miyamoto A, Mori Y, et al. Effects of the moisture on CLBO. OSA Trends in Optics and Photonics Series, Advanced Solid State Lasers From the Topical Meeting, 1997, 10:19-23.
    [115] Morimoto Y, Miyazawa S, Kagebayashi Y, et al. Water-associated surface degradation of CsLiB6O10 crystal during harmonic generation in the ultraviolet region. J Mater Res, 2001, 16:2082-2090.
    [116] Yoshimura M, Kamimura T, Murase K, et al. Bulk laser damage in CsLiB6O10 crystal and its dependence on crystal structure. Jpn J Appl Phys Part 2 Lett, 1999, 38:L129-L131.
    [117] Péterá, Polgar K, Beregi E. Revealing growth defects in non-linear borate single crystals by chemical etching. J Cryst Growth, 2000, 209:102-109.
    [118] Kamimura T, Ono R, Yap Y K, et al. Influence of crytallinity on the bulk laser-induced damage threshold and absorption of laser light in CsLiB6O10 crystals, Jpn J Appl Phys, 2001, 40:L111-L113.
    [119] Yuan X, Shen G Q,Wang X Q, et al. Growth and characterization of large CLBO crystals. J Cryst Growth, 2006, 293:97-101.
    [120]贺为国,沈光球,王晓青,等. CLBO晶体的开裂机理及防开裂方法研究.人工晶体学报, 2001, 30:267-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700