用户名: 密码: 验证码:
竹秆基本组织分化与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用细胞生物学研究方法,以毛竹(Phyllostachys edulis)为材料,对竹秆基本组织细胞的分化和发育进行了系统的研究。揭示了基本组织长、短细胞之间的差异,并对基本组织细胞分化发育的机理和长、短细胞生理功能进行了探讨。
     根据光学解剖观察,将基本组织细胞发育过程分为原始细胞期、增殖期、伸长期和成熟期。长细胞在增殖期开始伸长,短细胞始终不伸长并一直保持活跃的生理代谢。且离短细胞越远的长细胞越长。这些都表明短细胞具有基本分生组织细胞特点,基本组织可能由其分化发育而形成。
     偏光观察表明次生壁在伸长后期开始沉积,次生壁形成于细胞完全停止伸长之前,次生壁的沉积可能导致了细胞伸长减慢并逐渐停止。
     基本组织长、短细胞次生壁结构具有明显的差异。长细胞的次生壁随着年龄的增加逐渐增厚,在前四年加厚较快,以后减慢。长细胞在相对休眠期主要沉积木质素,而生长期主要沉积纤维素,从而形成暗的窄层和宽的亮层交替分布的多层结构。木质素含量随着秆龄增加而增加。长细胞的细胞壁结构有利于加强竹秆的机械强度。短细胞仅在与长细胞连接处形成次生壁并木质化,而胞间隙处的短细胞壁始终保持初生壁状态,随着年龄的增加短细胞的壁不加厚,木质素含量也不增加。表明短细胞在发育过程中保持幼嫩细胞的特点,仅在局部形成次生壁。
     成熟的长细胞部分细胞器已经降解,而短细胞在发育过程中一直具有较丰富的线粒体、内质网和运输小泡,表明短细胞始终保持较旺盛的生长代谢能力。
     长细胞具有贮存功能,竹秆内淀粉粒主要贮存于长细胞内。而短细胞内没有淀粉粒,始终保持比较活跃的生理代谢。
     成熟长细胞的ATP酶活性降低。但短细胞始终具有较高的ATP酶活性,尤其是质膜、运输小泡、纹孔和胞间隙中,表明短细胞与周围细胞间频繁的物质、信息交流。短细胞可能参与了细胞间的物质运输,主要通过共质体和质外体两种方式。长细胞壁上的过氧化物酶活性主要集中在次生壁窄层中,以第一年相对休眠期酶活性最高。随着秆龄的增加,长细胞壁上的酶活性降低。长细胞壁上的过氧化物酶参与了木质素的形成。而短细胞壁一直都具有较高酶活性,短细胞过氧化物酶并不完全对应于木质素的沉积部位。短细胞可能参与了活性氧的清除和长细胞次生壁的形成。
The development of ground tissue in bamboo(Phyllostachys edulis) culms were systematically investigated with methods and technologies of cell biology. The marked differences between the long cell and the short cell were elucidated. And the mechanisms of ground tissue differentiation and development and the physiological functions of the long cell and the short cell were discussed.
     The results indicated that the development of ground tissue was classified into four stages based on the light microscopy observations: initiating stage, dividing stage, elongation stage and maturation stage. Some cells of the ground tissue began elongation at early dividing stage,but short cells had no elongation and remained active metabolism. And the longer cell was farther from the short cell. The above observations indicated that the short cell was meristematic as the gound meristem cell, and ground tissue might come of the short cell.
     The observations by polarized light microscope showed that secondary walls formed at the late stage of elongation, indicating that the secondary walls began to be laid down while the long cells were still undergoing elongation, suggesting that it might act to cause the slow down and eventual cessation of cell elongation.
     There were significant differences between the secondary walls of long cells and those of the short cells. The long cell walls underwent thickening with aging. In the former four years, long cell walls had a marked thickening, subsequently, the degree of thickening decreased gradually. The long cell walls formed gradually the polylamellate structure in alternate arrangement of broadly light lamellae with deposition of cellulose in growing period and narrowly dark lamellae, which mainly deposited lignin in relative dormancy period. And lignin in the long cell walls increased with age. It is significant to increase the mechanical strength of the bamboo culms.
     But the secondary wall and lignificated regions of the short cells were only confined to the portion in contact with the long cell walls, while the walls at the corner region remained the state of primary wall in mature culms. And there was no thickening, the polylamellate structure and lignin increase with age in the secondary walls of the short cells. The short cell remained in the young state during the development except for the partial secondary wall.
     During the development of the gound tissue, mature long cells lost some of the organelles, while the short cell remained plentiful mitochondria, endoplasmic reticulums and transfer vesicles indicating the active metabolism.
     The long cell was a reservior where the energy is stored in the form of starch granules. Whereas the short cells remained no starch granule accumulated and had active physiological metabolism.
     ATPase activity in mature long cells declined. On the other hand, the short cell remained high ATPase activity, especially in the plasma membrane, transfer vesicles, pits and intercellular spaces, indicating the short cells had active exchange and transport with other cells chiefly by symplastic transport and apolastic transport suggesting that the short cell functioned in transport.
     Peroxidase activity concentrated in the narrow lamellae of the long cell walls,where lignin mainly deposited, especially in the first relative dormancy period. The peroxidase activity in the narrow lamellae of the long cell walls declined gradually with aging. So the peroxidase in the long cell walls took part in the synthesis and deposition of lignin. But the short cells differed from the long cells and always had peroxidase activity. Also, Peroxidase in the short cells perhaps took part in the synthesis of lignin in the long cell walls and the elimination of reactive oxygen.
引文
Abe H., Funada R., Ohtani J., Fukazawa K.. Changes in the arrangement of cellulose microfibril associated with the cessation of cell expansion in tracheids [J]. Trees Structure and Function, 1997, 11: 328-332
    Almouzni G., Méchali M.. Assembly of spaced chromatin involvement of ATP and DNA topoisomerase activity [J]. EMBO, 1988, 7: 4355-4365
    Alvin K.L., Murphy R.J.. Variation in fiber and parenchyma wall thickness in culms of the bamboo Sinobambusa tootsik [J]. IAWA Bulletin,1988, 9:353-361
    Blee K.A., Wheatley E.R., Bonham V.A., Mitchell G.P., Robertson D., Slabas A.R.,Burrel M.M., Wojtaszek P., Bolwell G.P.. Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesizes secondary walls as determined by biochemical and morphological parameters [J]. Planta, 2001, 212: 404-415
    Basra A.S., Salarch R.S., Dhillongwal R., Malik C.P.. Calcium mediated changes in peroxidase and O-diphennol oxidase activities of cotton fibers and its possible relationship to ABA [J]. Plant Growth Regulation, 1992, 11: 159-164
    Brown R.M.Jr., Montezinos D.. Cellulose microfirils: visualization of biosynthetic and orienting complexes in association with the plasma membrane [C]. Proceedings of the National Academy of Science of the USA, 1976, 73(1): 143-147 Carpita N.C., Whittern D.. A highly substituted glucuronoarabinoxylan from developing maize coleoptiles [J].Carbohydrate Research, 1986, 146: 129-140
    Chaffey N.J., Barlow P., Barnett J.. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microtubules [J]. Planta, 1999, 208: 19-30
    Chaffry N.J., Barlow P., Barnett J.. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microfilaments [J]. Planta, 2000, 210: 890-896
    Christensen J.H., Banw G., Welinder K.G.. Purification and characterization of peroxidases correlated with lignification in poplar xylem [J]. Plant Physiology, 1998,118: 125-135
    Crow E.. Development of fibre and parenchyma cells in the bamboo Phyllostachy viridi-glaucescens (Carr.) [D]. Riv.&Riv. PhD.Thesis Imperial College London. 2000, University of London, UK
    Demarty M., Morvan C., Thellier M.. Calcium and the cell wall [J]. Plant Cell Environment, 1984, 7: 441-448
    Ding Y.L., Tang G.G., Chao Ch.S.. Anatomical studies on the culm neck of some pachymorph bamboos [C]. In chapman, G., ed., The bamboos, Linnaean Society, London, UK, 1997, pp: 285-292
    Ding Y.L., Grosser D., Liese W., Hsiung W.Y.. Anatamical studies on the rhizome of some monopodial bamboos [J]. Chinese Journal of Botany, 1993, 5(2): 122-129
    Ding Y.L., Weiner G., Liese W.. Wound reactions in the rhizome of Phyllostachy edulis [J]. Acta Botanica, 1997, 39:55-58
    Dinwoodie J.M.. Timber, its nature and behaviour [R]. 2000, 2nd edn. New York, USA: E&FN Spon, 26
    Doblin M.S., Kurek I., Jacob-wilk D., Delmer D.P.. Cellulose biosynthesis in plants: from genes to rosettes [J]. Plant Cell Physiology, 2002, 43: 1407- 1420
    Donaldson L., Xu P.. Microfibril orientation across the secondary cell wall of radiate pine tracheids [J]. Trees, 2005, 19: 644-653
    Emons A.M., Mulder B.M.. How the deposition of cellulose microfibrils builds cell wall architecture [J]. Trends in Plant Science, 2000, 5: 35-40
    Evans L.S., Perez R.K.. Diversity of cell lengths in intercalary meristem regions of grasses: location of the proliferative cell population [J]. Canadian Journal of Botany, 2004, 82: 115-122
    Fedorova E., Thomson R., Whitehead L.F., Maudoux O., Udvardi M.K., Day D.A.. Localization of H+-ATPase in soybeanroot nodules [J]. Planta, 1999, 209: 25–32
    Fergus B.J.,Procter A.R.,Scott J.A.N., Goring D.A.I..The distribution of lignin in sprucewood as determined by ultraviolet microscopy [J].Wood Science Technology,1969,3(2):117-138
    Fry S.C.. Phenolics components of the primary cell wall and their possible role in the bormone regulation of growth [J]. Planta, 1979, 146: 343-351
    Fujino T., Itoh T.. Changes in the three dimensional architecture of the cell wall during lignification of xylem cells in Eucalyptus tereticornis [J]. Holzforchung, 1998, 52: 111-116
    Fukazawa K.,Imagawa H.,Doi S..Histochemical observation of decayed cell wall using ultraviolet and fluorescence microscopy [J].Research Bulletins of the College Experiment Forests-Hokkaido University,1975,32(2):101-114
    Funada R., Abe H., Furusawa O., Imaizumi H., Fukuzawa K., Ohtani J.. The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion [J]. Plant Cell Physiology, 1997, 38: 210-212
    Gardiner J.C., Taylor N.G., Turner S.R.. Control of cellulose synthase complex localization in developing xylem [J]. The Plant Cell, 2003, 15: 1740-1748
    Gibeaut D.M., Carpita N.C.. Tracing cell wall biogenesis in intact cells and plants [J]. Plant Physiology, 1991, 97: 551-561
    Grand C., Oarmentier P., Boudet A., Boudet A.M.. Comparison of lignins and enzymes involved in lignification in normal and brown midrib(bm3) mutant corn seedlings [J]. Physiology Vegetale, 1985, 23: 905-911
    Gritsch C.S., Murphy R.. Ultrastructure of fibre and parenchyma cell walls during early stages of culm development in Dendrocalamus asper [J]. Annals of Botany, 2005, 95: 619-629
    Grosser D., Liese W.. On the anatomy of Asian bamboos with special reference to vascular bundles [J]. Wood Science Technology, 1971, 5: 290-312
    Hafren J., Fujino T., Itoh T.. Changes in cell wall architecture of differentiating tracheids of Pinus thunbergii during lignification [J]. Plant Cell Physiology, 1999, 40: 532-541
    Haigler C.H., Ivanova-Datcheva M., Hogan P.S., Salnikov V.V., Hwang S., Martin L.K., Delmer D.P.. Carbon partitioning to cellulose synthesis [J]. Plant Molecular Biology, 2001, 47: 29-51
    He X.Q., Suzuki K., Kitamura S., Lin J.X., Cui K.M., Itoh T.. Toward understanding the different function of two types of parenchyma cells in bamboo culms [J]. Plant Cell Physiology, 2002, 43(2): 186-195
    Hoson T., Nevins D.J..β-D-glucan antibodies inhibit auxin-induced cell elongation and changes in the cell wall of Zea coleoptile segment [J]. Plant Physiology, 1989, 90: 1353-1358
    Hoson T., Matsuda Y., Nevins D.J.. Comparison of the outer and inner epidermis: inhibition of auxin-induced elongation of maize coleoptiles by glucan antibodies [J]. Plant Physiology, 1992, 98: 1298-1303
    Imberty A., Goldberg R., Catesson A.M.. Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation [J]. Planta, 1995, 164: 221-226
    Ingemarsson B.S.M.. Ethylene effects on peroxidases and cell growth patterns in Picea abies hypocotyls cuttings [J]. Physiologia Plantarum, 1995, 94: 211-218
    Ipelcl Z., Ogras T., Altinkut A.. Reduced leaf peroxidase activity is associated with reduced lignin content in transgenic poplar [J]. Plant Biotechnol, 1999, 16: 381-387
    Itoh T.. Lignification of bamboo (Phyllostachys heterocycla Mitf.) during its growth [J]. Holzforschung, 1990, 44(3): 191-200
    Ivanova M.I., Todarov I.T., Atanassova L., Dewitte W., Onckelen H.A.V.. Co-localization of cytokinins with proteins related to cell proliferation in developing somatic embryos of Dactylis glomerata L. [J]. Journal of Experimental Botany, 1994, 45: 1009-1017
    Jacqueline G.P., Deborah G.. Lignin genetic engineering revisited [J]. Plant Science, 1999, 145: 51-65
    Kimura S., Laosinchai W., Itoh T., Cui X.J., Linder R., Brown R.M.. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis [J]. The Plant Cell, 1999, 11: 2075-2085
    Koch, G., Kleist G.. Application of scanning UV-microspectrophotometry to localize lignins and phenolic extractives in plant cell walls [J]. Holzforschung,2001,55: 563–567
    Kohel R.J., Benedict C.R., Jividen G.M.. Incorporation of 14C-glucose into crystalline cellulose in aberrant fibers of a cotton mutant [J]. Crop Science, 1993, 33: 1036-1040
    Lewis N.G., Yamamoto E.. Lignin: occurrence, biogenesis and biodegradation [J]. One year old Reviews in Plant Physiology and Molecular Biology, 1990, 41: 455-496
    Li X.B., Kieliszewski M., Lamport DTA.. A chenopod extensin lacks repetitive tetrahydroxyproline blocks [J]. Plant Physiology, 1990, 92: 327-333
    Liese W.. The anatomy of bamboo culms [R]. International Network for Bamboo and Rattan (Technieal Report), 1998
    Liese W., Weiner G.. Aging of bamboo culms: a review [J]. Wood Science and Technology, 1996, 30: 77-89
    Lin J.X., He X.Q., Hu Y.X., Kuang T.Y., Ceulemans R.. Lignification and lignin heterogeneity for various age classes of bamboo (Phyllostachys pubescens) stems [J]. Physiologia Plantarum, 2002, 114: 296-302
    Lybeer B., Koch G., Acker J.V., Goetghebeur P.. Lignification and cell wall thickening in nodes of Phyllostachys viridiglaucescens and Phyllostachys nigra [J]. Annals of Botany, 2006, 97: 529-539
    MacAdam J.W., Sharp R.E., Nelson C.J.. Peroxidase activity in the leaf elongation zone of tall fescue Ⅱ.Spatial distribution of apoplastic peroxidase activity in genotypes differing in length of the elongation zone [J]. Plant Physiology, 1992, 99: 879-885
    MacAdam J.W., Nelson C.J., Sharp R.E.. Peroxidase activity in the leaf elongation zone of tall fescue Ⅰ.Spatial distribution of lonically bound peroxidase activity in genotypes differing in length of the elongation zone [J]. Plant Physiology, 1992, 99: 872-878
    Martinez C., Baccou J.C., Bresson E.. Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearum [J]. Plant Physiology, 2000, 122: 757-766
    Mueller S.C., Brown Jr.R.M.. Evidence for an intramembrane component associated with a cellulose microfibril synthesizing complex in higher plants [J]. Journal of Cell Biology, 1980, 84: 315-326
    Murphy R.J., Alvin K.L.. Fibre maturation in bamboos [C]. In Chapman, G., ed., The bamboos, Linnaean Society London, UK, 1997, 294-303
    Nakashima J., Mizuno T., Takabe K., Fujita M., Saiki H.. Direct visualization of lignifying secondary wall thickening in Zinna elegans cells in culture [J]. Plant Cell Physiology, 1997, 38: 818-827
    Nick P., Heuing A., Ehmann B.. Plant chaperonins: a role in microtubule- dependent wall formation [J]. Protoplasma, 2000, 211: 234-244
    Nolte D.K., Hendrix D.L., Radin J.W., Koch K.E.. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules [J]. Plant Physiology,1995,109:1285-1293
    Parameswaran N., Liese W.. Occurrence of warts in bamboo species [J]. Wood Science and Technology, 1977, 11: 313-318
    Parameswaran N., Liese W.. Ultrastructural aspects of bamboo cells [J]. Cellulose Chemistry and Technology, 1980, 14: 587-609
    Parameswaran N., Liese W.. On the polylamellate structure of parenchyma wall in Phyllostachys edulis [J]. IAWA Bulletin, 1975, 4: 57-58
    Parameswaran N., Liese W.. On the fine structure of bamboo fibres [J]. Wood Science and Technology, 1976, 10: 231-26
    Pederson P.L., Carafoli E.. Ion motive ATPases. I. Ubiquity, properties and significance to cell function [J]. Trends in Biochemical Sciences,1987,12: 146–150
    Pickett-Heaps J.D.,Northcote D.H.. Relationship of cellular organelles to the formation and development of the plant cell wall [J]. Journal of Experimental Botany, 1966,17(1):20-26
    Peng M., Kuc J.. Peroxidase-generated hydrogen peroxide as a source of antifungal-activity in vitro and on tobacco leaf disks [J]. Phytopathology, 1992, 82(6): 696-699
    Potikha T.S., Collins C.C., Johnson D.I.. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers [J].Plant Physiology, 1999, 119: 849-858
    Quiroga M., Guerrero C., Botella M.A., Barcelo′A., Amaya I., Medina M.I., Alonso F.J., Forchetti S.M., Tigier H., Valpuesta V.. A tomato peroxidase involved in the synthesis of lignin and suberin [J]. Plant Physiology, 2000, 122: 1119–1127
    Refrégier G., Pelletier S., Jaillard D., H?fte H.. Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in arabidopsis [J]. Plant Physiology, 2004, 135: 959-968
    Roberts A.W., Frost A.O., Roberts E.M., Haigler C.H.. Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements [J]. Protoplasma, 2004, 224:217-229
    Roberts L.W., Baba S.. Evidence that auxin-induced xylogenesis in Lactuca explants requires camodulin [J]. Environmental and experimental botany, 1987, 27(3): 289-265
    Rosler J., Krekel F., Amrhein N.. Maize phenylalanine ammonialyase has tyrosine ammonialyase activity [J]. Plant Physiology, 1997, 113: 175-179
    Salnikov V.V., Grimson M.J., Seagull R.W., Haigler C.H.. Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibres[J]. Protoplasma, 2003, 221: 175-184
    Saka S.,Goring D.A.I..The distribution of lignin in white birch wood as determined by bromination with TEM-EDXA [J].Holzforschung,1988,42(3):149-153
    Schubert A.M., Benedict C.R., Berlin J.D., Koehel R.J.. Cotton fibre development -kinetics of cell elongation and secondary wall thickening [J]. Crop Science, 1973, 13: 704-709
    Serrano R.. Structure and function of plasma membrane ATPase [J]. One year old Review of Plant Physiology and Plant Molecular Biology, 1989,40: 61-94
    Strauss E.. When walls can talk, plant biologist listen [J]. Science, 1998, 282: 28-29
    Suzuki K., Ingold E., Sugiyama M., Komamine A.. Xylan synthase activity in isolated mesophyll-cells of Zinnia elegans during differentiation to tracheary element [J]. Plant Cell Physiology, 1991, 32: 303-306
    Suzuki K., Kitamura S., Sone Y., Itoh T.. Immunohistochemical localization of hemicelluloses and pectins varies during tissue development in the bamboo culm [J]. The Histichemical Journal, 2002, 34: 535-544
    Suzuki K., Itoh T.. The changes in cell wall architecture during lignification of bamboo, Phyllostachys aurea Carr. [J]. Trees, 2001, 15:137-147
    Suzuki K.,Kitamura S.,Sone Y.,Itoh T.. Immounohistochemical localization of hemicelluloses and pectins varies during tissue development in the bamboo culm [J]. The Histochemical Journal,2002,34:535-544
    Taiz L.. The plant vacuole [J]. Journal of Experimental Biology, 1992, 172: 113-122
    Takabe K., Takeuchi M., Sato T., Itoh M., Fujita M.. Immunocytochemical localiza- tion of enzymes involved in lignification of the cell wall [J]. Journal of Plant Research,2001,114:509-515
    Takahama V.. Oxidation of hydroxycinnamic acid and hydroxycinnamoyl alcohol derivatives by laccase and peroxidase interactions among p-hydroxyphenyl, guaiacyl and syringyl groups during the oxidation reaction [J]. Plant Physiology, 1995, 93: 61-68
    Takahama V., Oniki T.. A possible mechanism for the oxidation of sinapyl alcohol by peroxidase-dependent reaction in the apoplast enhancement of the oxidation by hydroxycinnamic acid and component of the apoplast [J]. Plant Cell Physiology, 1996, 37: 499-504
    Takayama M., Johjima T., Yamanaka T., Wariishi H., Tanaka H.. Fourier transform Raman assignment of guaiacyl and syringyl marker bands for lignin determination [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1997, 53(10): 1621-1628
    Turner S.R., Hall M.. The gapped xylem mutant identifies a common regulatory step in secondary cell wall deposition [J]. Plant, 2000, 24: 477-488
    Uggla C., Moritz T., Sandberg G., Sundberg B.. Auxin as a positional signal in pattern formation in plants [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(17): 9282-9286
    Van Huyster R.B.. Some molecular aspects of plant peroxidase: biosynthetic studies [J]. One year old Reviews in Plant Physiology, 1987, 38: 205-219
    Wakabayashi K., Sakurai N., Kuraishi S.. Effects of abscisic acid on the synthesis of cell-wall polysaccharides in segments of etiolated squash hypocotylⅡlevels of UDP-neutral sugars [J]. Plant Cell Physiology, 1991, 32(3): 427-432
    Westermark U.,Lidbrant O.,Eriksson I..Lignin distribution in spruce(Piceaabies) determined by mercurization with SEM-EDXA technique [J].Wood Science and Technology,1988,22(3):243-250
    Ye Zh.H., Kneusel R.E., Matern U.. An alternative methylation pathway in lignin biosynthesis in Zinnia [J]. Plant Cell, 1994, 6: 1427-1439
    Ye Zh.H., Varner J.E.. Differential expression of two O-methyl transferase in lignin biosynthesis in Zinnia elegans [J]. Plant Physiology, 1995,108: 459-467
    Zenoni S., Reale L., Tornielli G.B., Lanfaloni L., Porceddu A., Ferrarini A., Moretti C., Zamboni A., Speghini A., Ferranti F., Pezzoti M.. Downregulation of the petunia hybrida ɑ-expansin gene PhEXP1 reduces the amount of the crystalline cellulose in cell walls and leads to phenotypic change in petal limbs [J]. Plant Cell, 2004, 16: 295-308
    Zhong R., Ripperger A., Ye ZH.. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants [J]. Plant Physiology, 2000, 123:59-69
    陈守良,金岳杏.中国竹类叶片微形态的研究(之一)[J].竹子研究汇刊,1986,5(1):67-76
    陈以峰,周燮.烟草雌蕊的花粉管生长途径中几种植物激素的免疫金电镜观察[J].武汉植物学研究,1999,17(4):297-302
    初敬华,高晨光,朱秋广,马秀杰,邢秀芹.三种水生植物营养器官的比较解剖学研究[J].松辽学刊(自然科学版),2001,2:47-49
    崔凯荣,王君健,刑更妹,王亚馥.枸杞胚性细胞分化的超微结构和 ATP 酶的细胞化学定位研究[J].西北植物学报,1997,17(6):106-110
    丁雨龙,赵奇僧,陈志银,汪全胜.竹叶结构的比较解剖及其对系统分类的评价[J].南京林业大学学报,1994,18(3):1-6
    丁雨龙,Liese W..竹节解剖构造的研究[J].竹子研究汇刊,1995,14(1):24-32
    丁雨龙,樊汝汶,黄金生.竹子节部“韧皮部结”的发育与超微结构[J].植物学报,2000,42(10):1009-1013(英文)
    甘小洪,丁雨龙.竹类结构植物学研究进展[J].竹子研究汇刊,2002,21(1):11-17
    甘小洪,丁雨龙.毛竹茎秆纤维发育过程的超微结构观察[J].植物学通报,2004,21(2):180-188
    甘小洪,丁雨龙,尹增芳.毛竹茎秆纤维细胞发育过程中 ATP 酶的超微细胞化学定位研究[J].植物研究,2004,24(3):357-362
    关和新,田恵桥,朱英国,蓝盛银,徐珍秀.马协不育花药药隔 ATPase 超微结构定位[J].作物学报,2000,26(5):613-620
    郝建华.细胞壁与细胞的发育[J].生物学通报,2004,39(2):22-23
    何才平,杨弘远.金鱼草胚珠中 ATP 酶活性的超微细胞化学定位[J].植物学报,1991,33(2):85-90
    贺新强,崔克明,李正理.杜仲次生木质部分化过程中木质素与半纤维素组分在细胞壁中的动态变化[J].植物学报,2001,43:899-904
    贺新强,崔克明.植物细胞次生壁形成的研究进展[J].植物学通报,2002,19(5):513-522
    贺新强,李素文,胡玉熹,林金星.毛竹细胞壁自发荧光的显微荧光光度分析[J].植物学报,1999,47(7):711-714
    贺新强,王幼群,胡玉熹,林金星.毛竹茎纤维次生壁形成的超微结构观察[J].植物学报,2000,42:1003-1008
    简令成,孙龙华,孙德兰.小麦穗轴中 ATP 酶活性及物质运输通道的定位与分布及其与小穗发育的关系[J].植物学报,1983,25:313-317
    李杉,刑更妹,崔凯荣,王亚馥.植物体细胞胚发生中 ATP 酶活性时空分布动态与内源激素的变化[J].植物学通报,2001,18(3):308-317
    李坚等.木材波谱学[M].科学出版社,2003
    李雄彪,杨中汉.伸展蛋白的结构,功能,交联和生物合成[J].植物生理学通讯,1990,3:7-13
    李雄彪,吴锜.植物细胞壁[M].北京大学出版社,1993
    廖海民,沈宗根,盛仙永,胡正海.木立芦荟叶内芦荟素的超微结构细胞化学研究.分子细胞生物学报,2006,39(1):55-60
    林金安,贺新强.毛竹茎细胞壁半纤维素多糖的免疫细胞化学定位研究[J].植物学通报,2000,17(5):466-469
    刘云飞,薛联凤,阮锡根,于芬.竹材细胞壁晶区变化规律的研究[J].南京林业大学学报 (自然科学版),2006,30(6):66-68
    陆时万,徐祥生,沈敏健.植物学(第二版)[M],高等教育出版社,1992
    马玉心,蔡体久,李强.风花菜根异常次生结构的解剖学观察.植物研究,2006,26(2):151-155
    阮锡根,江泽慧,陶灵虎.用结晶学的观点研究纤维植物细胞壁的结构及形成机理[J].东北林业大学学报,2001,29(2):1-3
    孙成志,尹思慈.十种国产针叶树材管胞次生壁纤丝角的测定[J].林业科学,1980,18(1):65-69
    田国伟,申家恒.小麦胚珠在受精过程中 ATP 酶的超微细胞化学定位[J].植物学报,1993,35(5):329-336
    田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344
    王堃仁,薛绍白,柳惠图.细胞生物学[M].北京师范大学出版社,北京,1990
    王雅清,MWANGE K.K.,崔克明.杜仲次生木质部细胞分化和脱分化过程中 ATPase 的超微细胞化学定位[J].植物学报,2000,42(5):455-460
    王延枝,斯海文.植物细胞液泡膜 H+-ATPase 的初步研究[J].武汉大学学报(自然科学版),1987,(1):101-106
    王毅,娄成后,杨世杰.离体蒜苔贮存中薄壁细胞超微结构的变化[J].植物学报,1994,36(3):165-169
    王英,樊拥军,吴树明.槐种子发育过程中子叶细胞显微结构的变化和过氧化物酶同工酶变化的动态[J].西北植物学报,1997,17(3):315-321
    魏建华,宋艳如.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43:771- 779
    熊文愈,乔士义,李又芬.毛竹(Phyllostachys pubescens Mazel ex H. de Lahaie)秆茎的解剖结构[J].植物学报,1980,22(4):343-348
    熊文愈,丁祖福,李又芬.竹类植物的居间分生组织与节间生长Ⅰ秆茎的居间分生组织与节间生长[J].林业科学,1980,2:81-89
    颜季琼.高等植物细胞壁的结构和功能一[J].生物学通报,1999,34(1):6-7
    杨世杰,娄成后.嫁接隔离层两侧愈伤组织中的壁旁体[J].植物学报,1988,3(5):480-484
    叶渭龙,邱金龙,王雨华,王隆华.棉花游离愈伤细胞成纤维分化和发育的研究[J].上海农业学报,1998,14(2):51-55
    殷亚方,姜笑梅.细胞壁中过氧化物酶的分布对杨树木质化过程的影响[J].电子显微学报,2007,26(1):49-54
    张焕相,王永潮.去甲斑螯酸钠对小鼠卵母细胞第一次减数分裂的影响[J]. 动物学报,1996,4(2):205-211
    张伟成,严文梅,陈梓卿.蒜苔中大分子物质的细胞间迁移以及与细胞内含物再分配、再利用的关系[J].植物学报,1981,23:169-175
    赵庆新,袁生.植物细胞壁研究进展[J].生物学通报,2007,42(7):8-9
    朱长山.植物的胞间隙[J].植物杂志,1990,17(6):26-27
    朱惠方,腰希申.国产 33 种竹材制浆应用纤维形态结构的研究[J].林业科学,1964,9(4): 311-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700