用户名: 密码: 验证码:
惠州地下水封储油洞库群围岩稳定性分析与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对我国石油消费的总量不断提高,进口量逐年递增的局面,为保障国家能源安全,满足经济发展的需要,启动战略石油储备基地建设已迫在眉睫。各种储油方式中,地下水封储油洞库是安全性高、经济性好的一种储油形式。
     惠州地下石油储备库是目前世界上拟建的设计规划库容量最大的超大型地下水封储油洞库群。该类工程在我国仍缺乏相关的工程实践,对此类大规模的洞室群开挖过程中的围岩稳定性分析与评价,是一个亟待解决的问题。本文以惠州地下储油库为研究对象,应用FLAC3D数值模拟软件,对洞室群设计、开挖方案优化、开挖过程围岩稳定性分析与评价等几个方面进行了深入研究,具体工作成果如下:
     (1)库址区岩体物理力学参数修正,运用复变函数理论推导出基于弹性力学方法的直墙圆拱型洞室洞周切向应力计算公式。
     (2)利用有限差分数值模拟软件FLAC3D进行数值模拟计算,提出各主洞室之间以及主洞室与施工巷道之间的合理间距;比选出洞室群整体施工顺序最佳方案,对洞群效应有了深入认识。
     (3)采用复变函数解析方法对不同等级围岩情况下的单洞稳定性进行了比较分析,对于Ⅱ级、Ⅲ级岩体,拱顶与底脚处存在围岩稳定性问题。此外,采用FLAC3D软件对洞群开挖全过程进行了仿真模拟,结果表明三级台阶分层推进施工方法对于惠州储油洞库工程这种大断面洞室比较适宜。
     (4)采用流固耦合方法模拟洞群开挖,开挖过程中应力场的分布与不考虑地下水的情形基本一致,但应力值有所减小;位移场方面则体现为拱顶下沉量成倍增加。渗流条件下,洞周围岩塑性区的扩展,受地下水排水速度与时间的控制,排水不利时,塑性破坏区急剧增加,充分排水后,塑性区范围则大幅度减少。
     (5)惠州库址区,降雨充沛,地下水补给较为充分,有利于水封环境的形成。在渗流条件下,洞室群的开挖将改变渗流场的分布,洞周形成区域性降落漏斗,整体水位也有较明显的下降。模拟结果显示,开挖完成后洞周无法达到安全运营所需的孔隙水压,有必要在洞顶上方布置水平水幕系统与竖直注水孔。
Facing of the oil consumption toal amount and the oil imports increased year by year.It’s immediately to start the consttuction of strategic oil reserve base to meet the needs of economic development and protect national energy security. In various kinds of storage methods, water sealed underground oil storage caverns is more safer and economicaly .
     The planning of Huizhou water sealed underground oil storage caverns is the lagest storage caverns in designing till this year.Such engineering project is still lack of the engineering practice in China. The analysis and evaluation of surrongding rock in the process of large caverns excavating is a serious problem to solve.This thesis takes Huizhou water sealed underground oil storage caverns as study object,using the numerical simulaton software FLAC3D,does further researches on the design of caverns ,the optimization of excavation project, analysis and evaluation of stability of surrounding several.The specific work as follows:
     (1)Corrected the physical and mechanical parameters of rock in the library site region. Using complex-variable function theory based on elastic mechanics method is deduced the straight wall round arch type cavern hole weeks tangential stress calculation formula.
     (2)Calculatied with the finite difference numerical simulation software FLAC3D,propesed the appropriate distance between the main tunnels and the appropriate distance between the main tunnels and the roadway. Elected the best construction sequence of the tunnels.Owned a in-depth understanding about group tunnels effective.
     (3) Using the complex function analytical method,Based on signal hole,anslysis the stability of surrounding rock under different levels of rock grade. For the gradeⅡ、Ⅲrock,the rock at foot corner and arch existed stability problems.In addition,Simulated the whole process of tunnels excavation with the software FLAC3D.The results show that three steps forward excavation method is appropriate for this large underground cavern project as Huizhou.
     (4) Using fluid-solid coupling method for the process of tunnels excavation. In the excavating procession,the distribution of stress field is similar as the situation which not consider the case of groundwater,but the stess has been reduced; the displacement field is reflected in terms of subsidence into the multiplied increased. In flow conditions,the expansion of the plastic zone around the rock, controled by the speed and time of water drainage.Drainage bad,the plastic zone increased dramatically, and fully drained,the plastic zone is significantly reduced.
     (5) The area of Huizhou water sealed underground oil storage caverns,abundant rainfall,groundwater recharge is adequately. It’s conducive to the formation of water-sealed environment.Seepage conditions,the excavation of caverns will change the distribution of seepage field, At the hole week will form a regional cone of depression, the overall water level decline is also obvious.Simulation results show that the pore water pressure can not reached the required to operated security after the constructions project completed. It is necessary to arrange the water curtain system and vertical water injection holes in the roof above.
引文
Barton N., Lien R., Lunde J. Engineering classification of rock masses for the design of tunnel support. J. Rock Mech., 1974, 6(4): 189–236.
    Barton N. Some new Q-value correlations to assist in site characterization and tunnel design. Int. J. Rock Mech. & Min. Sci. Geomech. Abstr., 2002, 39(2): 185–216.
    Deere D.U., Miller R.P. Engineering classification and index properties for intact rocks.Technical Report No.AFNL-TR-65-116,Air Force Weapons Laboratory, New Mexico,1966.
    Hudson J A.Stephanson O, Andersson J, Tsang C-F,Jing L.Coupled T-H-M-C issued relating to radioactive waste repository design and performance[J]. International Journal of Rock Mechanics and Mining Sciences 2001.38(11).143-161
    Kranz R L,Frankel A D,Engelder T,et al.Permeability of whole and jointed Barre granite[J].Name:Int.J.Rock Mech..Min.Sci.Geomech.Abstr.1979,16(4):225-234.
    MASANOBU Tezukaa, TAKAHIKO Seokab. Latest tech-nology of underground rock cavern excavation in Japan[J]. Tunnelling and Underground Space Technology,2003, 18(2): 127-144.
    Martin J T,et al.On thermoelasticity and silcica percipitaion in hydrothermal systems:numerical modeling of laboratory experiments[J].Journal of Geophysical Research,1997,102(B6);12095~12107.
    Nilsen,Olsen. Storage of gases in rock caverns[M],Rotterdam,Netherlands:A.A.Balkema,1989.
    Park J J,Jeon S,Chung Y S.Design of Pyongtaek LPG storage terminal underneath Lake Namyang:A case study[J].Tunneling and Underground Space Technology.2005,20(5):463-487
    R.E.Goodman.Introduetion to rock mechanies(seeondedition).JohnWiley&Sons , 1989
    BandisSC,VardakisG.Instability and Stress Transformations around Underground Excavations in Highly Stressed Anisotropic Media[M].Balkema:Maury&Fourmaintraux,1989.
    S.C.Bandis,G.Vardakis. Instability and Stress Transfor-mations Around Underground Excavations in Highly Stressed Anisotropic Media. Balkema: Maury&Fourmaintraux (eds),1989,(2):116-131.
    Sonmez H, Ulusay R. A discussion on the Hoek-Brown failure criterion and suggestedmodification to the criterion verified by slope stability case studies. Yerbilimleri (Earthsciences) 2002;26:77–99.
    S.Y.Choi,H.D.Park.Comparison among different of RMR and Q-system for rock mass classification fort unnel in Korea. Tunnelling and underground space technology,2002(17):391-401.
    Tezuka M,Seoka T.Latest technology of underground rock cavern excavation in Janpan[J]. Tunneling and Underground Space Technology incorporating Trenchless Technology Research.2003,18(2-3):127-144
    Walsh J B.A New Model for Analysizing the Effect of Fracture on Compressibility.J.Geophs.Resear.,1979,84(B7):3 532~3 536.
    Wang J A,Park H D.Fluid Permeability of sedimentary rocks in a complete stress-strain Process [J].Engineering Geology,2002,63:291-300.
    Xing Zhang David J.Sanderson,Andrew J.Barker,Numercial study of fluid flow of deforming fractured rocks using dual permeability model[J].Geophys.J.int,2002,151:452-468
    陈奇,慎乃齐,连建发等.液化石油气地下洞库围岩稳定性分析—以山东某地实际工程为例[J].煤田地质与勘探.2002,30(3):33一36.
    陈帅宇,周维垣,杨强,等.三维快速拉格朗日法进行水布娅地下厂房的稳定分析[l].岩石力学与工程学报.2003,22(007):一047一1053.
    陈子荫.围岩力学分析中的解析方法.煤炭工业出版社,1994
    陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究.武汉水利电力大学学报,1994(1):17-23
    陈平,张有天.裂隙岩体渗流与应力耦合分析.岩石力学与工程学报.1994.13(4):299~308.
    陈祥.黄岛地下水封石油洞库岩体质量评价及围岩稳定性分析[o].北京:中国地质大学。
    杜时贵,李军,徐良明等.岩体质量的分形表述[J].地质科技情报, 1997(1):91-96
    丁文其,杨林德,鲍德波.复杂地质条件下地下厂房围岩稳定性分析[l].新世纪岩石力学与工程的开拓和发展—中国岩石力学与工程学会第六次学术大会论文集.2000.
    谷德振,王思敬.论工程地质力学的基本问题[C],全国首届工程地质学术会议论文选集,科学出版社, 1983
    范广勤,汤澄波.应用三个绝对收敛级数相乘法解非圆形洞室的外域映射函数.岩石力学与工程学报,1993(3):255-264
    姜谙男.大型洞室群开挖与加固方案反馈优化分析集成智能方法研究[D〕.东北大学,2005.421一425.
    刘琦,卢耀如,张凤娥.地下水封油库库址的水文地质工程地质问题[J].水文地质工程地质,2008(4):1~5
    连建发,慎乃齐,张杰坤.分形理论在岩体质量评价中的应用研究,岩石力学与工程学报,2001(增):1695-1698
    李强. BP神经网络在工程岩体质量分级中的应用研究[J].西北地震学报, 2002(3):220-224 雷晓燕.岩土工程数值计算.中国铁道出版社,1999
    李攀峰.大型地下洞室群围岩稳定性工程地质研究——以黄河拉西瓦水电站地下厂房洞室群为例[博士论文].成都:成都理工大学,2004
    李仲奎,戴荣,姜逸明.FLAC3D分析中的初始应力场生成及在大型地下洞室群计算中的应用.岩石力学与工程学报,2002,21(增2):2387-2392
    连建发.锦州大型地下水封LPG洞库岩体完整性参数及围岩稳定性评价研究[博士论文]. 北京:中国地质大学,2004
    李廷春,李术才,陈卫忠,等.厦门海底隧道的流固耦合分析[J].岩土工程学报, 2004, 26(3): 397-401.
    吕爱钟.应用最优化技术求解任意截面形状巷道映射函数的新方法.岩石力学与工程学报,1995(3):269-274
    荣冠,周创兵,王恩志.裂隙岩体渗流张量计算及其表征单元体积初步研究.岩石力学与工程学报,2007,26(4):741一746
    仵彦卿.岩体水力学基础[ J].水文地质工程地质,1996(6): 10-14.
    件彦卿.岩体结构类型与水力学模型.岩石力学与工程学报,2000,19(6):687一691
    件彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(l):l一5
    王锦国,周志芳,杨建等.溪洛渡水电站坝基岩体工程质量的可拓评价[J].勘察科学技术,2001(6):25-29
    王芝银,李云鹏,郭书太,etal.大型地下储油洞粘弹性稳定性分析[J].岩土力学.2005,26(11)
    王泳嘉,邢纪波.离散单元法及拉格朗日元法及其在岩土力学中的应用.岩土力学,Vol.30No.6,1995
    王思敬,杨志法.地下工程岩体稳定分析[M].北京:科学出版社,1984.38-51.
    王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析.岩石力学与工程学报,2000,19(2):177—181
    王环玲,晏鄂川,余宏明.运用结构面模拟技术分析岩体质量特征[J].地质灾害与环境保护, 2002 (3):64-68
    王怡,王银芝,许杰等.地下储油岩库稳定性的三维流固耦合分析[J].中国石油大学学报,2009,33(3):132-137
    石根华著,裴觉民译.数值流形方法与非连续性形变分析方法.清华大学出版社,1997
    史红光.二滩水电站地下厂房围岩稳定性因素评价[J].水电站设计.1999,15(002):75一78.
    徐光黎.岩石地下工程岩体质量评价综述.工程地质,1999(3):14-18
    肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报.2000,22(004):
    夏喜林.浅谈我国地下油库的建设[J].石油规划设计, 2004, 15(4):26~27
    于学馥,郑颖人,刘怀恒等.地下工程围岩稳定性分析.煤炭工业出版社,1983
    余裕泰,黄赛超.坚硬而不完整岩体中地下洞室的分期开挖[J].地下工程.1984(l1):31一35.
    杨森,于连兴等.地下洞库作为国家原油储备库的可行性分析[J].油气储运, 2004, 23(7): 22~24
    杨淑清.地下洞室围岩开挖稳定性分析.武汉水利电力学院学报,1986(2):73-82
    杨明举,常艄东.超大型地下洞室群施工开挖程序及围岩稳定分析[J].西南交通大学学报,2000.2, 35(1): 23-28.
    张奇华,乌仔爱清,石根华.关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J].岩石力学与工程学报.2004,23(015):2609一2614.2007.
    朱维申,王平.动态规划原理在洞室群施工力学中的应用[J].岩石力学与工程学报.1992,11(004):323一331.
    周创兵.围岩质量分类的判别函数及其应用.水文地质工程地质,1991(4):25-29
    章杨松.岩石质量指标的计算机模拟及其风险分析[J].地质灾害与环境保护, 2002 (1) :44-47
    朱大勇,钱七虎,周早生等.复杂形状洞室映射函数的新解法.岩石力学与工程学报,1999(3):279-282
    赵震英,叶勇.复杂地质条件下地下洞室围岩应力及变形模拟试验研究.岩石力学与工程学报,1989(4):298-305
    朱合华,陈清军,杨林德.边界元法及其在岩土工程中的应用.同济大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700