用户名: 密码: 验证码:
金属氧化物和硫化物一维纳米材料的合成表征和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物和硫化物纳米材料因其独特的物理化学性质显示出在催化、传感、光学、磁学和电池等领域广泛的应用前景。制备金属氧化物和硫化物新颖的一维纳米材料、探索其生长机制,进而实现对尺寸、维度及物性的调控,对于深入研究结构与物性的关联、最终实现按照人们的意愿设计合成功能材料具有重要意义。本论文在金属氧化物和硫化物一维纳米结构合成新方法的设计、形成机制及物性等方面进行了系统的探索研究。
    利用人工层状结构气相热解制备了WS_2纳米管、W和WO_3纳米线,提出并验证了WS_2纳米管的卷曲形成机制,建立并发展了利用层状结构卷曲形成一维纳米线的新方法。基于MoS_2层状晶体结构和卷曲机制,发展出以MoO_3纳米带与硫直接反应制备MoS_2纳米管和富勒烯结构的简便方法。为一维纳米结构合成与一般形成机制的探索研究提供了新思路。
    基于卷曲机制和材料的微观结构特性,设计简单的气相反应制备了MoCO/Mo_2C微米管,MoS_2和WS_2富勒烯/纳米管/纳米花及Te单晶微米管,丰富发展了一维纳米材料的合成方法;系统开展了对MoS_2富勒烯比表面积、WS_2纳米花场发射效应和单根Te管磁阻效应的研究,为这些具有新颖结构特性的材料的优异物理化学性质和应用探索奠定了实验基础。
    基于材料晶体结构各向异性取向生长特性,发展了无模板,无催化剂和表面活性剂诱导水热合成MoO_3单晶纳米带和MoS_2纳米结构的方法,并利用沉淀转化反应从金属草酸盐沉淀制备了相应的氢氧化物纳米棒,为无机材料合成方法学的建立进行了有益的探索。开展了Mg~(2+)在纳米层状MoS_2中可逆电化学插层行为的研究,为纳米MoS_2等具有层状结构特性的材料作为安全的Mg~(2+)电池电极材料的可能应用提供了实验依据。
    发展了非水体系液相调控合成金属氧化物新颖纳米结构的方法,制备了WO_3空心球和高结晶度、在有机溶剂中单分散的TiO_2纳米颗粒和纳米棒,发展出灵敏度较高的WO_3空心球气敏传感器,观察到了纳米单分散TiO_2光降解有机物的优良性能,展示了新颖纳米结构材料的应用前景。
Owing to unique physical properties, nanostructured metal oxides andsulfides have exhibited promising applications in catalysis, sensing, optics,magnetics and batteries. Preparing novel 1D nanostructures and investigatingtheir general formation mechanism may be a solution to the precise control oftheir sizes, dimensionalities and properties. In this dissertation, systematicexplorations have been carried out on new synthetic strategies of metal oxidesand sulfides, their formation mechanisms and novel properties.
    A direct pyrolysis method from artificial lamellar mesostructures to WS_2nanotubes, W and WO_3 nanowires has been developed and MoS_2 nanotubeswere also prepared from a conversion reaction. Based on experimental facts, arolling mechanism, which provided a new viewpoint for the formation of 1Dnanostructures, has been proposed.
    Several gas phase reactions were established to prepare MoCO/Mo_2Cmicrotubes, MoS_2 and WS_2 nanotubes, fullerenes, nanoflowers and Temicrotubes. Systematical studies of their BET surface areas, field-emissioneffect and magnetoresistance (MR) effect indicated promising applications ofthese novel materials in catalysis, flat panel displays and MR devices.
    Rational hydrothermal reactions have been developed to prepare singlecrystal MoO_3 nanobelts and MoS_2 nanostructures. Nanorods and nanoflakes ofseveral metal hydroxides were prepared with a simple conversion method.Reversible intercalation of Mg~(2+) in MoS_2 nanostructure was demonstrated,suggesting the possibility of using layered nanomaterials as electrodes.
    WO_3 hollow spheres and highly crystallized, re-dispersible TiO_2 wereprepared by controlled non-aqueous reactions. WO_3 hollow sphere gas-sensorswere developed and the TiO_2's photodegradation property was observed.
引文
[1] 白春礼.纳米科学与技术.瞭望.1994,34:28-29
    [2] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [3] 朱静.纳米材料与器件.北京:清华大学出版社,2003
    [4] 华彤文等译,布里斯罗 R.【美】著.化学的今天和明天.北京:科学出版社,1998
    [5] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry-a chemical strategy for the synthesis of nanostructures. Science 1991, 254:1312-1319
    [6] Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes Accounts. Chem. Res. 1999, 32:435-445
    [7] Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354:56-58
    [8] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283:512-514
    [9] Kong J, Franklin N R, Zhou C W, et al. Nanotube molecular wires as chemical sensors. Science 2000, 287:622-625
    [10] Dai H J. Carbon nanotubes: Synthesis, integration, and properties. Accounts. Chem. Res. 2002, 35:1035-1044
    [11] Dresselhaus M S, Dresselhaus G, Eklund P C. Science of Fullerenes and Carbon Nanotubes. San Diego: Academic Press, 1996
    [12] Dresselhaus M S, Dresselhause G, Avouris Ph. Carbon Nanotubes-Synthesis, Structure, Properties, and Applications. Berlin: Springer, 2001
    [13] Huang Y, Duan XF, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294:1313-1317
    [14] Huang Y, Duan X F, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1:142-147
    [15] Cui Y, Wei Q Q, Park H. K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293:1289-1292
    [16] Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15:353-389
    [17] Xia Y N, Yang P D. Guest Editorial: Chemistry and physics of nanowires. Adv. Mater. 2003, 15:351-352
    [18] Tenne R, Margulis L, Genut M, et al. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360:444-446
    [19] Feldman Y, Wasserman E, Srolovitz D J, et al. High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 1995, 267:222-225
    [20] Krumeich F, Muhr H J, Niederberger M, et al. Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am. Chem. Soc. 1999, 121:8324-8331
    [21] Chen J, Li S L, Tao Z L, et al. Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 2003, 8:980-981
    [22] Hachohen Y R, Grunbaum E, Tenne R, et al. Cage structures and nanotubes of NiCl2. Nature 1998, 395:336-337
    [23] Chopra N G, Luyren R J, Cherry K, et al. Boron-Nitride nanotubes. Science 1995, 269:966-967
    [24] Nath M, Rao C N R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123:4841-4842
    [25] Nath M, Rao C N R. Nanotubes of group 4 metal disulfides. Angew. Chem. Int. Ed. 2002, 41:3451-3454
    [26] Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes: A rational low-temperature synthetic route. J. Am. Chem. Soc. 2001, 123:9904-9905
    [27] Wang X, Sun X M, Yu D P, Zou B S, Li Y D. Rare earth compound nanotubes. Adv Mater. 2003, 15:1442-1445
    [28] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279:208-211.
    [29] Duan X F, Lieber C M. General Synthesis of Compound Semiconductor Nanowires. Adv. Mater. 2000, 12: 298-302.
    [30] Ge J P, Li Y D. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater. 2004, 14:157-162
    [31] Ge J P, Li Y D. Controllable CVD route to CoS and MnS single-crystal nanowires. Chem. Commun. 2003, 19:2498-2499
    [32] Huang M H, Wu Y Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13:113-116
    [33] Wang Y L, Jiang X C, Xia Y N. A solution-phase, precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc. 2003, 125:16176-16177
    [34] Wang X, Li Y D. Selected-control hydrothermal synthesis of alpha-and beta-MnO_2 single crystal nanowires. J. Am. Chem. Soc. 2002, 124:2880-2881
    [35] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science 2001, 291:1947-1949
    [36] Shi W S, Peng H Y, Wang N, et al. Free-standing single crystal silicon nanoribbons. J. Am. Chem. Soc. 2001, 123:11095-11096
    [37] Gao Y H, Bando Y, Sato T. Nanobelts of the dielectric material Ge3N4. Appl. Phys. Lett. 2001, 79:4565-4567
    [38] Bae S Y, Seo H W, Park J, et al. Single-crystalline gallium nitride nanobelts. Appl. Phys. Lett. 2002, 81:126-128
    [39] Sun X M, Chen X, Li Y D. Large-scale synthesis of sodium and potassium titanate nanobelts. Inorg. Chem. 2002, 41:4996-4998
    [40] Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature 2000, 404:59-61
    [41] Liu B, Zeng H C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 2003, 125:4430-4431
    [42] Cheng B, Russell J M, Shi W S, et al. Large-scale, solution-phase growth of single-crystalline SnO_2 nanorods. J. Am. Chem. Soc. 2004, 126:5972-5973
    [43] Moriceau P, Lebouteiller A, Bordes E, et al. A new concept related to selectivity in mild oxidation catalysis of hydrocarbons: the optical basicity of catalyst oxygen. Phys. Chem. Chem. Phys. 1999, 1:5735-5744
    [44] 徐毓龙,Heiland G.金属氧化物气敏传感器 (I). 传感技术学报. 1995,4:59-64
    [45] Ziese M. Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 2002, 65:143-249
    [46] Vanmaekelbergh D, Liljeroth P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 2005, 34:299-312
    [47] Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS_2 as potential solid-state lubricants. Nature 1997, 387:791-793
    [48] Chhowalla M, Amaratunga G A J. Thin films of fullerene-like MoS_2 nanoparticles with ultra-low friction and wear. Nature 2000, 407:164-167
    [49] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10:725-763
    [50] Gratzel M. Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett. 2005, 34:8-13
    [51] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers Science 2001 292:1897-1899
    [52] Law M, Kind H, Messer B, et al. Photochemical sensing of NO_2 with SnO_2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed. 2002, 41:2405-2408
    [53] Li Y B, Bando Y, Golberg D, et al. Field emission from MoO3 nanobelts. Appl. Phys. Lett. 2002, 81:5048-5050
    [54] Duan X F, Huang Y, Agarwal R, et al. Single-Nanowire Electrically Driven Lasers, Nature 2003, 421:241-245
    [55] Chen J, Kuriyama N, Yuan H, et al. Electrochemical hydrogen storage in MoS_2 nanotubes. J. Am. Chem. Soc. 2001, 123:11813-11814.
    [56] Rothschild A, Cohen S R, Tenne R. WS_2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett. 1999, 75: 4025-4027.
    [57] Krusin-Elbaum L, Newns D M, Zeng H, et al. Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 2004, 431:672-676.
    [58] Kroto H W, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene. Nature 1985, 318:162-163
    [59] Kraetschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60: a new form of carbon. Nature 1990, 347:354-358
    [60] Lauhon L J, Gudiksen M S, Wang D L, et al. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420:57-61
    [61] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science 2002, 295:2425-2427
    [62] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998, 281:2013-2016
    [63] Li Y D, Li X L, He R R, et al. Artificial lamellar mesostructures to WS_2 nanotubes. J. Am. Chem. Soc. 2002, 124:1411-1416
    [64] Li Y D, Li X L, Deng Z X, et al. From surfactant-inorganic mesostructures to tungsten nanowires. Angew. Chem. Inter. Ed. 2001, 41:333-335
    [65] Li X L, Liu J F, Li Y D. Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 2003, 42:921-924
    [66] Li X L, Li Y D. Formation MoS_2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem. Eur. J. 2003, 9:2726-2731
    [67] Li X L, Li Y D. Synthesis of scroll-type composite microtubes of Mo_2C/MoCO by controlled pyrolysis MO(CO)_6. Chem. Eur. J. 2004, 10:433-439
    [68] Li X L, Ge J P, Li Y D. Atmospheric pressure chemical vapor deposition: an alternative route to large-scale MoS_2 and WS_2 inorganic fullerenelike nanostructures and nanoflowers. Chem. Eur. J. 2004, 10:6163-6171
    [69] Li X L, Cao G H, Feng C M, Li Y D. Synthesis and magnetoresistance measurement of tellurium microtubes. J. Mater. Chem. 2004, 14:244-247
    [70] Li X L, Liu J F, Li Y D. Low-temperature synthesis of large-scale single-crystal molybdenum trioxide (MoO3) nanobelts. Appl. Phys. Lett. 2002, 81:4832-4834
    [71] Li X L, Li Y D. MoS_2 nanostructures: synthesis and electrochemical Mg~(2+) intercalation. J. Phys. Chem. B 2004, 108:13893-13900
    [72] Li X L, Liu J F, Li Y D. Low-temperature conversion synthesis of M(OH)_2 (M = Ni, Co, Fe) nanoflakes and nanorods. Mater. Chem. Phys. 2003, 80:222-227
    [73] Li X L, Lou T J, Sun X M, et al. High sensitive WO3 hollow sphere gas-sensors. Inorg. Chem. 2004, 43:5442-5449
    [74] Li X L, Liu J F, Wang X, et al. Highly crystallized, re-dispersible TiO_2 nanoparticles and nanorods. Submitted
    [75] Li X L, Li Y D. Controlled synthesis of re-dispersible TiO_2 nanoparticles and nanorods by designed solvothermal reactions. Submitted
    [76] Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature, Solid. State. Commun 1998, 105:403-407
    [77] Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc 2001, 123: 3165-3166
    [78] Remskar M, Mrzel A, Skraba Z, et al. Self-assembly of subnanometer-diameter single-wall MoS_2 nanotubes. Science 2001, 292:479-481
    [79] Yu H, Buhro W E. Solution-liquid-solid growth of soluble GaAs nanowires. Adv. Mater. 2003, 15:416-419
    [80] Pan Z W, Dai Z R, Ma C, et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc 2002, 124:1817-1822
    [81] Martin C R. Nanomaterials-a membrane-based synthetic approach. Science 1994, 266: 1961-1966
    [82] Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998, 393:346-349
    [83] Cao H Q, Xu Y, Hong J M, et al. Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Adv. Mater. 2001, 13:1393-1394
    [84] Cao H Q, Tie C Y, Xu Z, et al. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl. Phys. Lett. 2001, 78:1592-1594
    [85] Cao H Q, Xu Z, Sang H, et al. Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules. Adv. Mater. 2001, 13:121-123
    [86] Chen J, Xu L N, Li W Y, et al. alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17:582-586
    [87] Cai F S, Zhang G Y, Chen J, et al. Ni(OH)2 tubes with mesoscale dimensions as positive-electrode materials of alkaline rechargeable batteries. Angew. Chem. Int. Ed. 2004, 43:4212-4216
    [88] Zelenski C M, Dorhout P K. Template synthesis of near-monodisperse microscale nanofibers and nanotubules of MoS_2. J. Am. Chem. Soc. 1998, 120:734-742
    [89] Wu Y Y, Livneh T, Zhang Y X, et al. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano. Lett. 2004, 4:2337-2342
    [90] Dai H J, Wong E W, Lu Y Z, et al. Synthesis and Characterization of carbide nanorods, Nature 1995, 375:769-772
    [91] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science 1997, 277:1287-1289
    [92] Satishkumar B C, Govindaraj A, Nath M, et al. Synthesis of metal oxide nanorods using carbon nanotubes as templates. J. Mater. Chem. 2000, 10:2115-2119
    [93] Sun Y G, Xia Y N. Multiple-walled nanotubes made of metals. Adv. Mater. 2004, 16:264-268
    [94] Mayers B, Jiang X C, Sunderland D, et al. Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. J. Am. Chem. Soc. 2003, 125:13364-13365
    [95] Gates B, Wu Y Y, Yin Y D, et al. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J. Am. Chem. Soc. 2001, 123:11500-11501
    [96] Jiang X C, Mayers B, Herricks T, et al. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires. Adv. Mater. 2003, 15:1740-1743
    [97] Goldberger J, He R R, Zhang Y F, et al. Single-crystal gallium nitride nanotubes Nature 2003, 422:599-602
    [98] Sone E D, Zubarev E R, Stupp S I. Semiconductor nanohelices templated by supramolecular ribbons. Angew. Chem. Int. Ed. 2002, 41:1705-1709
    [99] Deng Z X, Mao C D. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano. Lett. 2003, 3:1545-1548
    [100] Qi L M, Ma J M, Cheng H M, et al. Reverse micelle based formation of BaCO3 nanowires. J. Phys. Chem. B 1997, 101:3460-3463
    [101] Shi H T, Qi L M, Ma J M, et al. Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv. Funct. Mater. 2005, 15:442-450
    [102] Sun Y G, Yin Y D, Mayers B T, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14:4736-4745
    [103] Wang Y L, Herricks T, Xia Y N. Single Crystalline Nanowires of Lead Can Be Synthesized through Thermal Decomposition of Lead Acetate in Ethylene Glycol, Nano Lett, 2003, 3:1163-1166
    [104] Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15:459-463
    [105] Yu D P, Bai Z G, Ding Y, et al. Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett 1998, 72:3458-3460
    [106] Wan Q, Li Q H, Chen Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Letts. 2004, 84:3654-3656
    [107] Bai Z G, Yu D P, Zhang H Z, et al. Nano-scale GeO_2 wires synthesized by physical evaporation. Chem. Phys. Lett 1999, 303:311-314
    [108] Zhang H Z, Kong Y C, Wang Y Z, et al. Ga2O3 nanowires prepared by physical evaporation. Solid State. Commun. 1999, 109:677-682
    [109] Hsu W K, Chang B H, Zhu Y Q, et al. An alternative route to molybdenum disulfide nanotubes. J. Am. Chem. Soc. 2000, 122:10155-10158
    [110] Jiang X C, Herricks T, Xia Y N. CuO nanowires can be synthesized by heating copper substrates in air. Nano. Lett. 2002, 2:1333-1338
    [111] Reui-San Chen, Ying-Sheng Huang, Dah-Shyang Tsai, et al. Growth of Well Aligned IrO_2 Nanotubes on LiTaO3 (012) Substrate. Chem. Mater. 2004, 16:2457-2462
    [112] Nath M, Govindaraj A, Rao C N R. Simple synthesis of MoS_2 and WS_2 nanotubes. Adv. Mater. 2001, 13:283-286
    [113] Gates B, Yin Y D, Xia Y N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. J. Am. Chem. Soc. 2000, 122:12582-12583
    [114] Mayers B, Xia Y N. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv. Mater. 2002, 14:279-282
    [115] Mayers B, Xia Y N. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 2002, 12:1875-1881
    [116] Li Y D, Liao H W, Qian Y T, et al. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998, 10:2301-2303
    [117] Peng Q, Dong Y J, Deng Z X, et al. Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg. Chem. 2002, 41: 5249-5254
    [118] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Edit. 2002, 41:4790-4793
    [119] Bates T F, Sand L B, Mink J F. Tubular crystals of chrysotile asbestos. Science 1950, 111:512-513
    [120] Kaschak D M, Johnson S A, Hooks D E, et al. Chemistry on the edge: A microscopic analysis of the intercalation, exfoliation, edge functionalization, and monolayer surface tiling reactions of alpha-zirconium phosphate. J. Am. Chem. Soc. 1998, 120:10887-10894
    [121] Fang M, Kim H N, Saupe G B, et al. Layer-by-layer growth and condensation reactions of niobate and titanoniobate thin films. Chem. Mater. 1999, 11:1526-1532
    [122] Nassau K, Shiever J W, Bernstein J L. Crystal growth and properties of mica-like potassium niobates. J. Electrochem. Soc. 1969, 116:348-352
    [123] Dion M, Piffard Y, Tournoux M. Tetratitanates M2Ti4O9 (M = Li, Na, K, Rb, Cs, Tl, Ag). J. Inorg. Nucl. Chem. 1978, 40:917-918
    [124] Bruton T M. Growth of single crystals of Bi4Ti3O12. Ferroelectrics 1974, 7:259-260
    [125] Subbarao E C. Crystal chemistry of mixed bismuth oxides with layer-type structure. J. Am. Ceram. Soc. 1962, 45:166-169
    [126] Iordanidis L, Kanatzidis M G. Redox-induced "zipper" action in Rb2Bi4Se7 and Cs2Bi4Se7: Coupling of slabs to a three-dimensional framework through single-crystal to single-crystal conversion. Angew. Chem. Int. Ed. 2000, 39:1927-1930
    [127] Iordanidis L, Kanatzidis M G. Redox-induced "zipper" action in the solid state. Unprecedented single-crystal to single-crystal to single-crystal cascade conversions in Cs3Bi7Se12. Framework evolution from 2D to 2D ' to 3D. J. Am. Chem. Soc. 2000, 122:8319-8320
    [128] Chung D Y, Hogan T, Brazis P, et al. CsBi4Te6: a high-performance thermoelectric material for low-temperature applications. Science 2000, 287:1024-1027
    [129] Wyckoff R W G. Crystal structures. New York: Interscience, 1963, Vol. 1, 30-32
    [130] Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant inorganic composite-materials. Nature 1994, 368:317-321
    [131] Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 1998, 396:152-155
    [132] Wang Y, Chen J S, Yu S F, Xu R R. Synthesis and characterization of a new tungsten sulfide with a lamellar mesostructure. Chem. J. Chin. Univ. 2000, 21:165-168
    [133] Co?te′ M, Cohen M L, Chadi D J. Theoretical study of the structural and electronic properties of GaSe nanotubes. Phys. Rev. B 1988, 58:R4277-R4280
    [134] Seifert G, Terrones H, Terrones M, et al. Novel NbS_2 metallic nanotubes. Solid State Commun. 2000, 115:635-638
    [135] Seifert G, Terrones H, Terrones M, et al. On the electronic structure of WS_2 nanotubes. Solid State Commun. 2000, 114:245-248
    [136] Seifert G, Hernandez E. Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 2000, 318:355-360
    [137] Tenne R. Inorganic nanotubes and fullexene-like materials. Chem. Eur. J. 2002, 8:5297-5304
    [138] Sun X M, Li Y D. Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J 2003, 9: 2229-2238
    [139] Ye C H, Meng G W, Jiang Z, et al. Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors. J. Am. Chem. Soc. 2002, 124:15180-15181
    [140] Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 2003, 9:300-306
    [141] Frey G L, Rothschild A, Sloan J, et al. et al. Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 2001, 162:300-314
    [142] Yada M, Hiyoshi H, Ohe K, et al. Synthesis of aluminum-based surfactant mesophases morphologically controlled through a layer to hexagonal transition. Inorg. Chem. 1997, 36:5565-5569
    [143] Weber T, Muijsers J C, vanWolput H J M C, et al. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS_2 as studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem. 1996, 100:14144-14150
    [144] Tenne R, Homyonfer M, Feldman Y. Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem. Mater. 1998, 10:3225-3238
    [145] Heidenreich R D, Hess W M, Ban L L. A test object and criteria for high resolution electron microscopy. J. Appl. Crystallogr. 1968, 1:1-8
    [146] Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature 1992, 359:707-709
    [147] Bacon R. Growth, Structure, and Properties of Graphite Whiskers. J. Appl. Phys. 1960, 31:283-290
    [148] Remskar M, Skraba Z, Cleton F, et al. MoS_2 as microtubes. Appl. Phys. Lett. 1996, 69:351-353
    [149] Saupe G B, Waraksa C C, Kin H N, et al. Nanoscale tubules formed by exfoliation of potassium hexaniobate. Chem. Mater. 2000, 12:1556-1562
    [150] Abe R, Shinohara K, Tanaka A, et al. Preparation of porous niobium oxides by soft-chemical process and their photocatalytic activity. Chem. Mater. 1997, 9:2179-2184
    [151] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls. Science 2003, 299:1361-1361
    [152] Schmidt O G, Eberl K. Nanotechnology -thin solid films roll up into nanotubes. Nature 2001, 410:168-168
    [153] 徐如人,庞文琴. 无机合成与制备化学. 北京:高等教育出版社,2001
    [154] Kmetz M, Suib S L, Galasso F S. Molybdenum oxycarbide and tungsten oxycarbide coatings on silicon carbide fibers. J. Am. Ceram. Soc. 1989, 72:1523-1524
    [155] Bouchy C, Pham-huu C, Heinrich B, et al. Microstructure and characterization of a highly selective catalyst for the isomerization of alkanes: A molybdenum oxycarbide. J. Catal. 2000, 190:92-103
    [156] Motojima S, In-Hwang W, Iwanaga H. Preparation and properties of TaC/C/TaC similar to TaC composite micro-tubes by vapor phase tantalizing of the regular carbon micro-coils/micro-tubes. J. Mater. Sci. 2001, 36:673-677
    [157] Hanif A, Xiao T C, York A P E, et al. Study on the structure and formation mechanism of molybdenum carbides. Chem. Mater. 2002, 14:1009-1015
    [158] Delporte P, Meunier F, Phamhuu C, et al. Physical characterization of molybdenum oxycarbide catalyst-TEM, XRD and XPS. Catal. Today 1995, 23:251-267
    [159] Singmaster K A, Houle F A, Wilson R J. Photochemical deposition of thin films from the metal hexacarbonyls. J. Phys. Chem. 1990, 94:6864-6875
    [160] Wei W C J, Lo M H. Processing and properties of (Mo, Cr) oxycarbides from MOCVD. Appl. Organometal. Chem. 1998, 12:201-220
    [161] Vasudevan P T, Fierro J L G. A review of deep hydrodesulfurization catalysis. Catal. Rev. Sci. Eng. 1996, 38:161-188
    [162] Feldman Y, Zak A, Popovitz-Biro R, et al. New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid State Sci. 2000, 2:663-672
    [163] Hong S Y, Popovitz-Biro R, Prior Y, et al. Synthesis of SnS_2/SnS fullerene-like nanoparticles: A superlattice with polyhedral shape. J. Am. Chem. Soc. 2003, 125:10470-10474
    [164] Frey G L, Tenne R, Matthews M J, et al. Raman and resonance Raman investigation of MoS_2 nanoparticles. Phys. Rev. B 1999, 60:2883-2892
    [165] Endler I, Leonhardt A, Konig U, et al. Chemical vapour deposition of MoS_2 coatings using the precursors MoCl5 and H2S. Surf. Coat. Tech. 1999, 121:482-488
    [166] Bonneau P R, Jarvis Jr R F, Kaner R B. Rapid solid-state synthesis of materials from molybdenum disulphide to refractories. Nature 1991, 349:510-512
    [167] Briggs D, Seah M P. Practical Surface Analysis. New York: Wiley, 1990
    [168] Srolovitz D J, Safran S A, Homyonfer M, et al. Morphology of nested fullerenes. Phys. Rev. Lett. 1995, 74:1779-1782
    [169] Iwata Y, Sato K, Yoneda T, et al. Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods. Catal. Today 1998, 45:353-359
    [170] Chen J, Li S L, Gao F, et al. Low-temperature catalytic preparation of multi-wall MoS_2 nanotubes. Sci. China Ser. B 2003, 46:191-195
    [171] Zhu Y W, Zhang H Z, Sun X C, et al. Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 2003, 83:144-146
    [172] Li Y B, Bando Y, Golberg D. MoS_2 nanoflowers and their field-emission properties. Appl. Phys. Lett. 2003, 82:1962-1964
    [173] Breen T L, Tein J, Oliver S R J, et al. Design and self-assembly of open, regular, 3D mesostructures. Science 1999, 284:948-951
    [174] Sharma S, Sunkara M K. Direct synthesis of gallium oxide tubes, nanowires, and nanopaintbrushes. J. Am. Chem. Soc. 2002, 124:12288-12293
    [175] Ma R Z, Bando Y, Sato T, et al. Single-crystal Al18B4O33 microtubes. J. Am. Chem. Soc. 2002, 124:10668-10669
    [176] Hu J Q, Deng B, Lu Q Y, et al. Hydrothermal growth of beta-Ag2Se tubular crystals. Chem. Commun. 2000, 8:715-716
    [177] Beauvais J, Lessard R A, Galarneau P, et al. Self-developing holographic recording in Li-implanted Te thin films. Appl. Phys. Lett. 1990, 57:1354-1356
    [178] Lu J, Xie Y, Xu F, et al. Study of the dissolution behavior of selenium and tellurium in different solvents-a novel route to Se, Te tubular bulk single crystals. J. Mater. Chem. 2002, 12:2755-2761
    [179] Xu J, Li Y D. Solution route to Se_xTe_(1-x)/Te/Se_xTe_(1-x) heterojunction nanorods. Mater. Chem. Phys. 2003, 82:515-519
    [180] Takita K, Hagiwara T, Tanaka S. J. Phys. Soc. Jpn. Galvanomagnetic effects in para-type tellurium at low-temperatures. 3. impurity band conduction and negative magnetoresistance in Sb doped crystals. 1973, 34:1548-1560
    [181] Averkiev N S, Pikus G E. Weak carrier localization on the (10-10) tellurium surface. Phys. Solid State+ 1997, 39:1481-1486
    [182] Cooper W C. The Physics of Selenium and Tellurium. Oxford, New York: Pergamon Press, 1969
    [183] Hussain Z. Optical and electrochromic properties of heated and annealed MoO3 thin films. J. Mater. Res. 2001, 16:2695-2708
    [184] Ferroni M, Guidi V, Martinelli G, et al. MoO3-based sputtered thin films for fast NO_2 detection. Sens. Actuators B 1998, 48:285-288
    [185] Zach M P, Ng K H, Penner R M. Molybdenum nanowires by electrodeposition. Science 2000, 290:2120-2123
    [186] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: From "simple" coordination polymers to organodiamine-templated molybdenum oxides. Angew. Chem. Int. Ed. 1999, 38:2639-2684
    [187] Imanishi N, Kanamura K, Takehara Z. Synthesis of MoS_2 thin film by chemical vapor deposition method and discharge characteristics as a cathode of the lithium secondary battery. J. Electrochem. Soc. 1992, 139:2082-2087
    [188] Zak A, Feldman Y, Lyakhovitskaya V, et al. Alkali metal intercalated fullerene-like MS_2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 2002, 124:4747-4758
    [189] Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407:724-727
    [190] Zhan J H, Zhang Z D, Qian X F, et al. Solvothermal synthesis of nanocrystalline MoS_2 from MoO3 and elemental sulfur. J. Solid State Chem. 1998, 141:270-273
    [191] Li W J, Shi E W, Ko J M, et al. Hydrothermal synthesis of MoS_2 nanowires. J. Cryst. Growth. 2003, 250:418-422
    [192] Mdleleni M M, Hyeon T, Suslick K S. Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 1998, 120:6189-6190
    [193] Vollath D, Szabo D V. Synthesis of nanocrystalline MoS_2 and WS_2 in a microwave plasma. Mater. Lett. 1998, 35:236-244
    [194] Greenwood N N. Chemistry of the Elements. Oxford: Pergamon Press, 1984
    [195] Reznik D, Olk C H, Neumann D A, et al. X-ray-powder diffraction from carbon nanotubes and nanoparticles. Phys. Rev. B 1995, 52:116-124
    [196] Chen J, Tho Z L, Li S L. Lithium intercalation in open-ended TiS_2 nanotubes. Angew. Chem. Int. Ed. 2003, 42:2147-2151
    [197] Bruce P G, Krok F, Nowinski J, et al. Chemical intercalation of magnesium into solid hosts. J. Mater. Chem. 1991, 1:705-707
    [198] Novak P, Imhof R, Haas O. Magnesium insertion electrodes for rechargeable nonaqueous batteries-a competitive alternative to lithium?. Electrochim. Acta. 1999, 45:351-367
    [199] Matijevic E. Preparation and properties of uniform size colloids. Chem. Mater. 1993, 5:412-426
    [200] Sampanthar J T, Zeng H C. Arresting butterfly-like intermediate nanocrystals of β-Co(OH)2 via ethylenediamine-mediated synthesis. J. Am. Chem. Soc. 2002, 124:6668-6675
    [201] Wang J W, Wang X, Peng C, et al. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres. Inorg. Chem. 2004, 43:7552-7556
    [202] Zhang Y, Li Y D. Synthesis and characterization of monodisperse doped ZnS nanospheres with enhanced thermal stability. J. Phys. Chem. B 2004, 108:17805-17811
    [203] Koltypin Y, Nikitenko S I, Gedanken A. The sonochemical preparation of tungsten oxide nanoparticles. J. Mater. Chem. 2002, 12:1107-1110
    [204] Zhao Y, Feng Z C, Liang Y. Pulsed laser deposition of WO_3-base film for NO_2 gas sensor application. Sensor. & Actuat. B-Chem. 2000, 66:171-173
    [205] Baeck S H, Choi K S, Jaramillo T F, et al. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 2003, 15:1269-1273
    [206] Gu G, Zheng B, Han W Q, et al. Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2002, 2:849-851
    [207] Li Y B, Bando Y, Golberg D. Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 2003, 15:1294-1296
    [208] Zhong Z Y, Yin Y D, Gates B, et al. Preparation of mesoscale hollow spheres of TiO_2 and SnO_2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 2000, 12:206-209
    [209] Ma Y R, Qi L M, Ma J M, et al. Synthesis of submicrometer-sized CdS hollow spheres in aqueous solutions of a triblock copolymer. Langmuir 2003, 19:9079-9085
    [210] Huang J X, Xie Y, Li B, et al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Adv. Mater. 2000, 12:808-811
    [211] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 2004, 43:597-601
    [212] Sun X M, Li Y D. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 2004, 43:3827-3831
    [213] Weissberger A. Organic Solvents. New York: Wiley, 1971
    [214] Okazaki S, Nakagawa H, Asakura S, et al. Sensing characteristics of an optical fiber sensor for hydrogen leak. Sensor. & Actuat. B-Chem. 2003, 93:142-147
    [215] Shimizu Y, Matsunaga N, Hyodo T, et al. Improvement of SO_2 sensing properties of WO3 by noble metal loading. Sensor. & Actuat. B-Chem. 2001, 77:35-40
    [216] Tao W H, Tsai C H. H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sensor. & Actuat. B-Chem. 2002, 81:237-247
    [217] Maiti A, Rodriguez J A, Law M, et al. SnO_2 nanoribbons as NO_2 sensors: Insights from first principles calculations. Nano Lett. 2003, 3:1025-1028
    [218] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293:269-271
    [219] Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science 2002, 297:2243-2245
    [220] Zhao W, Chen C C, Li X Z, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst. J. Phys. Chem. B 2002, 106:5022-5028
    [221] Bechinger C, Ferrer S, Zaban A, et al. Photoelectrochromic windows and displays. Nature 1996, 383:608-610
    [222] Paunesku T, Rajh T, Wiederrecht G, et al. Biology of TiO_2-oligonucleotide nanocomposites Nature Mater. 2003, 2:343-346
    [223] Jiang X C, Herricks T, Xia Y N. Monodispersed spherical colloids of titania: synthesis, characterization, and crystallization. Adv. Mater. 2003, 15:1205-1209
    [224] Tian Z R R, Voigt J A, Liu J, et al. Large oriented arrays and continuous films of TiO_2-based nanotubes. J. Am. Chem. Soc. 2003, 125:12384-12385
    [225] Limmer S J, Cao G Z. Sol-gel electrophoretic deposition for the growth of oxide nanorods. Adv. Mater. 2003, 15:427-431
    [226] Trentler T J, Denler T E, Bertone J F, et al. Synthesis of TiO_2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 1999, 121:1613-1614
    [227] Cozzoli P D, Kornowski A, Weller H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO_2 nanorods. J. Am. Chem. Soc. 2003, 125:14539-14548
    [228] Jun Y W, Casula M F, Sim J H, et al. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO_2 nanocrystals. J. Am. Chem. Soc. 2003, 125:15981-15985
    [229] Niederberger M, Bartl M H, Stucky G D. Benzyl alcohol and titanium tetrachloride-a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles. Chem. Mater. 2002, 14:4364-4370
    [230] Vioux A. Nonhydrolytic sol-gel routes to oxides. Chem. Mater. 1997, 9:2292-2299
    [231] Arnal P, Corriu R J P, Leclercq D, et al. A solution chemistry study of nonhydrolytic sol-gel routes to titania. Chem. Mater. 1997, 9:694-698
    [232] Hay J N, Raval H M. Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process. Chem. Mater. 2001, 13:3396-3403
    [233] Wang C, Deng Z X, Li Y D. The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg. Chem. 2001, 40:5210-5214
    [234] Chandler C D, Roger C, Hampdensmith M J. Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 1993, 93:1205-1241
    [235] Schubert U, Arpac E, Glaubitt W, et al. Primary hydrolysis products of methacrylate-modified titanium and zirconium alkoxides. Chem. Mater. 1992, 4:291-295
    [236] Liu Y J, Claus R O. Blue light emitting nanosized TiO_2 colloids. J. Am. Chem. Soc. 1997, 119:5273-5274
    [237] Matsumoto Y, Murakami M, Shono T, et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 2001, 291:854-856
    [238] Bryan J D, Heald S M, Chambers S A, et al. Strong room-temperature ferromagnetism in Co2+-doped TiO_2 made from colloidal nanocrystals. J. Am. Chem. Soc. 2004, 126:11640-11647

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700