用户名: 密码: 验证码:
基于灰色预测的汽车SAS与EPS集成系统分层协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬架和转向系统是汽车的两个重要组成部分,与汽车的行驶平顺性和操纵稳定性等诸多性能有关。随着电子控制技术及单片机技术的发展,汽车半主动悬架(Semi-Active Suspension,SAS)和电动助力转向(Electric Power Steering,EPS)成为研究的热点。SAS可在一定程度上同时改善汽车的操纵稳定性和行驶平顺性,EPS可提高操纵稳定性和转向轻便性。但由于悬架系统与转向系统之间存在一定的耦合作用,针对单一系统进行控制时,只能改善车辆的局部性能,而整车的综合性能很难得到较大幅度的提高。要获得更优的整车综合性能,需要对这两个系统进行集成控制。本文以提高车辆的操纵稳定性和行驶平顺性为目标,对车辆SAS与EPS系统的协调和集成控制作了较系统的研究。
     针对转向与悬架两子系统间的相互约束和影响,改进了SAS与EPS集成系统整车动力学模型,在轮胎模型中考虑了轮胎垂直载荷变化对轮胎侧偏特性的影响,转向子模型受力分析中考虑到轮胎侧偏力的实际方向,使模型更接近于实际情况。在仿真分析的基础上,研究了悬架系统与转向系统之间的耦合关系。
     针对集成控制的两个目标:消除子系统间的不利干扰和冲突、合理分配各子系统的控制输入,提出了SAS与EPS系统分层协调控制方法,并设计了协调控制器。分别建立了SAS子系统模糊控制器和EPS子系统PID控制器,以车辆的整体性能最优为目标,构建上层控制的协调策略。仿真结果表明,分层协调控制可有效提高汽车的综合性能,协调汽车的行驶平顺性和操纵稳定性。分层协调控制策略是研究集成控制的有效方法。
     针对SAS与EPS系统多输入多输出的特点,基于灰色预测理论,建立了SAS与EPS系统性能指标的多变量灰色预测模型,实现性能指标的预测,预知系统性能指标的发展趋势。根据预测值对集成控制策略进行预先修正,以实现SAS与EPS系统的事先控制,避免了控制变量的大幅度急剧调整,使控制效果更精确。
     在此基础上,提出了基于灰色预测的SAS与EPS集成系统分层协调控制方法,并设计了灰色预测协调控制策略,减少了不确定因素的影响和控制系统时间滞后引起的控制不精确,大幅度改善了执行机构的控制性能。采用灰色预测控制,有效改善了SAS与EPS系统的集成控制效果。仿真结果表明这种控制方法完全可以满足SAS与EPS系统的集成控制需要。
     研究开发了基于ARM2131的SAS与EPS系统集成控制器硬件。将改进的半主动悬架和开发的集成控制器装在北斗星CH7140轿车上进行实车道路试验,并将试验结果与仿真结果进行对比。仿真试验结果和实车试验结果基本吻合,表明所建立的集成系统模型正确,控制策略可行,技术可靠,为汽车底盘系统的集成控制研究提供了良好的技术基础。灰色预测分层协调控制的系统与被动系统相比,质心垂直加速度的峰值下降28.57%,标准差下降27.75%;横摆角速度的峰值下降10.18%,标准差下降12.69%;车身侧倾角峰值下降15.8%,标准差下降8.19%;侧向加速度峰值下降20.8%,标准差下降18.6%;在人体敏感频率区域内,质心加速度功率普密度也有明显的降低。表明灰色预测协调控制能够较好的协调汽车行驶平顺性和操纵稳定性之间的矛盾,使整车综合性能得到提高。
Suspension and steering system are two important components of the vehicle,and their performance is directly related to vehicle's performances such as ride comfort and handling stability.As the development of the electronic control technology and single chip technology,vehicle's semi-active suspension(SAS) and electric power steering(EPS) have become a research hotspot.SAS can,to a certain extent,improve the handling stability as well as the ride comfort,while EPS can improve the handling stability and steering portability.However,due to the coupling effects between the suspension system and the steering system,when the systems are controlled respectively,only partial performance is improved, while the comprehensive performance of the vehicle is quite hard to be enhanced in large scales.In order to acquire a better comprehensive performance,the two systems should be controlled integratedly.In this paper,aiming at the improvement of vehicle's handling stability and ride comfort,a systematic research on coordination and integrated control of SAS and EPS is undertaken.
     In view of the mutual restraints and impact between the two systems, the full vehicle dynamic model with integrated system of SAS and EPS is improved.In the tyre model,the effects from changeable vertical load to tyre cornering characteristics is taken into consideration,so is the actual direction of tyre cornering force in the steering model.As a result,the whole model is much closer to the real vehicle.Based on the simulation and analysis of the above models,the coupling relation between the suspension system and steering system is studied.
     In respect of the two goals of the integrated control:to eliminate the harmful interference and conflicts between the systems and to assign the control inputs of the subsystems reasonably,a layered coordination control method is proposed,and a coordination controller is designed,and a fuzzy controller of SAS and a PID controller of EPS is made respectively.Then aiming at the optimization of the whole vehicle,the coordination strategy of the upper control is established.The results of the simulation show that, the layered coordination control can,improve vehicle's comprehensive performance effectively,and coordinate the ride comfort and handling stability.The layered coordination method is proved to be an effective way in studying integrated control.
     For the multi input multi output characteristics of SAS and EPS system, and based on grey predictive theory,a multi-variable grey prediction model of SAS and EPS system is established,to predict the performance indexes and their developing trend.Then according to the prediction,the integrated control strategy is in advanced revised,to realize the pre-control of the SAS and EPS system by avoiding a rapid change of the control variables,thus the control is more precise.
     On the above basis,a layered coordination control method on SAS and EPS integrated system,based on grey predictive theory,is proposed,and a grey predictive coordination control strategy designed.As a result,control imprecision caused by uncertain factors and time delay of the control system is eliminated,and the control performance of the executing agency improved in a large scale.The integrated control effect of the integration system,by adopting grey predictive control,is improved efficiently.As shown in the results of the simulation,this control method can completely meet the need of the integrated control of SAS and EPS integrated system.
     Integrated system of SAS and EPS controller is explored with ARM2131 single chip computer as microprocessor.The improved semi-active suspension and the integrated controller are installed in the CH7140 to carry on the real vehicle road tests,and the results will be compared with the simulation results.It is showed that the simulation results are coped with the experiments and it is indicated that the established model is right,the control strategy feasible and the technology reliable.In contrast with the passive system,the peak and the standard deviation of the center of mass acceleration is decreased by 28.57%, 27.75%;the yaw rate's peak and standard deviation is decreased by 10.18%, 12.69%;the roll angle's peak and standard deviation is decreased by 15.8%, 8.19%;the lateral acceleration's peak and standard deviation is decreased by 20.8%,18.6%.In human sensitive frequency range,the power spectrum of the center of mass acceleration is reduced obviously.It is showed that the grey predictive layered coordination control can coordinate the contradiction of vehicle ride comfort and handling stability and improve the vehicle performance.
引文
[1]Van Zanten A T.Evolution of Electronic Control System for Improving the Vehicle DynamicBehavior,Proceedings of AVEC'02,2002.
    [2]郭孔辉.汽车操纵动力学[M].吉林:吉林科学技术出版社,1991.
    [3]Freuchte R.D,Karmel A M,et al.Integrated Vehicle Control[J].IEEE Vehicle Technology Conference,1989,2:868-877.
    [4]Wallentowitz H.Integrated of Chassis and Traction Control Systems[J].What is Possible-What Makes Sense-What is Under Development,Proceeding of AVEC'92:1-7.
    [5]Sato S,Inoue H,et al.Integrated Chassis Control System for Improved Vehicle Dynamics[J].Proceeding ofAVEC'92..413-418.
    [6]Tanaka H,Inoue H,et al.Development of a Vehicle Integrated Control System[J].Proceeding of the ⅩⅩⅣ FISITA Congress,London,1992,6:63-72.
    [7]陈龙,袁传义,江浩斌,等.汽车主动悬架与转向系统的模糊参数自调整集成控制[J].中国机械工程,2006,17(23):2525-2528.
    [8]LiJun,Yu Fan,Zhang Jianwu.Fuzzy neural networks control of a semi-active suspension system with dynamic absorber[J].SAE.2000:2415-2422.
    [9]钱瑜.汽车悬架分类及半主动悬架[J].江南学院学报,1999,14(4):73-76.
    [10]姚嘉伶,蔡伟义,陈宁.汽车半主动悬架系统发展状况[J].汽车工程,2006,28(3):276-280.
    [11]章一鸣等.一种新型车辆悬挂系统的探讨--阻尼最优控制的半主动悬挂系统[J].汽车工程,1988,10(4):15-20.
    [12]曾志华.一种阻尼可调的减振器[J],汽车技术,1990,(4):10-15.
    [13]刘宏伟,陈燕虹,林逸.汽车主动悬架系统状态反馈控制技术研究[J].汽车技术,2000,(8):2-4.
    [14]舒红宇等.汽车主动悬架的理论分析与模型试验[J].汽车工程,1991,13(3):129-135.
    [15]门永新.汽车悬架控制与可控减振器特性研究[D].吉林工业大学,1997.
    [16]刘新量,张建武,陈兆能.汽车主动悬架的自校正控制[J].汽车工程,1998,20(3):166-177.
    [17]李以农,郑玲.基于磁流变减振器的汽车半主动悬架非线性控制方法[J].机械工程学报.2005,41(5):31-37.
    [18]李德超.车辆半主动悬架系统自适应模糊控制的研究[D].镇江:江苏理工大学.2001.
    [19]陈龙,江浩斌,周孔亢,等.半主动悬架系统设计及控制[J].机械工程学报.2005,41(5):137-141.
    [20]陈龙,李德超,周孔亢,等.自适应模糊控制技术在半主动悬架控制中的应用[J].农业机械学报,2005,35(4):5-8.
    [21]徐顺香,瞿伟廉.汽车悬架最优控制的研究及结果分析[J].武汉理工大学学报,2003,25(6):60-63.
    [22]郑玲,邓兆祥,李以农.基于电流变减振器的汽车半主动悬架最优控制[J].重庆大学学报,2003,26(7):1-5.
    [23]杨振中,李径定,严大考.基于模糊神经网络的氢燃料汽车发动机最优控制模型[J].汽车工程,2003,25(5):444-450.
    [24]陈燕虹,刘宏伟,黄治国,等.基于空气悬架客车1/2模型的模糊控制仿真[J].吉林大学学报(工学版),2005,35(3):254-271.
    [25]Rafael Alcal(?),Jorge Casillas,Oscar Cord(?)n,Antonio Gonz(?)lez and Francisco Herrera.A genetic rule weighting and selection process for fuzzy control of heating,ventilating and air conditioning systems[J].Engineering Applications of Artificial Intelligence,2005,18(3):279-296.
    [26]M Jamei,M Mahfouf,D A Linkens.Elicitation and fine-tuning of fuzzy control rules using symbiotic evolutio[J].Fuzzy Sets and Systems,2004,147(1):57-74.
    [27]尹丽丽,高婷婷.车辆半主动悬架技术和发展趋势[J].黑龙江交通科技,2005,1:64-65.
    [28]邓文才.转向柱式电动助力转向器故障诊断研究[D].杭州:浙江大学,2006.
    [29]Nakayama T,Suda E.The present and future of electric power steering[J],Int J.of Vehicle Design,1994,15:243-254.
    [30]Badawy A A,Volourchi F,Gaut SK E.Steer system redefines steering technology[J].Automotive Engineering,1997,105(9):15-18.
    [31]Segawa M,Nakano S,Nishihara O,et al.Vehicle stability control strategy for steer by wire sustem[J].JSAEReview,2001,22(4):383-388.
    [32]Feick S,Pandit M,Zimmer,et al.Steer-by wire as a mechatronic implementation[J].SAS 2000,12:447-459.
    [33]任延,杨家军,刘照.电动助力转向器硬件在环仿真系统的设计[J].湖北工学院学报,2004,19(3):29-33.
    [34]黄季琴,季学武,陈奎元.汽车电动助力转向控制系统的初步研究[J].汽车技术,2003,(6):3-6.
    [35]季学武,马小平,陈奎元.EPS性能试验研究[J].江苏大学学报(自然科学版),2004,25(2):116-119.
    [36]林逸,施国标.汽车电动助力转向系统转向技术的发展现状与趋势[J].公路交通科技,2001(6):18-23.
    [37]徐建平,何仁,苗立冬,等.电动助力转向系统的建模与仿真分析[J].中国汽车工程学会2003学术年会.
    [38]季学武,马小平,周寒露,等.电动助力转向系统光电式扭矩传感器的研究[J].仪表技术与传感器,2004(10):4-6.
    [39]冯樱,肖生发,罗永革.汽车电子控制式电动助力转向系统的发展[J].湖北汽车工业学报,2001(1):4-8.
    [40]林逸,施国标,邹常丰,等.汽车电动助力转向系统转向性能的客观评价[J].农业机械学报,2003(7):34-4.
    [4l]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社,1998.
    [42]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制[J].中国机械工程,2005,16(8):743-747.
    [43]M Harada,H Harada.Analysis of Lateral stability with Integrated control of suspension and steering system[J].JSAE Review,1999,20:465-471.
    [44]E Lim,J Hedrick.Lateral and Longitudinal vehicle control coupling for automated vehicle operation.Proceedings of American Control Conference,1999,3676-3680.
    [45]E Ono,K Takanami,et al.Vehicle integrated control for steering and traction system by u-synthesis[J].Automatica,1994,30(11):1639-1647.
    [46]A Trachtler.Integrated vehicle dynamics control using active brake,steering and suspension systems[J].International Journal of Vechicle Design,2004,36(1):1-2.
    [47]T Yoshimura,Y Emoto.Steering and suspension system of a full car model using fuzzy reasoning based on single input rule modules[J].Int.J.of Vehicle Autonomous Systems,2003,1(2):237-255.
    [48]M Harada,Harada.Analysis of lateral stability with integrated control of suspension and steering systems[J].JSAE Review,1999,20:465-570.
    [49]Y Ghoneim,W Lin,et al.Integrated chassis control system to enhance vehicle stability[J].International Journal of Vehicle Design,2000,23(1/2):124-144.
    [50]A Trachtler.Integrated vehicle dynamics control using active brake,steering and suspension system.[J].International Journal of Vehicle Design,2004,13(6):789-193.
    [51]R S Sharp,D A Crolla.Road Vehicle Suspension System Design-a review[J].VSD,1987,(16),167-192.
    [52]李君,喻凡.车辆转向制动防抱死系统仿真研究[J].系统仿真学报,2001,13(6):789-793.
    [53]程军,崔继波,徐光辉,等.车辆控制系统集成开发系统[J].汽车工程,2000,22(2):109-114.
    [54]吴文江,杜彦良,季学武,等.汽车电动转向控制系统抗干扰策略的仿真[J].汽车工程,2003,25(4):364-366.
    [55]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007,29(5):420-425.
    [56]高晓然,余卓平,张立军.集成底盘控制系统的控制框架研究[J].汽车工程,2007,29(1):21-26.
    [57]Schiike N A,Fruechte R D,et al.Integrated vehicle control[J].International Congress on Transportation EIectronics,Convergence88,pp.97-106,1988.
    [58]Gordon T J,Howell M.,et al.Integrated Control Methodologies for Road Vehicles[J].Vehicle System Dynamics,Vol.40,No.1-3,pp.157-190,2003.
    [59]Kiencke U.Integrated Vehicle Control Systems.Proceeding of the IFAC:Intelligent Components for Autonomous and Semi-Autonomous Vehicle,pp.1-5,1995.
    [60]Ghoneim Y A.,Lin W C,et al.Integrated Chassis Control System to Enhance Vehicle Stability.Internal Journal of Vehicle Design,Vol.23,pp.127-144,2000.
    [61]Nagai M,Yamanaka S.Integrated Control Law of Active Rear Wheel Steering and Direct Yaw Moment Control.Proceeding of AVEC'96,pp.45-469,1996.
    [62]Tandel P,Johansen T A.Control Allocation for Yaw Stabilization in Automotive Vehicles Using Multipararnetric Nonlinear Programming.2005 American Control Conference,pp.453-458,2005.
    [63]Gaspar P,Szaszi I,et al.Design of Robust Controller for Active Vehicle Suspension Using the Mixed μ Synthesis.Vehicle System Dynamics,Vol.40,No.4,pp.193-228,2003.
    [64]Nagai M,Shino M,et al.Study on Integrated Control of Active Front Steer Angle and Direct Yaw Moment.JSAE Review,Vol.23,pp.309-315,2002.
    [65]Horiuchi S,Yuhara N,et al.Two Degree of Freedom/Hinf Controller Synthesis for Active Four Wheel Steering Vehicles.Vehicle System Dynamics,Vol.25(n suppl),pp.275-292,1996.
    [66]Boada B L,Boada M J L,et al.Fuzzy-Logic Applied to Yaw Moment Control for Vehicle Stability.Vehicle System Dynamics,Vol.43,No.10,pp.753-770,2005.
    [67]Nohtomi S,Okada K,et al.Application of Analytic Hierarchy Process to Stochastic Robustness Synthesis of Integrated Vehicle Controllers.Vehicle System Dynamics,Vol.42,No,1-2,pp.3-21,2005.
    [68]Shladover,S.Review of the State of Development of Advanced Vehicle Control Systems (AVCS),Vehicle System Dynamics,Vol.24,pp.551-595,1995.
    [69]Horiuchi S,Okada K.Effects of Integrated Control Active Wheel Steering and Individual Wheel Torque on Vehicle Handling and Stability-A Comparison of Alternative Control Strategies.Vehicle SystemDynamics,Vol.33(n suppl),pp.680-691,1999.
    [70]Nwagboso C O,Ouyang X,et al.Development of Neural-Network Control of Steer-by-Wire System for Intelligent Vehicles.International Journal of Heavy Vehicle Systems,Vol.9,No.1,2005.
    [71]Khalil H K.Nonlinear systems NJ:Prentice-Hall Publications(3th Edition),1996.
    [72]Scherer C,Ghainet P,et al.Multiobjective Output-Feedback Control via LMI Optimization.IEEE Transaction on Automatic Control,Vol.42,No.7,pp.896-910, 1997.
    [73]武建勇.提高车辆操纵稳定性的底盘集成控制系统设计与方法研究[D].上海:上海交通大学博士学位论文,2008.
    [74]A Trachtler.Integrated Vehicle dynamics control using active brake,steering and suspension systems[J].International Journal of Vehicle Design,2004,36(1):1-2.
    [75]Masanori Harada,Hiroshi Harada.Analysis of Lateral Stability with Integrated Control of Suspension and Steering System[J],JSAE Review 20(1999),465-470.
    [76]Itkis U.Control Systems of Variable Structure,Wiley,New York,1976.
    [77]Utkin V I.Variable Structure Systems with Sliding Modes.IEEE Transactions on Automatic Control,Vol.22,No.2,pp.212-222,1977.
    [78]Edwards C,Spurgeon S K.Sliding Mode Control:Theory and Applications.London:Taylor &Francis Publications,1998.
    [79]Hebden R G,Edwards C,et al.Automotive steering control in a split-μ manoeuvre using an observer-based sliding mode controller.Vehicle System Dynamics,Vol.41,No.3,pp.181-202,2004.
    [80]Lim E H M,Hedrick J K.Lateral and longitudinal vehicle control coupling for automated vehicle operation.Proceeding of the 1999 American Control Conference,Vol.5,pp.3676-3680,1999.
    [81]Mokhiamar O,Abe M.Active wheel steering and yaw moment control combination to maximize stability as well as vehicle responsiveness during lane change for active vehicle handling safety.Proceeding of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,Vol.216,No.2,pp.115-124,2002.
    [82]Bartoszewicz A.A comment on a time-varying sliding surface for fast and tracking control of second-order dynamic systems.Automatic,Vol.31,No.2,pp.1893-1895,1995.
    [83]Sezai T,Ibrahim E.Design of a sSliding mode controller with a nonlinear time-varying dliding durface.Transaction of the Institute of Measurement and Control,Vol.25,No.2,pp.145-162,2003.
    [84]Chun K,Sunwoo M.Wheel slip control with moving sliding surface for traction control system.International Journal of Automotive Technology,Vol.5,No.2,pp.123-133,2004.
    [85]You S S,Chai Y H..Multi-Objective Control Synthesis:An Application to 4WS Passenger Vehicle.Vol.9,No.4,pp.363-390,1999.
    [86]Hayakawa K,Matsumoto K,et al.Robust Hinf-Output Feedback Control of Decoupled Automobile Active Suspension Systems.IEEE Transactions on Automatic Control,Vol.44,No.2,pp.392-376.
    [87]Gahinet P,Apkarian P.An LMI-Based Parametrization of all Hinf Controllers with Applications.IEEE Conference on Decision and Control,32nd,pp.656-661,1993.
    [88]Katebi M R,Grimble M J.Integrated Control,Guidance and Diagnosis for ReconfigurableAutonomous Underwater Vehicle Control.International Journal of Systems Science,Vol.30,No.9,pp.1021-1032,1999.
    [89]Gahinet P,Nemirovski A,et al.LMI Control Toolbox for Use with MATLAB.The MathWorks,Inc,1995.
    [90]Deng J L.Control problems of grey systems[J].Systems&Control Letters,1982(5):288-294.
    [91]邓聚龙.灰色控制系统[J].华中理工大学学报,1982(3):9-18.
    [92]傅立.灰色系统理论及其应用[M].北京:中国科学技术文献出版社,1992.
    [93]李斌,许仕荣,柏光明等.灰色-神经网络组合模型预测城市用水量[J].中国给水排水,2002,18(1):66-68.
    [94]任焕莲.基于残差修正的农灌需水量灰色预测[J].水文,2008,28(6).
    [95]朝伦巴根,和泰,朱仲元等.通辽地区地下水水质综合评价[J].内蒙古农业大学学报,2002,23(2):76-80.
    [96]王友保,刘登义.灰色加权法及其在水质评价中的应用[J].安徽师范大学学报(自然科学版),2005,25(4):375-378.
    [97]吴慧荣.灰色预测模型的进一步拓展[J].系统工程理论与实践,1994,(8):31-34.
    [98]鲁杰,杨大海.灰色预测控制器在选煤中的应用[J].煤炭加工与综合利用,1998,2(2):13-15.
    [99]姚向东,张立军.灰色预测控制的设计及其应用[J].电子与自动化,1998,4(1):14-16.
    [100]陈章潮,熊岗.应用改进的灰色GM(1,1)模型进行长期电力需求预测[J].电力系统自动化,1993,(3):14-18.
    [10l]邓聚龙.灰预测原理及应用[M].台北:全华图书公司,1996.
    [102]袁嘉祖编著.灰色系统理论及其应用[M].北京:北京:科学出版社,1991.
    [103]易德生,郭萍.灰色理论与方法-提要·题解·程序·应用[M].石油工业出版社,1989.
    [104]邓聚龙.灰预测与灰决策[M]。武汉:华中科技大学出版社,2002.
    [105]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002,2.
    [106]熊合金,徐华中.灰色控制[M].北京:国防工业出版社,2005,9.
    [107]邓聚龙.灰色预测控制器[J].大自然探索,1986,5(18):59-68.
    [108]程飙.工业过程的灰色预测控制[J].灰色系统论文集,武汉:华中理工大学出版社,1986:32-40.
    [109]王军平.高性能运动控制及在数控系统中的应用[D].西安:西北工业大学博士论文,2002:48-82.
    [110]鲁岚,陈清明.灰色预测控制在CO2激光器自动控制系统中的应用[J].激光技术,1999,23(4):234-237.
    [111]邹健,杨莹春,诸静.基于灰色模型的预测模糊控制策略及其应用研究[J].中国电机 工程学报,2002,22(9):12-14.
    [112]张广立,付莹,杨汝清.一种新型自调节灰色预测控制器[J].控制与决策,2004,19(2):212-215.
    [113]彭道刚,杨平,张浩等.灰色预测神经网络PID控制研究[J].控制工程,2006,13(4):344-347.
    [114]Tyler B,Soundarajan N.Black-box testing of grey-box behavior[J].Lecture in Computer Science,2004,29(3):1-5.
    [115]Liu Si-feng,Lin Yi.An introduction to grey system foundation,methodology and application[M].Slippery Rock IIGSS Academic Publisher,1998.
    [116]Deng J L.Control problems of grey systems[J].Systems&Control Letters,1982(5):288-294.
    [117]刘思峰.走向世界的灰色系统理论[J].市场周刊.财经论坛,2002,1月号(Ⅲ).
    [118]刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998.
    [119]Hudha K,Jamaluddin H.,Samin P M,et al.Semi Active Roll Control Suspension(SARCS)System on a New Modified Half Car Model[J].SAE technical paper 2003-01-2274.
    [120]王新山.PID调节器的参数整定和正确使用[J].炼油化工自动化,1992,(6):30-33.
    [121]张威,张景海等.汽车动力学仿真模型的发展[J].汽车技术,2003(2):1-4.
    [122]程军.汽车防抱死制动系统的理论与实践[M].北京:北京理工大学出版社,1999.
    [123]张新.汽车液压防抱制动系统(ABS)的理论与实践[M].长沙:中南大学出版社,2005.
    [124]马湛华.车辆动力学建模及仿真[D].硕士学位论文,上海:同济大学,2001.
    [125]约森.赖姆佩尔.悬架元件及底盘力学[M].吉林科学技术出版社,1991.
    [126]靳立强,宋传学,彭彦宏.基于回正性与轻便性的前轮定位参数优化设计[J].农业机械学报,2006,37(11):20-23.
    [127]Implementation of a PC-based ABS System with CAN-bus Interfaceon Experimental Platform,Internal Journal of Vehicle Design,Vol.37,pp.343-357,2005.
    [128]Masanori Harada,Hiroshi Harada.Analysis of lateral stability with integrated control of suspension and steering systems[J].JSAE Review,1999:465-470.
    [129]余志生.汽车理论(第二版)[M].北京:机械工业出版社,2000.
    [130]刘淳.基于二分之一车的主动悬架设计[D].吉林:吉林大学,2001.
    [131]Wang Jun,Wilson David A,Xu Weili.Active Suspension Control to Improve Vehicle Ride and Steady-state Handing[J].Proceedings of the 44~(th) IEEE Conference on Decision and Control,2005,1982-1987.
    [132]Yoshimura T.A semi-active suspension of passenger cars using Fuzzy reasoning and the field Testing[J].Int.J.of Vehicle Design,1998,(2):151-167.
    [133]Aekerman J,Odenthal D,Bunte T.Advantages of active steering for vehicle dynamics control.In Proceedings of the 32nd International Symposium on Automotive technology and automation,Vienna,Austria,1999,pp.263-270(Automotive Automation Ltd,Croydon,UK).
    [134]Dixit R K,Buckner G D.Sliding Mode Observation and Control for Semi-Active VehicleSuspension.Vehicle System Dynamics,2005,43(2):83-105.
    [135]Implementation of a PC-based ABS System with CAN-bus Interfaceon Experimental Platform.Internal Journal of Vehicle Design,Vol.37:343-357,2005.
    [136]Ghoneim Y A.,Lin W C,et al.Integrated Chassis Control System to Enhance Vehicle Stability,Internal Journal of Vehicle Design,Vol.23,pp.127-144,2000.
    [137]Pascali L,Gabdelli P,Caviasso G.Improving Vehicle Handling and Comfort Performance Using 4WS[J].SAE technical paper 2003-01-0961,2003.
    [138]Nakajima K,et al.A Vehicle State Detection method based on Estimated Aligning Torque using EPS[J].SAE Paper 2005-01-1265,2005.
    [139]Tanaka H,et al.The Torque Controlled Active Steer For EPS[J].AVEC '04 Paper.
    [140]兰波,喻凡.车辆主动悬架LQG控制器的设计及仿真分析[J].农业机械学报,2004,35(1):13-17.
    [141]程军.车辆防抱系统鲁棒控制的研究[J].汽车工程,1998,20(1):17-23.
    [142]张利鹏.汽车转弯制动性能分析与防抱控制仿真研究[D].秦皇岛:燕山大学,2004.
    [143]B A G(u|¨)ven(?),et al.Coordination of Steering and Individual Wheel Braking Actuated Vehicle Yaw Stability Control[J].IEE Conf.,2003.
    [144]CHEN W W,XIAO H S,LIU L Q,et al.Integrated con-trol of automotive electrical power steering and active suspension systems based on random sub-optimal control[J].Int.J.of Vehicle Design,2006,42:370-391.
    [145]MASANORI H,HIROSHI H.Analysis of lateral stability with integrated control of suspension and steering systems[J].JSAE Review,1999,20:465-470.
    [146]陈龙,袁传义,江浩斌等.汽车主动悬架与转向系统的模糊参数自调整集成控制[J].中国机械工程,2006,17(23):2525-2528.
    [147]陈无畏,孙启启,初长宝.汽车电动助力转向与主动悬架系统的H_∞集成控制[J].振动工程学报,2007,20(1):45-51.
    [148]来飞,邓兆祥,董红亮.汽车主动悬架和四轮转向系统的耦合分析及协调控制[J].汽车工程,2008,30(9):779-783.
    [149]容一鸣,崔九同.车辆主动悬架的控制研究[J].武汉理工大学学报,2003.
    [150]Hudha K,Jamaluddin H.,Samin P M,et al.Semi Active Roll Control Suspension(SARCS)System on a New Modified Half Car Model[J].SAE technical paper 2003-01-2274.
    [151]林逸,施国标,邹常丰,等.汽车电动助力转向系统转向性能的客观评价[J].农业机械学报,2003,(7):34-4.
    [152]K D Norman.Objective evaluation of on-center handling performance[J].SAE Paper No.840069,1984,93:1380-1392.
    [153]WangJun,Wilson David A,Xu Weili.Active Suspension Control to Improve Vehicle Ride and Steady-state Handing[J].Proceedings of the 44~(th) IEEE Conference on Decision and Control,2005,1982-1987.
    [154]A T van Zanten,Robet Bosch G.m.b.h.Bosch EPS System:5 Years of Experience[J].SAE 2000-01- 1663.
    [155]王军平,王安,李教,等.延迟时间未知的时延系统Fuzzy-Gray预测控制[J].空军工程大学学报,2002,3(1):71-74.
    [156]肖新平,宋中民,李锋.灰技术基础及其应用[M].北京:科学出版社,2005.
    [157]蒋春彬.汽车电动助力转向控制系统的研究设计[D].镇江:江苏大学,2006.
    [158]张立强,于伟,柴东.电路原理图与PCB板设计教程Protel DXP[M].科学出版社,2005.
    [159]陈龙,陈杨,江浩斌,等.节流口可调式减振器的性能分析与试验研究[J].江苏大学学报(自然科学版),2004,25(3):208-211.
    [160]汽车操纵稳定性试验方法 蛇行试验[S].中华人民共和国国家标准,GB/T6223.1-1994.
    [161]汽车操纵稳定性试验方法 转向瞬态响应试验(转向盘转角阶跃输入)[S].中华人民共和国国家标准,GB/T6223.2-1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700