用户名: 密码: 验证码:
盐胁迫对毛竹实生苗叶片电阻抗参数及叶绿素荧光特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis)为禾本科(Gramineae)竹亚科(Bambasoideae)刚竹属多年生植物,是我国重要的经济竹种之一,不仅具有很高的经济价值,而且具有良好的生态功能。为了选育适应性更广的毛竹品系,本试验进行了NaCl对毛竹生理生化影响的研究,以其为进一步选育提供理论参考。研究目的是验证电阻抗图谱参数与耐盐性及生理指标的相关性,分析NaCl胁迫下毛竹叶片的叶绿素荧光特性的参数变化,了解NaCl胁迫对毛竹叶片光合机制的影响。研究了在不同NaCl浓度(0.00 %,0.15 %,0.25 %,0.35 %,0.45 %,0.55 %,0.65 %)梯度胁迫下毛竹叶片的电阻抗图谱参数、叶片膜透性、游离脯氨酸、超氧化物歧化酶(SOD)、过氧化物酶(POD)活性、丙二醛(MDA)含量和可溶性蛋白质含量的生理指标的变化以及NaCl胁迫下对毛竹叶片的叶绿素荧光特性的影响。
     主要结果如下:
     1.随着NaCl浓度的增加和长时间处理,毛竹叶片的电阻抗图谱和EIS参数发生变化。
     2. NaCl胁迫下毛竹叶片的膜透性的变化与胞外电阻、弛豫时间之间呈显著的负相关(决定系数分别为R~2=0.75、R~2=0.76)。
     3. NaCl胁迫下毛竹叶片的脯氨酸含量和SOD活性与胞内电阻、胞外电阻和弛豫时间之间呈极显著负相关(决定系数分别为R~2=0.66、R~2=0.95、R~2=0.88和R~2=0.69、R~2=0.70、R~2=0.80)。
     4. NaCl胁迫下毛竹叶片的POD的活性与胞外电阻和弛豫时间呈显著的正相关,与弛豫时间分布系数呈负相关(决定系数分别为R~2=0.70、R~2=0.76、R~2=0.51)。
     5. NaCl胁迫下毛竹叶片中丙二醛的含量与胞外电阻,胞内电阻和弛豫时间呈显著的正相关(决定系数分别为R~2=0. 89、R~2=0.55、R~2=0.59)。
     6. NaCl胁迫下毛竹叶片中可溶性蛋白含量与弛豫时间分布系数呈显著的正相关。
     7.随着NaCl浓度的增加和长时间胁迫,毛竹叶片的叶绿素荧光参数ΦPSⅡ、ETR、Fv/Fm、qP均呈整体下降,qN呈整体先上升后下降。
     8.高NaCl浓度(浓度≧0.35%)胁迫,抑制毛竹叶片的光合作用和毛竹叶片光化学反应启动速率,并降低毛竹叶片光能利用率。
Moso bamboo (Phyllostachys edulis), a perennial plant, belonging to Phyllostachys in Gramineae Bambusoideae, is one of the important economic species of bamboo. They also have high economic benefit, as well as social benefit and ecological benefit. In this paper, the effects of NaCl stress on parameters of electrical impedance spectroscopy (EIS), the physiological indicators and the chlorophyll fluorescence characteristics of Moso bamboo seedling leaves were investigated. The aim of the study was to verify the relation between the parameters of EIS and salt tolerance, and between parameters of EIS and those of physiological indicators, and analyse the changes of chlorophyll fluorescence parameters of Moso bamboo seedling leaves under NaCl stress and understand the effects of NaCl stress on the photosynthetic mechanism of Moso bamboo seedling leaves.
     The main results are as follows:
     1. With increase of NaCl concentration and long time stress, change of electrical impedance spectroscopy and EIS parameters of Moso bamboo seedling leaves occurred.
     2. There were significant negative correlations between extracellular resistance, relaxation time and change of membrane permeability of Moso bamboo seedling leaves under NaCl stress (The coefficient of determination was R~2=0.75 and R~2=0.76, respectively).
     3. There were significant negative correlations among EIS parameters extracellular resistance, intracellular resistance, relaxation time and physiological indicators proline content as well as SOD activity of Moso bamboo seedling leaves under NaCl stress (The coefficient of determination was R~2=0.66, R~2=0.95, R~2=0.88 and R~2=0.69, R~2=0.70 and R~2=0.80, respectively).
     4. There were significant positive correlations among extracellular resistance as well as relaxation time and POD activity of Moso bamboo seedling leaves, while the negative correlation between distribution coefficient of relaxation time and POD activity of Moso bamboo seedling leaves was found under NaCl stress (The coefficient of determination was R~2=0.70, R~2=0.76 and R~2=0.51, respectively).
     5. There were significant positive correlations among extracellular resistance, intracellular resistance, relaxation time and MDA content of Moso bamboo seedling leaves under NaCl stress (The coefficient of determination was R~2=0. 89, R~2=0.55 and R~2=0.59, respectively).
     6. There were significant positive correlations between distribution coefficient of relaxation time and content of soluble protein under NaCl stress.
     7. With increase of NaCl concentration and long time stress, the chlorophyll fluorescence PARameterΦPSⅡ, ETR, Fv/Fm, and qP decreased, whereas qN increased firstly, and then decreased.
     8. High NaCl concentration (≧0.35%) stress inhibited photosynthesis and starting rate of photochemical reaction, and reduced light utilization efficiency of Moso bamboo seedling leaves.
引文
[1]佟友丽,冯君伟,李玉花.植物抗盐胁迫研究进展[J].生物技术通讯, 2008, 19(1): 138-140.
    [2]陆静梅,刘友良.中国野生大豆盐腺的发现[J].科学通报, 1998, 43(19): 2074-2078.
    [3]郑容妹.沿海沙地引种绿竹等竹子的抗盐抗旱机理研究[D].福建农林大学, 2003.
    [4]何开跃,郭春梅.盐胁迫对3种竹子体内SOD, POD活性的影响[J].江苏林业科技, 1995, 22(4): 11-14.
    [5]万贤崇,宋永俊.盐胁迫及其钙调节对竹子根系活力和丙二醛含量的影响[J].南京林业大学学报,自然科学版, 1995, 19(3): 16-20.
    [6]李善春, NaCl盐胁迫下5种地被观赏竹生理特性的研究[D].南京林业大学, 2005.
    [7]Yokoi S, Bressan R A, Hasegawa P M. Salt stress tolerance of plants[J]. JIRCAS Working Report, 2002(1): 25-33.
    [8]尹明华,洪森荣,罗建民.盐胁迫对黄独脱毒苗生长和若干生理生化指标的影响[J].亚热带植物科学, 2009, 38(4): 15-17.
    [9]崔世茂,陈源闽,新居直祐,等. NaCl胁迫对胡萝卜种子萌发、幼苗生长及叶细胞结构的影响[J].华北农学报, 2005, 20(4): 21-24.
    [10]夏宁.冷季型草坪草耐盐性研究[J].林业科技通讯, 2001, (2): 26-28.
    [11]高桂娟,毛凯,杨春华.牧草及草坪草种子耐盐性研究进展[J].四川草原, 2002, (4): 33-36.
    [12]殷立娟,祝玲.野大麦苗期抗盐碱性的研究[J].草地学报, 1991, l(1): 142-148.
    [13]盛彦敏,石德成,肖洪兴.不同程度中碱性复合盐对向日葵生长的影响[J].东北师大学报(自然科学版), 1999, (4): 65-69.
    [14]朱建萍.棚栽番茄幼苗耐盐能力模拟试验[J].上海蔬菜, 1992, (3): 40-41.
    [15]任天应,张乃生,张金发.黄花菜耐盐能力的研究与应用[J].山西农业科学, 1991, (9): 13-19.
    [16]Maslenkora L T. Adaptation to salinity as monitored by PS II oxygen evolving reactions in barley thylakoids[J]. Journal of Plant Physiology, 1993, 142: 629-634.
    [17]Allakhverdiev S, Sakamoto A, Nishiyama Y. et a1. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp.[J]. Plant Physiology, 2000, 123: 1047-1056.
    [18]Everard J D, Gucci R, Kann S. C. et al. Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity[J]. Plant Physiology, 1994, 106: 281-292.
    [19]朱新广,张其德. NaC1胁迫时PSⅡ光能利用和耗散的影响[J].生物物理学报, 1999, 15(4): 787-790.
    [20]王仁雷,华春,罗庆云,等.盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降[J].植物生理与分子生物学学报, 2002, 28(5): 385-390.
    [21]潘瑞炽,董愚得.植物生理学(第三版)[M].北京:高等教育出版社, 2001, 326-328.
    [22]Yoshiba Y, Kiyosue T, Nakashima K. et al. Regulation of levels of proline as an osmolyte in plantsunder water stress[J]. Plant and Cell Physiology, 1997, 38: 1095-1102.
    [23]桂枝,高建明.盐胁迫对6个苜蓿品种脯氨酸含量和超氧化物歧化酶活性的影响[J].天津农学院学报, 2007, 14(4): 18-21.
    [24]吴能表,叶腾丰,王小佳. NaCI胁迫对豌豆幼苗生理生化指标的动态影响[J].西南农业大学学报(自然科学版), 2006, 28(l): 40-42.
    [25]刘国花.盐胁迫对豌豆幼苗生理指标的影响[J].湖北农业科学, 2007, 46(3): 366-368.
    [26]Garcia A, Engler J, Iyer S. et al. Effects of osmoprotectants upon NaCl stress in rice[J]. Plant Physiology, 1997, 115(1): 159-169.
    [27]Tully R, Hanson A, Nelsen C. Proline accumulation in water-stressed barley leaves in relation to translocation and the nitrogen budget[J]. Plant Physiology, 1979, 63: 518-523.
    [28]杨晓慧,蒋卫杰,魏珉,等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版), 2006, 37(2): 302-305.
    [29]Bohnert H, Jensen R. Strategies for engineering water-stress tolerance in plants[J]. Trends in Biotechnology, 1996, 14(3): 89-97.
    [30]Rhodes D, Hanson A. Quaternary ammonium and tertiary sulfonium compounds in higher plants[J]. Annual Review of Plant Biology, 1993, 44(1): 357-384.
    [31]梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯, 1995, 31(1): 1-8.
    [32]Brade V, Hall R, Colten H. Biosynthesis of pro-C3, a precursor of the third component of complement[J]. Journal of Experimental Medicine, 1977, 146(3): 759-765;
    [33]McNeil S, Nuccio M, Hanson A. Betaine and related osmoprotectants: Targets for metabolic engineering of stress resistance[J]. Plant Physiology, 1999, 120(4): 945-949.
    [34]Weretilnyk E, Hanson A. Betaine aldehyde dehydrogenase polymorphism in spinach:genetic and biochemical characterization[J]. Biochemical Genetics, 1988, 26(1): 143-151.
    [35]Niesel D, Pan Y, Bewley G, et al. Structural analysis of adult and larval isozymes of sn-glycero-3-phosphate dehydrogenase of Drosophila melanogaster[J]. Biol. Chem., 1982, 257(2): 979-983.
    [36]Weigel P, Weretilnyk E, Hanson A. Betaine aldehyde oxidation by spinach chloroplasts[J]. Plant Physio1ogy, 1986, 82(3): 753-759.
    [37]Grieve C M, Maas E V. Betaine accumulation in salt-stressed sorghum[J]. Physiologia Plantarum, 1984, 61(2): 167-171.
    [38]Incharoensakdi A, Takabe T, Akazawa T. Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate Carboxylase / oxygenase from Aphanothece halophytica[J]. Plant Physiology, 1986, 81: 1044-1049.
    [39]McNeil S, Rhodes D, Russell B, et al. Metabolic modeling identifies key constraints on an engineered glycine betaine synthesis pathway in tobacco[J]. Plant Physiology, 2000, 124: 153-162.
    [40]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社. 2002.
    [41]Sacala E, Demczuk A, Grzys E, et a1. The effects of salt stress on growth and biochemical parameters in two maize varieties[J]. Bulgarian Journal of Plant Physiology, 2002, 28(2): 66-74.
    [42]Liang Y C, Shen Q R, Shen Z C, et a1. Effects of silicon on salinity tolerance of two barely cultivars[J]. Journal of Plant Nutrition, 1996, 19: 173-183.
    [43]刘友良,丁念诚,沈丽娟.大麦的抗盐性与抗盐机理.中国大麦文集,中国作物学会大麦专业委员会主编.北京:中国农业科技出版社, 1986, 267-273.
    [44]Gorham J. Salt tolerance in the triticeae: ion distribution in rye and triticaa1[J]. Journal of Experimental Botany, 1990, 41: 609-614.
    [45]郭房庆,汤章城. NaCI胁迫下抗盐突变体和野生型小麦Na+, K+累积的差异分析[J].植物学报, 1999, 41(5): 515-518.
    [46]孙庆艳,沈浩.植物的盐害和抗盐性[J].生物学教学, 2002, 27(11): 1-2.
    [47]Zhu J K. Salt and drought stress signal transduetion in plants[J]. Annual Review of Plant Biology, 2002, 53: 247-273.
    [48]Thomas J C, McElwain E F, Bohnert H J. Convergent induction of osmotic stress- responses[J]. Plant Physio1ogy, 1992, 100: 416-423.
    [49]Aldesuquy H S. Effect of seawater salinity and gibberllic acid on abscisic acid, amino acids and water-use eficiency of wheat plants[J]. Agrochimica, 1998, 42(3): 147-157.
    [50]Vaidyanathan R, Kuruvila S, Thomas G. Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice[J]. Plant Science, 1999, 140: 21-30.
    [51]De Bruxelles G, Peacock W, Dennis E, et al. Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis[J]. Plant physiology, 1996, 111(2): 381-391.
    [52]Popova L, Stoinova Z, Maslenkova L. Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress[J]. Journal of Plant Growth Regulation, 1995, 14(4): 211-218.
    [53]Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annual Review Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222.
    [54]Chen S, Li J, Wang S, et al. Salt, nutrient uptake and tran sport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaC1[J]. Trees-Structure and Function, 2001, 15: 186-194.
    [55]GomezCadenas A, Tadeo F R, PrimoMilo E, et al. Involvement of abscic acid and ethylene in the responses of citrus seedlings to salt shock[J]. Plant Physio1ogy, 1998, 103: 475-484.
    [56]GomezCadenas A, Arbona V, Jacas J, et al. Abscisic acid reduces leaf abscission and increases salt tolerance in citrus plants[J]. Plant Growth Regulation, 2002, 21: 234-240.
    [57]Noaman M M, Dvorak J, Dong J M. Genes inducing Salt tolerance in wheat, Lophopyrum elongatum and amphiploid and their responses to ABA under salt stress[J]. Prospects for Saline Agriculture (Series: Tasks for Vegetation Science), 2002, 37: 139-144.
    [58]Sanehez D H, Queijeiro E, Revilla G. Changes in aseorbic acid levels in apoplastic fluid during growth of pine hypocotyls[J]. Physiologia Plantarum, 1997, 101: 815-820.
    [59]Tanaka Y, Hibino T, Hayashi Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial M n-SOD in chloroplasts[J]. Plant Science, 1999, 148(2): 131-138.
    [60]Tsugane K. Kobayashi K, Niwa Y, et al. A recessive arabidopsis mutant that growsphotoautotrophically under salt stress shows enhanced active oxygen detoxification[J]. The Plant Cell, 1999, 11: 1195- 1206.
    [61]王宝山,邹琦. NaCl胁迫对高粱根、叶鞘和叶片液泡ATP酶和焦磷酸酶活性的影响[J].植物生理学报, 2000, 26(3): 181-188.
    [62]刘志生.鲁德1号冬小麦耐盐力分析[J].中国农学通报, 1996, 12(3): 21-22.
    [63]Aeklnann JJ, Seitz MA. Methods of complex impedance measurements in biological tissue[J]. CRC Critical Review in Biomedical Engineering, 1984, 11: 281-311.
    [64]Azzarello E, Mugnai S, Pandolfi C, et al. Stress assessment in plants by impedance spectroscopy[J]. Floriculture, Ornamental and Plant Biotechnology, 2006, 3: 140-148.
    [65]刘晓红,王国栋,张钢.外源重金属胁迫对小麦叶片电阻抗参数的影响[J].农业环境科学学报, 2007, 26(6): 2014-2020.
    [66]马文月.植物抗盐性研究进展[J].农业与技术, 2004. 24(4): 95-99.
    [67]杨富裕,周禾.草坪草抗盐性研究进展[J].草原与草坪, 2001, (1): 10-13.
    [68]Dudeck A E, Peacock C H, Sheehan T J. An evaluation of germination media for turfgrass sa1inity studies[J]. American Society for Horticultural Science, 1986, 111(2): 170-173.
    [69]Greenway H, Munns R. Mechanism of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology, 1980, 31: 149-190.
    [70]徐颖盐分胁迫下植物的渗透调节[J].山东电大学报, 2000, (3): 34-36.
    [71]刘友良,汪良驹.植物生理与分子生物学.科学出版社, 1997: 763-769.
    [72]L?unchli A. Salt exclusion: an adaptation of legumes for crops and postures under saline conditions//Staples R C, Toenniessen G H. eds. Salinity Tolerance in Plants: Strategies for Crop Improvement. New York: John Wiley & Sons, 1984: 171-187.
    [73]张福锁.环境胁迫与植物育种[M].北京:农业出版社, 1993: 330-335.
    [74]Zhao K, Li J. Effect of salinily on the contents of osmotica of monocotyledonous halophytes and their contribution to osmotic adjustment[J]. Acta Botanica Sincia, 1999, 41(12): 1287-129.
    [75]赵可夫,李法曾.中国盐生植物[M].北京:科学出版社, 1999.
    [76]王业遴.五种果树耐盐力初报[J].中国果树, 1990, (3): 8-12.
    [77]陈竹生,聂华堂.柑橘种质的耐盐性鉴定[J].园艺学报, 1992, 19(4): 289-295.
    [78]翁迈东.海涂柑橘适用砧木探讨[J].中国柑橘, 1980, (11): 12-16.
    [79]马雅琴,翁跃进.引进春小麦种质耐盐性的鉴定评价[J].作物学报, 2005, 31(1): 58-64.
    [80]马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J].福建农业大学学报, 2000, 29(2): 161-166.
    [81]张建锋.盐分对白榆试管苗生长特性的影响[J].林业科技通讯, 1992, (6): 17-19.
    [82]田吉林,杨玉爱,何玉科.转HALl基因番茄的耐盐性[J].植物生理与分子生物学学报, 2003, 29(5): 409-414.
    [83]大庭喜八郎.林木抗性育种方向的研究[J].林业技术, 1986, 53(5): 7-11.
    [84]杨永杰,董树刚,付成秋,等.栽培番茄耐盐变异系的离体选择[J].青岛海洋大学学报, 2001, 31(l): 75-80.
    [85]戴伟民,赵艳,蔡润.番茄耐盐愈伤组织的筛选及显微结构观察[J].上海交通大学学报, 2001, 19(2): 112-116.
    [86]Burr KEB, Hawkins CDB, L’Hirondelle SJL, et al. Methods for measuring cold hardiness of conifers. In: Bigras FJ, Colombo SJ (eds). Conifer Cold Hardiness. Dordrecht, The Netherlands: Kluwer Academic Pubishers. 2001, 369-401.
    [87]Repo T, Oksanen E, Vapaavuori E. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones[J]. Tree Physiology, 2004, 24: 833-843.
    [88]白宝璋,靳占忠,李德春.植物生理生化测试技术[M].北京:中国科技出版社, 1995, 143-147.
    [89]欧阳琳,洪亚辉,黄丽华.不同逆境胁迫信号对超级稻幼苗生理生化影响及植物激素变化的初步研究[J].农业现代化研究, 2007, 28(1): 104-106.
    [90]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000: 67-169.
    [91]贺立红,贺立静,顾群,等.银杏同一叶片不同部位叶绿素荧光特性的研究[J].北方园艺, 2006, (6): 27-29.
    [92]贺立红,贺立静,梁红.银杏不同品种叶绿素荧光参数的比较[J].华南农业大学学报, 2006, 27(4): 43-46.
    [93]White AJ, Critchley C. Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photosynthesis Research,1999, 59:63-72.
    [93]张守仁.叶绿索荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    [95]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报, 2006, 18(1): 51-55.
    [96]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报, 1997, 13(2): 273-278.
    [97]Belkhodja R, Morales F, Abadia A, et al. Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.)[J]. Plant Physiology, 1994, 104(2): 667-673.
    [98]Genty B, Briantais J, Baker N. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989. 990(1): 87-92.
    [99]李志博,魏亦农,张荣华,等.棉花不同叶位叶绿素荧光特性的初步研究[J].棉花学报, 2005, 17(3): 189-190.
    [100]Repo T, Zhang MIN, Ryypp? A, et al. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation[J]. Journal of Experimental Botany, 1994, 45: 823-833.
    [101]Mancuso S, Rinaldelli E. Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. II. Dynamics of electrical impedance parameters of shoots and leaves[J]. Advances in Horticultural Science, 1996, 10: 135-145.
    [102]郑国琦,许兴,徐兆桢.耐盐分胁迫的生物学机理及其基因工程的研究进展[J].宁夏大学学报(自然科学版), 2002, 23(1): 79-85.
    [103]孙兰菊,岳国峰,王金霞,等.植物耐盐机制的研究进展[J].海洋科学, 2001, 25(4): 28-31.
    [104]刘艳丽,许海霞,刘桂珍,等.小麦耐盐性研究进展[J].中国农学通报, 2008, (11): 202-207.
    [105]郑容妹.沿海沙地引种绿竹等竹子的抗盐抗旱机理研究[D].福建农林大学, 2003.
    [106]刘会超,贾文庆.盐胁迫对白三叶茎的POD, CAT的影响研究[J].吉林农业科学, 2009, 34(01): 43-46.
    [107]Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia[J]. Biologia Plantarum, 2004, 48(4): 555-560.
    [108]Pal M, Singh D, Rao L, et al. Photosynthetic characteristics and activity of antioxidant enzymes in salinity tolerant and sensitive rice cultivars[J]. Indian Journal of Plant Physiology, 2004. 9(4): 407-412.
    [109]梁艳荣,胡晓红,张颍力,等.植物过氧化物酶生理功能研究进展[J].内蒙古农业大学学报(自然科学版), 2003, 24(2): 110-113.
    [110]胡哲森,许长饮,傅瑞树,等.锥栗幼苗对水分胁迫的生理响应及6-BA的作用[J].福建林学院学报, 2000, 20(3): 199-202.
    [111]谢寅峰,沈惠娟,罗爱珍,等.南方7个造林树种幼苗抗早生理指标的比较[J].南京林业大学学报, 1999, 23(4): 13-16.
    [112]王臣立,韩士杰,黄明茹.干早胁迫下沙地樟子松脱落酸变化及生理响应[J].东北林业大学学报, 2001, 29(1): 40-43.
    [113]徐恒刚,张萍,李临杭.对牧草耐盐性测定方法及其评价指标的探讨[J].中国草地, 1997, (5): 52-54.
    [114]Repo T. Physical and physiological aspects of impedance measurements in plants[J]. Silva Fennica, 1988, 22: 181 -193.
    [115]冀天会,张灿军,杨子光,等.冬小麦叶绿素荧光参数与品种抗旱性的关系[J].麦类作物学, 2005, 25(4): 64-66.
    [116]綦伟,谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报, 2006, 17(5): 835-838.
    [117]杨晓青,张岁岐,梁宗锁,等.水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J].西北植物学报, 2004, 24(5): 812-816.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700