岩溶区嵌岩桩承载特性及其设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国交通事业的迅猛发展,桩基础在公路桥梁中应用日益广泛。较多的桩基使用在岩溶区地基,我国岩溶分布广泛,当桩基础穿越该类地区时,由于存在下伏溶洞等工程隐患,使得桩基对竖向变形极为敏感,一旦出现过量变形,将直接影响桩端岩溶顶板厚度的稳定性,情况严重则可能导致溶洞塌陷,对整个桥梁工程产生致命危害。为此,本文采用理论分析与数值模拟方法,对岩溶区嵌岩桩承载机理及设计方法进行探讨,主要研究工作如下:
     首先,针对岩溶区嵌岩桩承载力和设计方法的特殊性,深入分析了岩溶区嵌岩桩在水平荷载和竖向荷载作用下的受力特性和承载机理,对嵌岩桩的荷载传递过程、桩侧阻力和桩端阻力的各种计算模式、破坏性状;同时探讨了岩溶区嵌岩桩桩端岩层的受力特性与破坏机理,为岩溶区嵌岩桩的合理设计与计算提供了基础。
     其次,引进Hoek-Brown强度理论,通过变换推导出能考虑岩体质量的岩体抗拉强度,同时考虑竖向应力的岩体抗剪强度公式,将其应用于基桩桩端下伏溶洞的岩层顶板的安全厚度确定中,得到了岩溶区嵌岩桩桩端溶洞顶板安全厚度确定新方法。
     再之,分析了岩溶区嵌岩桩的承载机理及侧阻端阻的传递规律,建立了桩侧桩周的荷载传递模型,在荷载传递理论的基础上,根据桩侧土(岩)与桩端岩层阻力的发挥程度,导得了桩顶沉降量与桩顶荷载之间的关系式,提出了按桩顶沉降控制岩溶区嵌岩桩竖向承载力计算方法。
     然后,应用数值模拟方法,深入分析影响岩溶区桩基下溶洞顶板稳定性的因素,对不同洞径条件下溶洞变形力学特性及顶板安全厚度的影响因素进行探讨,获得了场地溶洞顶板位移变化规律溶、洞洞周各点主应力变化规律、溶洞上覆岩层中沿竖向各点主应力变化规律。
     最后,结合实际工程,对岩溶区嵌岩桩的设计与计算进行了验证分析,结果表明了本文方法的合理性。
Along with the transportation enterprise's rapid development in our country, the pile foundation is applied in the highway bridge day by day widely. many pile foundations are used in the karst area region, our country karst are widely distribution, when the pile foundation passes through this kind of local zone, because has project hidden dangers and so on last ten days of the dog-day period limestone cave, causes the pile foundation to be extremely sensitive to the vertical distortion, once presents the excessive distortion, the immediate influence tip of pile karst roof thickness's stability, the situation serious possibly causes the limestone cave collapse, which has tfatal harmed to the entire bridge building. Therefore, this article uses the theoretical analysis and numerical simulation method, pile load bearing mechanism and the design method to the karst area were carriedon the discussion, the main research work as follows:
     Firstly, inlaying the crag pile supporting capacity and the design method particularity in view of the karst area, analyzed the karst area to inlay the crag pile thoroughly in the horizontal load and under the vertical load function stress characteristic and the load bearing mechanism, to inlaid the crag pile the load transmission process, the pile side resistance and the tip of pile resistance each kind of computation pattern, the destruction character; Simultaneously discussed the karst area to inlay the crag pile tip of pile rock layer the stress characteristic and the failure mechanism, inlaid the crag pile for the karst area the reasonable design and the computation has provided the foundation.
     Nextly, introduced the Hoek-Brown theory of strength, infers through the transformation can consider that the rock mass quality the rock mass tensile strength, simultaneously considered the vertical stress the rock mass shearing strength formula, applies it in the foundation pile tip of pile last ten days of the dog-day period limestone cave rock layer roof security thickness determination, obtained the karst area to inlay the crag pile tip of pile limestone cave roof security thickness to determine the new method. it, analyzed the karst area to inlay the crag pile again the load bearing mechanism and the side anti- end anti- transmission rule, has established the pile side pile week load transmission model, in the load transmission theory's foundation, according to the pile side earth (crag) with the tip of pile rock layer resistance's display degree, led between the head of pile subsidence quantity and the head of pile load relationship, proposed inlaid the crag pile vertical supporting capacity computational method according to the head of pile subsidence control karst area.
     Then, the application numerical simulation method, analyzes under thoroughly the influence karst area pile foundation the limestone cave roof stable factor, the limestone cave distortion mechanics characteristic and the roof security thickness's influencing factor carries on the discussion to the different hole diameter condition, obtained the location limestone cave roof displacement change rule to dissolve, hole hole the principal stress change rule, in the limestone cave overburden along the vertical each principal stress change rule.
     Finally, the union actual project, inlaid the crag pile to the karst area the design and the computation has carried on the confirmation analysis, which has indicated the method rationality
引文
[1]赵明华,李刚,曹喜仁等.土力学地基与基础疑难释义.北京:中国建筑工业出版社,1998
    [2]中华人民共和国国家标准.建筑边坡工程技术规范(GB50330—2002).北京:中国建筑工业出版社,2002
    [3]桩基工程手册编写委员会.桩基工程手册.北京:中国建筑工业出版社,1997,1-8
    [4]刘金砺主编.桩基设计施工与检测.北京:中国建材工业出版社,2001
    [5]建设部标准.建筑桩基技术规范(JGJ94-94).北京:中国建筑工业出版社,1995
    [6]王伯惠,上官兴.中国钻孔灌注桩新发展.北京:人民交通出版社,1999
    [7]朱百里,沈珠江.计算土力学.上海:上海科学技术出版社,1990
    [8]Osterberg O. New device for load testing driven piles and drilled shaft separates friction and end bearing piling and deep foundation,1989,421-427
    [9]江苏省地方标准.桩承载力自平衡测试技术规程(DB32/T 291-1999),1999
    [10]交通部标准.公路桥涵地基基础设计规范(JTJ024-85).北京:人民交通出版社,2000
    [11]郑大同.地基极限承载力的计算.北京:中国建筑工业出版社,1979
    [12]Tomlinson M J.桩的设计和施工,朱世杰译.北京:人民交通出版社,1984
    [13]Randolph M F and Wroth C P. Analysis of Deformation of Vertically Piles, Journal of Geotechnical Engineering,ASCE,Vol.104,No.GT12,December,1978
    [14]曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法.岩土工程学报,1986,8(6):37-48
    [15]De Beer E E. Piles subjected to static lateral loads.State-of-The-Art Report, Proc.9th, int.conf.SMFZ, speciality Session,1979,10(8):1-14
    [16]胡人礼.桥梁桩基础分析和设计.北京:中国铁道出版社,1987
    [17]刘金砺.K法计算受侧向荷载桩存在的问题.建筑科学,1987,8(2):31-37
    [18]交通部科学研究院等.公路桥梁钻孔桩.北京:人民交通出版社,1978
    [19]吴恒立.计算推力桩的综合刚度原理和双参数法.北京:人民交通出版社,2000
    [20]Matlock H,Correlations for design of laterally loaded piles in soft clay, Offshore Technology Conference,1979, OTC 1204
    [21]American Petroleum Institute, API recommended practice for planning, Designing and Constructing fixed offshore platforms, API RP 2A 1976,7th.ed.: 21-26
    [22]赵明华.多层地基及横向荷载下桩的分析.中南公路工程,1986,(4):54-61
    [23]周铭.弹性桩与弹性梁通解.岩土工程学报,1982,45(1):1-15
    [24]Bowles J E. Analytical and computer methods in foundation engineering, Mc Graw-Hill Book Company,1974
    [25]Poulos H G. Analysis of piles in soil undergoing lateral movement, JSMFD,ASCE,1973,99(SM5):391-406.
    [26]左名麟等.桩基工程设计施工检测.铁道出版社,1996,24-30
    [27]茜平一,冯国栋等.软弱地基深挖基坑中桩的受力分析.岩土工程学报,1993,34(1):60-66
    [28]严人觉等.被动桩群的足尺试验.第四届地基基础学术讨论会论文集,北京:中国建筑工业出版社,1986,221-227
    [29]Ito T, Matsui T. Methods to estimate lateral force acting on stabilizing piles.Soil and Foundations,1975,14(4):43-59
    [30]李国豪.关于桩的水平位移、内力和承载力分析.上海力学,1981,1:236-244
    [3]]横山辛满.桩结构物的计算方法和计算实例.唐业清、吴庆荪译.北京:中国铁道出版社,1984
    [32]BANERJEE P K, and DAVIES T G. The behavior of axially and laterally loaded single piles.Geotechnique,1978,28(3):309-326
    [33]赵善锐.纵横弯曲桩各截面状态矢量的计算.第五届全国土力学与基础工程会议论文集,北京:中国建筑工业出版社,1987
    [34]赵明华.轴向和横向荷载同时作用下的桩的计算.湖南大学学报,1987,14(2):68-81
    [35]赵明华,侯运秋,单远铭.倾斜荷载下桥梁桩基的计算与试验研究.湖南大学学报,1999,21(2):86-91
    [36]KISHIDA H and MEYERHOF G G., Bearing capacity of pile groups under eccentric loads in sand,Proceedings of the 6th International Conference on soil Mechanics and Foundation Engineering,1965,vol.2(4):270-273
    [37]Meyerhof G G and Ranjan G. The bearing capacity of rigid piles under inclined loads in sand I:Vertical piles, Canadian geotechnical journal,1972, (9):440-446
    [38]Chari T R and Meyerhof G G, Ultimate capacity of rigid single piles under inclined loads in sand, Canadian geotechnical journal,1983,20(3):848-854
    [39]Yalcin A S and Meyerhof G G,Bearing capacity of flexible piles under eccentric and inclined loads in layered soil, Canadian geotechnical journal,1991,28(5): 909-917
    [40]Sastry V.V.R.N. and Meyerhof G G. Behavior of flexible piles in layered sands under eccentric and inclined loads, Canadian geotechnical journal,1994, 31(1):513-520
    [41]李国豪.桥梁与结构理论研究.上海:科学技术文献出版社,1983
    [42]何全新.利用抗滑桩兼做房屋桩基的一次设计.建筑结构,1994,46(11):41-46
    [43]Goodman R E, Taylor R L, and Brekke T L. A model for the mechanics of jointed rock. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968,94(SM3):637-660
    [44]Desai C S, and Nagaraj B K. Modeling for cyclic normal and shear behavior of interfaces. Journal of Engineering Mechanics, ASCE,1988,114(7):1198-1217
    [45]雷晓燕,Swoboda G,杜庆华.接触摩擦单元的理论及其应用.岩土工程学报,1994,16(3):23-32
    [46]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用.岩土工程学报,1998,20(6):62-66
    [47]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型.水利学报,2000,(2):71-75
    [48]简政,刘用暖,李九红.桩-土三维等厚度接触单元模型及其工作性状.水利学报,2002,(11):113-118
    [49]殷宗泽,朱弘,许国华.土与结构材料接触面的变形及其数学模型.岩土工程学报,1998,20(6):108-112
    [50]Kawai T. New discrete structural models and generalization of the method of limit analysis. Finite Elements in Nonlinear Mechanics. NIT, Tronheim,1977, 885-909
    [51]Kawai T, Toi Y. A new element in discrete analysis of plane strain problem. Seisan Kenkyu,1977,29(4):208-210
    [52]Kawai T. New discrete model and their applications to seismic response analysis of structures. Nuclear Engineering and Design 1978,48:207-229
    [53]钱令希,张雄.结构分析中的刚性有限元法.计算结构力学及其应用,1991,8(1):1-14
    [54]钱令希,张雄.刚性有限元的参变t变分原理及有限元参数二次规划解.计算结构力学及其应用,1992,9(2):117-123
    [55]卓家寿,赵宁.不连续介质静、动力分析的刚体-弹簧元法.河海大学学报,1993,21(5):34-43
    [56]赵宁,卓家寿.动力分析的刚体-界面元与有限元耦合法.河海大学学报,1994,22(6):8-15
    [57]Wang B L. and Garga V K. A numerical method for modeling large displacement of jointed rocks 1. Fundamentals. Canadian Geotechnical Journal,1993,30(3): 96-108
    [58]Monaghan J J. An introduction to SPH. Computation Physics and Communication,1988,48(1):89-96
    [59]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering,1994,37(2):.229-256
    [60]Melenk J M, Babuska I. The partition of unity finite element method:Basic theory and application. Computer Methods in Applied Mechanics and Engineering,1996,139(3):289-314
    [61]Sukumar N, Moran B, Belytschko T. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering,1998, 43(5):839-887
    [62]栾茂田,田荣,杨庆等.有限覆盖无单元法在岩土类弱拉型材料摩擦接触问题中的应用.岩土工程学报,2002,24(2):137-141
    [63]Crisfield M A. Arc-length method including line searches and accelerations. International Journal for Numerical Methods in Engineering,1983,19(9): 1269-1289
    [64]Forde W R B, Stiemer S F. Improved arc length orthogonality method for nonlinear finite analysis. Computers & Structures,1987,27(5):625-630
    [65]Broms B B, Lateral resistance of piles in cohesive soils, Proc, ASCE,1964,90 (2):27-63
    [66]Broms B B, Design of laterally loaded piles, Proc, ASCE,1965
    [67]交通部科学研究院钻孔桩小组.计算钻孔桩水平承载力的c法.桩基工程学术会议论文选集,1981
    [68]刘金砺,桩基础设计与计算,北京:中国建筑工业出版社,1990
    [69]Kraft L M, Focht J A, Amerasinghe S F. Friction capacity of piles driven into clay. Journal of the Geotechnical Engineering Division, ASCE,1981,107(11): 1521-1541
    [70]Fischer U and Melosh R J. Solving discretized contact problems using linear programming. Computers & Structures,1987,25(4):661-664
    [71]Oden J T and Pires E B. Nonlocal and nonlinear friction law and variational principles for contact problems in elasticity. Journal of Applied Mechanics, 1983,50(6):67-76
    [72]龚晓南.土塑性力学.杭州:浙江大学出版社,1990
    [73]Desai C S and Gallagher R H. Mechanics of Engineering. London:John Wiley and Son,1984,28(5):96-103
    [74]Cundall P A. A computer model for simulating progressive large-scale movements in blocky rock systems. In:Proceeding of the International Symposium on Rock Fracture, Nancy, France,1971,26(2):69-77
    [75]Shi G H, Goodman R E. Discontinuous deformation analysis. In:Proceedings of the 25th U.S. Symposium of Rock Mechanics. Evanston. USA.1984,36(6): 269-277
    [76]Yaw-Jeng Chiou, Ren-Jow Tsay and Wailin Chuang. Crack propagation using manifold method. In:Proceedings of the 2nd International Conference on Analysis of Discontinuous Deformation. Kyoto, Japan,1997,36(5):1-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700