用户名: 密码: 验证码:
麻栎SPAC界面水分非稳态传输过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是陆地生态系统的主体,对调节气候、维持水资源平衡具有重要作用。掌握森林个体和群体水分传输特性对区域水量平衡的影响是评价森林生态效应的重要依据。以往由于对植物的内在耗水规律和传输过程缺乏了解,导致现有人工林管理存在很大盲目性,仅停留在经验管理的粗放水平上,致使自然生态环境现状和要求之间以及水资源供需之间矛盾突出,森林资源数量和质量远远不能满足改善生态环境、调节水资源平衡的需求。本文以山东省山地次生林主要树种麻栎(Quercus acutissima Carr.)为研究对象,以揭示其SPAC界面,即土壤-植物-大气连续体(Soil-Plant-Atmosphere Continuum,简称SPAC),水分传输特性和耗水规律为目标,进而为麻栎耗水性的评价、林分耗水尺度扩展、林分结构调整提供理论和实践依据。
     利用盆栽试验研究方法,结合野外林分环境下活立木的测定,利用CIRAS-2光合作用测定系统和TPS-1蒸腾作用测定系统测定分析了叶片蒸腾及气孔调节作用;利用Delta-T全自动微型气象站全天候检测林分气象和土壤生态环境因子的时空变化过程,利用TDP-30(Thermal Dissipation Probe)树干径流测定系统连续测定分析了单木树干边材木质部液流的时空变化规律;利用PSΨPRO露点微伏压计测定土壤和叶片水势,利用植物水势压力室测定植物组织水势,利用AQUA-TEL-TDR土壤时域反射仪测定土壤容积含水量,利用冲洗法(Flashing Method)和自行设计的装备测定树木输导组织的导水性、栓塞脆弱性和组织、树干水容。
     本文重点研究了麻栎苗木的SPAC界面的蒸腾作用、气孔调节;在不同层面上测定分析了麻栎水分传输过程、空变异规律、液流特性及其主要影响因子;从叶片气孔特征及麻栎木质部水分输导组织显微结构和导水性、组织水容、栓塞脆弱性等不同侧面研究并揭示了麻栎自身存在的SPAC界面水分传输非稳态过程和调节机制;研究了人工控制条件下,麻栎盆栽苗木的SPAC界面土壤、叶片水势随干旱胁迫加强的变化规律,发现干旱胁迫加强,麻栎土壤、叶片水势下降;实测了干旱胁迫期间麻栎叶片的蒸腾速率和气孔导度变化,以及麻栎叶片气孔密度、气孔开度、气孔长、短轴日变化规律;分析了环境因子对麻栎叶片蒸腾速率、气孔开度的影响及其相关性。
     从单木水平上,研究麻栎树干边材液流时空变异规律,边材液流的日变化和季节变化,日变化具有“启动、液流上升、峰值出现、下降、进入低谷”等特征,季节变化表现在液流速率夏季>春季>秋季。比较了不同树干高度、不同树干方位、不同树干直径边材液流速率、液流通量的差异,统计分析了麻栎不同直径一天中各时段输水量动态。分析不同季节贮水量变化发现,春季树干贮水量变化较大,树干水分增加,有连日积累现象;秋季树干贮水量变化不大,树干水分相对稳定。春季树干相对补水时间每日约为20 h,秋季约10~12 h。
     结合林分内部环境因子动态变化,分析了环境因子对麻栎单木边材液流的影响。不同深度土壤温度、相对湿度在不同季节对麻栎边材液流速率和通量的影响不同;空气温度和相对湿度对麻栎树干边材液流速率和液流通量的影响存在差异;风速较低时,液流随风速的增加较快,但风速达到1.2 m/s后,风速增加对液流的影响并不明显。太阳辐射和净辐射对液流的影响较为显著,两者达到极显著水平,是影响液流的主要环境因子。大气饱和水汽压亏缺VPD,对液流的影响相关较小。
     树干高度不同,影响边材液流的相关因子有差异,太阳净辐射对麻栎树干边材液流的影响最大,成极显著正相关,主要决定树干下部边材液流特征;空气温度、湿度对树干边材液流的影响小于太阳净辐射,主要影响树干上部边材液流,空气温度与液流成正相关,与湿度成负相关。
     基于对多种曲线模型对麻栎液流特征进行曲线估计,分别建立了各环境因子的模拟曲线方程,方程的有效性存在差异。验证空气相对湿度和净辐射的模拟和求解,对空气相对湿度采用三次方程y = 0 .0045-8.0E-05×RHa+3.3E-09×RHa3模拟液流速率,存在一定误差,采用y = 0. 0045-8.0E-05×RHa+3.3E-09×RHa3模拟液流通量,效果较好。采用方程y = 0 .0002+2.2E-06×TBB-3.0E?09×TBB2 +3.1E-12×TBB3模拟净辐射与液流速率的关系,预测值和实测值基本吻合,采用三次方程对液流通量进行模拟,模拟效果也较好,方程为y = 21 .7665+0.2030×TBB-0.0003×TBB2 +2.7E-07×TBB~3。不同季节麻栎树干不同高度边材液流速率、液流通量均存在非稳态流动。季节不同液流速率和液流通量剧烈波动期和相对稳定期存在差异,顺延时差分析表现为液流速率和液流通量变幅和变动频率差别较大,但在总体上,麻栎液流特征顺延差异非稳态过程,是一个白天成倒“V”型,夜晚“V”型曲线。
     比较了麻栎根、枝条、叶片显微结构的差异,包括导管直径、密度,分布、相对传导面积。研究了麻栎枝条导水特性及枝条水势下降过程木质部栓塞过程,比较了不同季节麻栎枝条的栓塞脆弱性。研究了麻栎不同季节苗木枝条水容特征和树干水容、水分传输阻力日变化及影响因子,发现SPAC界面水势值本身与麻栎树干液流特征、蒸腾速率的相关性较小,但对土壤-麻栎系统阻力的影响较大,其中土壤水势对系统阻力的影响最大,为-0.709达到极显著水平,根系水势的影响次之,相关系数为-0.634,叶水势对系统阻力的影响最小,仅为-0.583。
     麻栎树干水容时均值日变化规律明显,呈单峰曲线。清晨树干水容较小,仅为0.41 kg·Mpa-1,随后树干水容开始增加,近中午树干水容增至1.64 kg·Mpa-1,过午树干水容值缓慢降低,至17:00~18:00时麻栎树干水容值下降至0.83 kg·Mpa-1。研究麻栎树干边材液流瞬态效应发现:上、中和下部树干边材液流与太阳净辐射变化的延迟时间分为80 min、20 min和30 min;空气温度分别提前60 min、130 min、110 min后分别与树干边材液流动态相关性最好;空气相对湿度与树干下部边材液流波动之间的时间差值约90 min,提前160 min后与树干上部边材液流流速的相关系数最大,提前170 min后与树干中部液流变化动态相关性最高。
As the principal part of terrene ecosystem, forest contributed an important rule for climate accommodating and water resource equilibrium. Grasping the effect of forest individual and colony water transfer characteristic to regional water balance is the importance references to appraising forest ecological effect. For a long time, due to low awareness of water consumption and transportation law for plants, supervising of standing forest in existence was considered blindly. Shortage in forest resource mass and quality can not satisfy the need of ecological environmental and water resource balance for agriculture and industry and other social affairs’sustainable development and cuased a serious conflict between now day’s demand and nature state of environment degradation and water resource sparseness. In order to evaluate Quercus acutissima’s water transportation and consumption characteristic in the SPAC interface, namely soil-plant-atmosphere continua, and fulfill water consumption scaling-up method form single tree to stand scale, and provide theoretical foundation for forest construction adjustment, the hilly terrain second growth principal species of Quercus acutissima was investigated in this paper.
     By using pot experiment and on forest spot research, water transportation characteristics and water consumption controlling mechanisms of seedlings and wood trees of Quercus acutissima were researched. Many instrument and equipment was used in this research: CIRAS-2 photosynthesis system and TPS-1 for leaf transpiration and stomatal conductance adjustment measurement, Delta-T auto-moveable climatic station for all-weather forest air and soil environmental eco-factors measurement, Thermal Dissipation Probe (TDP-30) for single tree sapwood flow’s temporal-and-spatial fluctuation, PSΨPRO micro-dew point voltage meter for soil and leaf water potential, AQUA-TEL-TDR time and space echo-meter for soil moisture measurement, Flashing Method and a set of developed instrument for branch tissue water conductance measurement and embolism vulnerability analysis, and stem water were measured by these methods. Tree’s leaf transpiration and water conductance and its influence factors were measured and analyzed, and tree’s self biological water unsteady transportation and consumption mechanisms, such as stomatal adjustment, tissue water capacitance, sapwood water conductance tissue structure, sap flow temporal-and-spatial fluctuation, and sapwood embolism vulnerability, tissue and stem water capacitance and so on was analyzed.
     With hand control conditions, leaf and soil water potential of potted seedlings in response to drought stress was researched. The results showed that soil and leaf water potential dropped along with drought stress degree. Leaf transpiration velocity ,stomatal conductance, stomatal density, stomatal opening, length and minor axis of stomata daily fluctuation were measured during drought stress period. Correlationship between leaf transpiration velocity, stomatal conductance and environmental factors was analysised.
     On single tree level, sap flow temporal-and-spatial variation law, daily fluctuation and seasonal variations of Quercus acutissima were researched. The characteristics of sap flow daily fluctuation were curved by“start-up, rose, peak value, descent, trough”. Sap flow seasonal variations of Quercus acutissima was expressed by sap flow velocity: Summer > Springtime > Autumn. Sap flow velocity and fluid-in-flux of Quercus acutissima in different trunk height,different stem orientations,different stem diameters were compared. The water delivery dynamic in daily parts of Quercus acutissima was analyzed with statistical methods. Spring trunk poundage fluctuated sharply and extended greatly than that in autumn. The relative trunk water restoring time in spring was about 20 hours, and 10~12 hours longer than that in autumn.
     The influence of environmental factors to single tree sap flow of Quercus acutissima was analyzed based on the incorporation of dynamic variation environmental factors inside of standing forest. The influence of different depth of soil temperature and relative humidity to sap flow velocity and density of Quercus acutissima differed in seasons. There were a difference between the influence of air temperature and relative humidity to sap flow velocity and fluid-in-flux of Quercus acutissima. In lower wind speed, sap flow velocity increased quickly along with wind speed, but when wind speed reached 1.2 m / s, sap flow velocity augmented slowly. It was significant that the influence of solar radiation and net radiation to sap flow. The correlation between solar radiation, net radiation and sap flow velocity, density were in level of significance, so solar radiation and net radiation were the main effect environmental factors to sap flow. The influence of atmosphere saturation vapor pressure deficient to sap flow was smaller.
     The daily rhythm of environmental factors such as TBB, TPa, RHa in the stand were regularly and similar to sap flow significantly, not like the TPs, RHs which had no significant correlations to sap flow during measuring period. TBB showed positive and highest respond to the SFV. The influence of TPa and RHa to SFV was smaller than TBB, with positive and negative correlation to SFV respectively.
     Based on the curve estimate of sap flow characteristic of Quercus acutissima using manifold curve model, the simulation curvilinear equation of environmental factors to sap flow were founded, but the availability of these equations differed each other. The models of relative humidity of air and net radiation to sap flow were tested and verified. We build prediction cubic equation to fit the relationship of air relative humidity to sap flow velocity and density. Their expressions were: y = 0. 0045-8.0E-05×RHa+3.3E-09×RHa~3, y = 0. 0045-8.0E-05×RHa+3.3E-09×RHa~3.
     There was a certainty error existed the relationship between air relative humidity and sap flow velocity. The effect of the simulation of air relative humidity to sap flow density was creditable. The simulation equation of net radiation with sap flow velocity and sap flow density was adopted as follows: y = 0 .0002+2.2E-06×TBB-3.0E-09×TBB2 +3.1E-12×TBB~3, y = 21 .7665+0.2030×TBB-0.0003×TBB2 +2.7E-07×TBB3. The predictor based on cubic equation agreed with reasonably measured value very well.
     The unsteady sap flow velocity and density were existed in different seasons and different trunk height. In different seasons, the acute fluctuation and relative stabilization phase of sap flow velocity and density were different. The amplitude and frequency of fluctuation of sap flow differed greatly by comparing the postponed step-out time analysis. But on the whole, the unsteady state course of sap flow characteristics of Quercus acutissima was a type curve of reverse“V”in days and“V”at night.
     The microstructural difference of Quercus acutissima root, twig and leaf were compared, including vessel diameter, vessel density, distribution and relatively conduction area. Twigs' hydraulic conductivity and xylem embolism vulnerability of Quercus acutissima was researched and compared during the period of water potential of twigs dropping in different seasons. Twig's water capacitance characteristics of Quercus acutissima seedling in different seasons, trunk water capacitance, daily fluctuation of hydraulic transportation resistance and it's influence factors were researched. The correlation of sap flow characteristics and transpiration velocity of Quercus acutissima stem to water potential in the interface of SPAC were smaller. The influence of water potential in the SPAC interface to system resistance was very bigger. The correlation index of soil water potential to system resistance was the biggest with -0.709 in level of significance. The influence of root system water potential taken second place, with correlation index of -0.634. The correlation index only to -0.583 was the least influence of leaf water potential to system resistance.
     The diurnal variation of trunk hydraulic capacitance of Q. acutissima assumed uni-model curve in unsteady environment. In early morning, the time average of trunk hydraulic capacitance was smaller, with 0.41 kg·MPa-1. Subsequently, the trunk hydraulic capacitance was increasing and mounted up to maxima 1.64 kg·MPa-1 all day along at 10:00~11:00 o’clock. In afternoon, the time average of trunk hydraulic capacitance was decreasing slowly. At 17:00~18:00 pm, the trunk hydraulic capacitance went down 0.83 kg·MPa-1. The effect of trunk hydraulic capacitance on sap flow velocity and density was significant, with the correlation coefficient of 0.925, 0.924 respectively. The correlation between trunk hydraulic capacitance and leaf transpiration taken second place compared to the correlation of trunk hydraulic capacitance to sap flow, with correlation coefficient of 0.802.
     The temporal dynamic response of measured stem flow to main climatic forcing was exploited using the cross-correlation analysis, Correlations over a range of time lag -100 min to +180 min. For TBB versus SFV, correlation ranged from 0.265 to 0.944; whereas from 0.409 to 0.869 and form -0.406 to -0.159 for TPa versus SFV and RHa versus SFV, respectively. The lag time about 80 min,20 min,30 min was detected between SFV versus TBB ;whereas, TPa lags SFV by 60 min,130 min,110 min and RHa lags SFV by 170 min,160 min,90 min in upper trunk, mid-trunk, lower trunk, respectively. Studies suggested that patterns of daily and diurnal SFV fluctuation were different in three height of trunk. The main environmental factors affected sap flow were TBB, TPa, RHa, with positive and negative correlation to SFV, although their effect were not similar to each other. The correlation of sap flow respond to environmental factors indicated substantially that there were lag effect between SFV and synchronization data of TBB, TPa, RHa by cross-correlation analysis.
引文
1. Alarcón J J, Domingo R, Green M J, et al. Sap flow as an indicatior of transpiration and the water status of yong apricot trees. Plant and Soil, 2000,(227): 77-85
    2. Ashraf M, Ashfaq Ahmad & Mcneilly T. Growth and Photosynthetic characteristics in pearl millet under water stress and different potassium supply. Photosynthetica,2001, 39(3): 389-394
    3. Baas P. Ecological patterns in xylem anatomy.In: T J Givnish(ed.), On the ecolomy of plant form and function, Cambridge University Press, Cambridge UK, 1986, 327-352
    4. Baas P. Systematic, phylogehetic, and ecological wood anatomy-history and perspectives. In:P.Baas(ed.),New perspectives in wood anatomy.Martinus Nijhoff/Dr. W.Junk Pubishers. The Hague, Boston. London, 1982, 22-58
    5. Bailey, I W. The problem of differentiating and classifying tracheids, fiber-tracheids, and libriform wood fibers.Trop.Woods, 1936, 45: 18-23
    6. Baker J M & Van Bavel H M. Measurement of mass flow of water in the stems of herbaceous plants.Plant,Cell and Environment, 1987, 10: 777-782
    7. Bariac T, Rambal S & Jusserand C. Evaluating water fluxes of field-grow alfalfa from diurnal observations of natural isotope concentrations, energy budget and eco physiological parameters. Agric. For. Meteorol, 1989, 48: 263-283
    8. Barret DJ, Hatton T J. Ash J E and Ball M C. Transpiration by trees from contrasting forestry types. Aust.J.Bot. 1996, 44: 249-263.
    9. Blackman P G, Devis W J. Root to shoot communication in Maize plants of the effects of soil drying.J.Exp.Bot, 1985, 36: 39-48
    10. Calder I R, Narayanswamy M N. Investigation into the use of deuterium as a tracer for measuring transpiration from eucalypus. J. Hydol. 1986, 84: 345-351.
    11. Calkin H W & Nobel P S. None steady-state analysis of water flow and capacitance for a gave desert. Can J Bot, 1986, 64(6): 2556~2560.
    12. Camacho S E,Hall A E, Kaufman M R. Efficiency and regulation of water transport in some woody and herbaceous species. Plant Physiology, 1974, 54: 169-172
    13. Camillo P R.Guerney, Schmugge T J. Soil and atmosphere boundary layer model forevapotraspiration and soil moisture studies. Water Res.Res, 1983,19: 371-380
    14. Carlquist S. Ecological factors in wood evolution. Amer. L. Bot, 1977, 64: 887-896
    15. Chazdon R L. Photosynthetic plasticity of two rain forest shrubs across natural gas transects. Oecologia, 1992, 92: 586-595
    16. Chelcy R F, Carol E G, Robert J M, et al. Diurnal and seasonal variability in the radial diatribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology 2004, 24: 941-950
    17. Choudhury B. Modeling the effect of weather condition and soil water potential on canopy temperature for corn.Agric.Meteorol, 1983, 29:169-182
    18. Cienciala, E and A Lindroth. Gas-exchange and sap flow measurements of salix viminalis trees in short-rotation forest, 1 transpiration and sap flow. Trees.1995, 9: 289-294.
    19. Cochard H, Bréda N and Granier A. Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann. Sci. For. 1996, 53: 197-206.
    20. Cochard H, Breda N, Granier Hetal. Vulnerability to air embolism of three European oak species(Quercu spetraea (Matt.) Liebl, Q. Pubescens Willd, Q. RoburL.).Ann. Sci. For, 1992, 49: 225-233
    21. Cochard H. Vulnerability of several conifer stoair embolisms. Tree Physiology, 1992, 11:73~83
    22. Cohen Y M, Fuchs & Green G C. Improvement of the heat pulse method for determining sap flow in trees.Plant,Cell and Environment, 1981, 4: 391-397
    23. Dai Limin, Li Qiurong, Wang Miao & Ji Lanzhu. Responses of the seedlings of five dominant tree species in Changbai Mountain to soil water stress. Journal of Forestry Research, 2003, 14(3): 191-196
    24. David W & Fred T D J. Water use, water use efficiency and growth analysis of selected woody ornamental species under a non-limiting water regime. Sci. Horticulture, 1993, 53: 213-223
    25. Dixon H H & Renner O. Transpiration and the Ascent of Sap in Plants.Macmillan.& Co.Ltd.London, 1914,139-141.
    26. Domec J C & Gartner B L. Cavitation and water storage capacity in bole xylem segmentsof mature and young Douglas-fir trees. Trees, 2001, 15: 204-214.
    27. Dunin E X and Greenwood E A N. Evaluation of the ventilated chamber for measuring evaporation from a forest. Hydrol. Proc. 1986, 1:47-62.
    28. Dünish O, Morais R R. Regulation of xylem sap flow in an evenergreen,a semi-deciduous, and a deciduous Meliaceae species from the Amazon. Trees, 2002, (16): 404-416
    29. Dye P J, Olbrich B W and Calder I R. A comparision of the heat pulse method and deuterium tracing method for measuring transpiration for Eucalyptus grandis trees. J. Exp. Bot. 1992, 43: 337-343.
    30. Edwards, W.R.N., R.E.Booker. Radial variation in the axial conductivity of populus and its significance in heat pulse velocity measurement. Journal of Experimental Botany, 1984, 33(153): 551-561
    31. Fristchen. L J, Cox L and Kinerson R. A 28-meter Douglas-fir in a weighing lysimeter. For. Sci. 1973, 19: 256-261
    32. Garg B K, Kathju S & Burman U. Influence of water stress on water relations, photosynthetic parameters and nitrogen metabolism of moth bean genotypes. Biologia Plantarum, 2001, 44(2): 289-292
    33. Granier A, Biron P, Bréda, N J. Pontailler and B. Saugier. Transpiration of trees and forest stands: short and long term monitoring using sap flow methods. Global Change Bio. 1996b, 2: 265-274.
    34. Granier A, Huc R and Barigah S T. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol. 1996a, 78: 19-29.
    35. Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 1987, (3): 309-319
    36. Greenidge K N H. Observations on the movement of moisture in large woody stems. Can.J.Bot. 1955, 33: 202-201
    37. Greenwood E A N and Beresford J D. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique. 1. Comparative transpiration from juvenile Eucalypus above saline ground-water seeps. J. Hydrol. 1979, 42: 369-382.
    38. Guo Weihua Li Bo, Huang Yongme, Zhao Haixia & Zhang Xinshi. Effect of DifferentWater Stress on Eco-Physiological Charateristics of Hippophae rhamnoides Seedlings. Acta Botanica Sinica, 2003, 45(3): 1238-1244
    39. Hinckly T M, Brooks J R, Cermak J, Ceulmans R, Kueera J, Meinzer F V and Roberts D A. Water Flux in a hybrid poplar stand. Tree Physiol. 1994, 14: 1005-1018.
    40. Holbrook N M. Stem water storage. In: Gartner B L (ed) Plant stems: physiology and functional morphology. San Diego: Academic Press, 1995, 125-149.
    41. Jackson G E. and Grace J. Field measurement of xylem cavitation: are acoustic emissions useful? Exp. Bot. 1996, 47: 1643-1650.
    42. Jones H T. Plant and microclimate – A quantitative approach to environmental plant physiology. Cambridge University Press, 1992, 2: 25-34
    43. Kavanagh K L, Bond B J, Gartner B L, Aitken S N, Knowe S. Root and shoot vulnerability to cavitation in four populations of Douglas-fir seedlings. Tree Physiology, 1999, 19: 31-37.
    44. Kline J R. Measurement of transpiration in tropical trees with tritiated water. Ecology 1970, 5: 1068-1073
    45. Knight H H, Fahey T J, Running S W, Harison A T. Transpiration from 100-year-old lodgepole pine forest estimated with whole-tree potometers. Ecology 1981, 62: 717-726.
    46. Kramer P J, Boyer J S, Water relation of plants and soils. Academic Press, Inc. 1995
    47. Kriedemann P E. Some photosynthetic characteristicsof citrus leaves.Aust J. Bilo. Sci, 1968, 21: 895-905
    48. Kumar B, Pandey D M, Goswami C L & Jain S. Effect of growth regulators on photosynthesis, transpiration and related parameters in water stressed cotton. Biologia Plantarum, 2001, 44(3): 475-478
    49. Lewis A M, Hamden V D, Tyree M T. Collapse of water-stress embolism in the tracheids of Thuja occidentalis L. Plant Physiol, 1994,106: 1639-1646
    50. Lindroth A, Cienciala E. Sap flow by the heat balance method applied to small size Salix trees in a short-rotation forest. Biomass bioenergy 1995, 8:7-15.
    51. Lo Gullo, Salleo S. Three methods for measuring xylem cavitation and embolism:a comparison. Annals of Botany. 1991, 67: 417- 424
    52. Loustau D, Berbigier P. Transpiration of a 64-year-old maritime pine. Oecologia 1996, 107: 33-42
    53. Loustau D. and Granier A. Environmental control of water flux through Marritime pine(Pinus pinaster Ait.). In water transport in Plants Under Climate Stress. Eds. M. Borghetti, J. Grace and A Raschi. Cambrige University Press, 1993, pp 205-218.
    54. Marshall D C. Measurement of sap flow in conifers by heat transport. Plant Physiology, 1958( 33): 385-396
    55. Martin T A. Winter season tree sap flow and stand transpiration in an intensively- managed loblolly and slash pine plantation. Sustainable For,2000,10(1/2): 155-163
    56. McNaughton K G, Jarvis P G. Using the Penman-Monteith equation predictively. Agriculture Water Management, 1984, 8: 263-278
    57. Meinzer F C, Goldstein G, Neufield H S, Grantz D A and Crisoto G M. Hydraulic architecture of sugarcane in relation to patterns of water use during plant development. Plant Cell Environ, 1992, 15: 471-477.
    58. Meinzer F C, Goldstein G. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic properties. Oecologia, 1995, 101: 514-522.
    59. Menzel C M, Simpson D R. Plant water relations in lychee: effects of solar radiation interception on leaf conductance and leaf water potential. Agric. and Forest Meteoro L, 1986,37:259-266
    60. Nakai T, Abe H. The relationship between sap flow rate and diurnal change of tangential strain on inner bark in Cryptomeria japonica saplings. J Wood Sci, 2005, (51): 441-447
    61. Nobel P S, Jordan P W. Transpiration stream of desert species: Resistance sand capacitances for a C3, a C4 and C A M plant. Journal of Experimental Botany, 1983, 34: 1379-1391
    62. Parker J. The cut-leaf method and estimations of diurnal trends in transpiration from different heights and sides of an oak and a pine. Bot. Gaz. 1957,119: 93-101
    63. Penman H L. Natural evaporation from open water, bar soil and grass. Processing of the Royal Society, London A, 1948, 193: 120-145
    64. Philip J R. Plant Water Relations: Some Physical Aspects.Annual Review of PlantPhysiology, 1966, 17: 245-268
    65. Philips N, Oren R and Zimmermann R. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant Cell Environ. 1996, 19: 983-990.
    66. Phlips N, Nagchaudhuri A, Oren R and Katul G. Time constants for water transport in loblolly pine trees estimated form time series of evaporative demand and stem flow. Trees 1997, 11: 412-419.
    67. Powell D B. & Thorpe M R. Dynamica spects of plant-water relations in environmental effects on crop physiology. London: Academic Press,1977
    68. Raschi A, Tognetti R. Water in the stems of sessile oak(Quercus petraea) assessed by computer tomography with concurrent measurements of sap velocity ultrasound emission. Plant, Cell and Environment. 1995, 18: 545-554
    69. Reicosky D C & Ritchie J T. Relative importance and plant resistance in root water absorption. Soil Sci.Soc.Am.J, 1976, 40: 293-197
    70. Roberts J. The use of tree-cutting techniques in the study of the water relations of mature Pinus sysvestris L.J.Exp.Bot. 1977, 28: 751-767.
    71. Rutter A J. Studies in the water relations of Pinus sylvestris in plantation, evaporation of intercepted water, and evaporation from the soil surface. J. Ecol. 1966, 3: 393-405
    72. Schiller G. And Cohen Y. Water regime of pine forest under a Mediterranean climate. Agric. For. Meteorol. 1995, 74: 181-193
    73. Shutleworth W J & Wallace J S. Evaporation from sparse crops-an energy combination theory. Quart.J.R.Met.Soc,1985, 111: 839-855
    74. Smith D M. And Allen S J, Measurement of sapflow in plant stems. J. Exp. Bot. 1996, 47: 1833-1844.
    75. Sperry J S & Ikeba T. Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiology, 1997, 17: 275-280.
    76. Sperry J S, Donnelly J R, Tyree M T. A method for measuring hydraulic conductivity and embolism in xylem Plant, Cell and Environment. 1988, 11: 35-40
    77. Sperry J S, Donnelly J R, Tyree M T. Seasonal occurrence of xylem embolism in sugar maple (Acer saccharin Marsh). American Journal Botanical, 1988, 75(8): 1212-1218
    78. Sperry J S, Tyree M T. Mechanism of water stress-induced xylem embolism. Plant Physiology, 1988a(88): 581-587
    79. Spicer R, Holbrook N M. Within-stem oxygen concentration and sap flow in four temperate tree species: does long-lived xylem parenchyma experience hypoxia. Plant, Cell and Environment, 2005, 28: 192-201
    80. Steinberg S L, Van Bavel C H M & MaFarland M J. A gauge to measure mass flow of sap flow in stems and trunks of woody plants.Journal of the American Society for Horticultural Science, 1989, 114: 466-472.
    81. Susan L, Steiberg J, Marshall. Comparison of trunk and branch sap flow with canopy transpiration in Pecan. Journal of Experimental Botany, 1990, 41(227): 653-659.
    82. Swanson R H. Water transpired by trees is indicated by heat pulse velocity. Agricultural Meteorology, 1994, (72): 113-132
    83. Swanson R N & Whitfield D W A. Numerical analysis of heat pulse velocity theory. Journal of Experimental Botany, 1981, 32: 221-239
    84. Tognetti R, Raschi A. Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant-cell-environ, 1996, 19(8): 928-938
    85. Turner N C. Measurement of plant water status by the pressure chamber technique. Irrigation Science, 1988, 9: 289-308
    86. Tyree M T & Dexon M. Cavitation events in Thuja occidentalis L. Ultrasonic acoustic admissions from the sapwood can be measured. Plant Physiology, 1983, 72: 1094-1099.
    87. Tyree M T & Sperry J A. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology, 1988, 88: 574-580.
    88. Tyree M T, Dixon M A. Water stress induced cavitation and embolism in some woody plants. Physiol Plant, 1986, 66: 397-405
    89. Tyree M T, Dixon M A. Water stress induced cavitation and embolism in some woody plants. Physiol Plant, 1986, 66: 397-405
    90. Tyree M T, Ewers F W. The hydraulic architecture of trees and other woody plants. Newphytol, 1991, 119: 345-360
    91. Tyree M T, Sperry J S. Do woody plants operate near the point of catastrophic xylemdys function caused by dynamic water stress? Plant Physiol, 1988, 88: 574-580
    92. Tyree M T, Sperry J S. Vulnerability of xylem to cavitation and embolism. Ann. Rev. Phys.Mol.Bio, 1989, 40:19-38
    93. Tyree M T, Sperry J S. Vulnerability of xylem to cavitation and embolism. Ann. Rev. Phys.Mol.Bio, 1989, 40: 19-38
    94. Van den Honert.T.H. Watertransport in plants as a catenary process. Discussions of the Faraday Society, 1948, 3: 146-153
    95. Vertessy R A, Benyon R, O’Sullivan S K, et al.. Relationship between diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 1995, (15): 559-568
    96. Waring R H & Roberts J M. Estimating water flux through stems of Scots pine with tritiated water and phosphorus-32. J.Exp.Bot. 1979, 30: 459-471.
    97. Waring R H, Whitehead D & Jarvis P G. The contribution of stored water to transpiration in Scot Pine. Plant Cell Environ, 1979, 2: 309-317
    98. Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. Tree Physiol, 1998, 18(8/9): 499-512
    99. Zhang Y E. Study on Spatial and Temporal Variability for Stem-sap Flow of Pinus sylvestris var. mongolica. Research of Soil and Water Conservation, 2003, 10(4): 66-68.
    100.Zimmermann M H. Xylem structure and abcent of sap. Berlin: Spring-Derlag, 1983, 2-20
    101.Zur B. & Jones J W. A model for the water relations, photo synthesis, and expansive growth of crops. Water Resources Research, 1981,17:311-320
    102.白云岗, 宋郁东, 周宏飞,等. 应用热脉冲技术对胡杨树干液流变化规律的研究.干旱区地理, 2005, 28(3): 373-376
    103.曹文强, 韩海荣, 马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究.林业科学, 2004, 40(2): 174-177
    104.常学向, 赵文智. 荒漠绿洲农田防护树种二白杨生长季节树干液流的变化. 生态学报, 2004, 24(7): 1437-1441
    105.崔晓阳, 宋金凤, 屈明华. 土壤对水曲柳幼苗水分生态的影响. 应用生态学报, 2004,15(12): 2237-2244
    106.冯金朝, 黄子琛, 张承烈,等. 环境植物生理学定量研究的若干进展. 中国沙漠, 1997, 17(1): 89-94
    107.冯玉龙, 巨关升, 朱春全. 杨树无性系幼苗光合和 PV 水分参数对水分胁迫的响应. 林业科学, 2003, 39(3): 30-36
    108.高洁, 曹坤芳, 王焕校. 干热河谷 9 种造林树种在旱季的水分关系和气孔导度. 植物生态学报, 2004, 28(2): 186-190
    109.高岩, 张汝民, 刘静.应用热脉冲技术对小美旱杨树干液流的研究.西北植物学报, 2001, 21(4): 644-649
    110.高照全, 王小伟, 蔚钦平,等. 桃树不同部位调节贮存水的能力.植物生理学通讯 2003, 39(5): 429-432
    111.龚元石, 陆锦文, Huwe B.华北平原主要农作物灌溉需水量的估算.北京农业大学学报, 1993,19(增刊): 82-91
    112.龚元石.土壤-植物-大气连续体水分传输研究现状与展望.见:张福锁主编.土壤与植物营养研究新动态, 1995,1-16
    113.郭卫东, 沈向, 李嘉瑞. 植物抗旱分子机理. 西北农业大学学报, 1999, 27(4): 102-108
    114.韩蕊莲, 侯庆春. 山桃山杏苗木耗水特性研究. 西北植物学报. 1996, 16(6): 92-94
    115.胡新生, 王世绩. 树木水分胁迫生理与耐旱性研究进展及展望. 林业科学, 1998, 34(2): 77-895
    116.华孟, 王坚. 土壤物理学. 北京农业大学出版社, 1993
    117.黄明斌, 邵明安. 土壤植物系统中非稳态流研究进展.土壤学进展, 1994, 22(3): 20-26
    118.黄明斌, 张富仓, 康绍忠. 瞬变条件下土壤—植物系统中的水容效应及其应用研究. 干旱地区农业研究, 1999, 17(1): 45-49
    119.康绍忠, 刘晓明, 熊运章. 土壤-植物-大气连续体水分传输理论及其应用,水利水电出版社, 1986,7
    120.康绍忠, 刘晓明,等. 土壤—植物—大气连续体水分传输理论及其应用. 水力电力出版社, 1994
    121.康绍忠, 刘晓明. 高新科,等.土壤-植物-大气连续体水分传输的计算机模拟,3:1-12
    122.康绍忠, 熊运章, 王振镒. 土壤-植物-大气连续体水分传输力能关系的田间实验研究,水利学报, 1990,7
    123.李海涛, 陈灵芝. 暖温带山地森林生态系统主要树种树干液流量及树冠蒸腾的研究.见:陈灵芝主编.暖温带森林生态系统结构与功能的研究.北京:科学出版社, 1997.240-264
    124.李海涛, 陈灵芝. 应用热脉冲技术对棘皮桦和五角枫树干液流的研究. 北京林业大学学报, 1998, 20(1):1-6
    125.李吉跃, 翟洪波. 木本植物水力结构与抗旱性.应用生态学报, 2000, 11(2): 301-305
    126.李吉跃, 周平, 招礼军. 干旱胁迫对苗木蒸腾耗水的影响. 生态学报, 2002,22(9): 1380-1386
    127.李吉跃. 太行山区主要造林树种耐旱特性的研究. [Ⅱ]——一般水分生理生态. 北京林业大学学报. 1991, 13. supp: 太行山石质山地造林技术的研究论文专辑. 10-24
    128.李吉跃. 太行山区主要造林树种耐旱特性的研究. [Ⅲ]——水分参数. 北京林业大学学报,1991, 13. supp: 太行山石质山地造林技术的研究论文专辑. 230-239
    129.李吉跃. 太行山区主要造林树种耐旱特性的研究. [Ⅳ]——蒸腾作用与气孔调节. 北京林业大学学报. 1991, 13. supp:太行山石质山地造林技术的研究论文专辑. 240-250
    130.李吉跃. 植物耐旱性及其机理. 北京林业大学学报, 1991, 13(3): 92-100
    131.李良厚, 贾志英, 付祥健. 土壤水分胁迫下苗木水分参数变化的研究.河南农业大学学报, 1999, 33(1): 92-99
    132.李玉山.土壤-植物-大气连续体中的水流阻力及其相对重要性.水利学报, 1986, 9: 203-209
    133.梁宗锁, 康绍忠. 作物水分代谢及其调节. 西北植物学报, 1996, 16(6): 73-78
    134.刘昌明, 于沪明. 土壤、作物、大气系统水分运动实验研究.北京:气象出版社,1997
    135.刘昌明. 土壤-植物-大气系统水分运行的界面过程研究.地理学报, 1997, 52(4): 366-373
    136.刘奉觉, Edwards W R N. 用热脉冲测定速度记录仪(HPVR)测定树干液流.植物生理学通讯, 1993, 29(2): 110-115.
    137.刘奉觉, 郑世楷. 杨树水分生理研究. 北京: 北京农业大学出版, 1992
    138.刘奉觉, 郑世楷. 杨树水分生理研究.北京:北京农业大学出版,1992
    139.刘奉觉, 郑世锴, 巨关升. 树木蒸腾耗水测算技术的比较研究. 林业科学. 1997, 33(2): 117-126
    140.刘建伟.不同杨树无性系光合作用与其抗旱能力的初步研究. 林业科学, 1994, 30(1): 83-87
    141.刘淑明, 王得祥, 孙长忠. 干旱胁迫下雪松土壤水分及生理特性的研究. 西北植物学报, 2004, 24(11): 2057-2060
    142.刘友良. 植物水分逆境生理. 北京: 农业出版社, 1992
    143.马长明, 管伟, 叶兵,等.利用热扩散式边材液流探针(TDP)对山杨树干液流的研究.河北农业大学学报,2005, 28(1): 39-43
    144.马克平, 陈灵芝, 于顺利,等. 北京东灵山地区植物群落的基本类型.见:陈灵芝主编.暖温带森林生态系统结构与功能的研究. 北京:科学出版社, 1997, 56-75.
    145.马李一, 孙鹏森, 马履一. 油松、刺槐单木与林分水分耗水量的尺度转换.北京林业大学学报, 2001, 23(4): 1-5
    146.马玲, 赵平, 扰兴权. 马占相思树干液流特征及其与环境因子的关系. 生态学报, 2005, 25(2): 2736-2742
    147.马履一, 王华田. 油松、侧柏深秋边材木质部液流变化规律的研究. 北京林业大学学报, 2002, 23(4): 23-37
    148.马履一, 王华田. 油松边材液流时空变化及其影响因子研究.北京林业大学学报, 2002, 24(3): 23-27
    149.聂华堂. 水分胁迫下柑桔的生理变化与抗旱性的关系.中国农业科学, 1991, 24(4): 78-85
    150.聂立水, 李吉跃. 利用 TDP 技术研究油松树干液流速率.北京林业大学学报,2004, 26(6): 49-56
    151.亓立云, 马履一, 张迎辉, 赵文飞, 王华田. 六个木本植物木质部栓塞脆弱性及其水容调节作用的研究. 山东农业大学学报, 2005, 36(4): 495-500
    152.阮成江, 李代淳. 黄土丘陵区沙棘抗旱性的研究.植物资源与环境学报, 2000, 9(3): 54-56
    153.邵明安, 陈志雄. 土壤-植物系统中的水容研究. 水利学报, 1992, 6: 1-8
    154.邵明安, 黄明斌. 土壤—植物系统中的瞬态流理论及电模拟的最新研究进展. 土壤侵蚀与水土保持学报, 1998, 4(4): 47-52
    155.申卫军, 张硕新, 金燕.几种木本植物木质部栓塞的季节变化.西北林学院学报. 1999, 14(1): 28- 32
    156.申卫军, 张硕新, 张存旭.木本植物木质部栓塞研究进展.西北林学院学报. 1999, 14(1): 33-41
    157.申卫军.木本植物木质部空穴和栓塞化研究.热带亚热带植物学报, 1999, 7(3): 257-266
    158.孙国荣, 张 睿,姜丽芬,等. 干旱胁迫下白桦实生苗叶片的水分代谢与部分渗透调节物质的变化. 植物研究, 2001, 21(3): 413-415
    159.孙慧珍, 孙龙, 王传宽,等.东北东部山区主要树种树干液流研究.林业科学,2005, 41(3): 36-42
    160.孙慧珍, 周晓峰, 康绍忠.应用热技术研究树干液流进展. 应用生态学报, 2004, 15(6): 1074-1078
    161.孙慧珍, 周晓峰, 赵惠勋.白桦树干液流的动态研究.生态学报,2002, 22(9):1387-1391
    162.孙鹏森, 马履一, 王小平, 翟明普. 油松树干液流的时空变异性研究. 北京林业大学学报, 2000, 22(5): 1-6
    163.孙鹏森, 马履一, 王小平, 翟明普.油松树干液流的时空变异性研究.北京林业大学学报, 2000, 22(5): 1-6
    164.孙鹏森, 马履一.水源保护树种耗水特性研究与应用,中国环境科学出版社,2002
    165.孙鹏森.北京水源保护林树种不同尺度耗水特性及林分配置的研究.博士研究生学位论文,北京林业大学,2000
    166.汤章城, 魏家绵, 陈因等. 现代植物生理学实验指南. 中国科学院上海植物生理研究所, 1999
    167.童德中, 高秀萍, 杨家洪, 张勇强, 童兆平. 梨树在自然水分亏缺下的生理反应. 园艺学报,1997, 24(4): 313-318
    168.王华田, 马履一, 孙鹏森.油松边材液流速率时空变化规律及其影响因子的研究.林业科学, 2002, 38(5): 26-34
    169.王华田, 马履一, 徐军亮. 油松人工林 SPAC 水势梯度时空变化规律及其对边材液流传输的影响. 植物生态学报, 2004, 28(5): 637-643
    170.王华田, 马履一. 利用热扩散式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究. 植物生态学报, 2002, 26(6): 661-667
    171.王华田, 马履一. 树木耗水性比较的研究. 北京林业大学学报, 2003, 25(1): 1-6
    172.王华田. 北京市水源保护林区主要树种耗水性研究.博士研究生学位论文.北京林业大学, 2002
    173.王孟本, 李洪建, 柴宝峰,等. 树种蒸腾作用、光合作用和蒸腾效率的比较研究. 植物生态报, 1999, 23(5): 401-410
    174.王淼, 代力民, 姬兰柱, 李秋荣, 王绍先. 干旱胁迫对蒙古柞表观资源作用率的影响. 应用生态学报, 2002, 13(3): 275-280
    175.王瑞辉, 马履一, 奚如春.元宝枫生长旺季树干液流的动态及影响因素.生态学杂志, 2006, 25(3): 231-237
    176.王瑞辉, 奚如春, 马履一,等.利用热扩散式茎流计(TDP)测定园林树木蒸腾耗水量的研究.中南林学院学报, 2006, 26(2): 7-12
    177.王沙生, 高荣孚,等. 植物生理学(第 2 版). 中国林业出版社, 1991
    178.王颖. 北京地区常见城市绿化树种蒸腾耗水特性的研究. [硕士论文]北京林业大学, 2004
    179.魏天兴, 朱金兆, 张学培.晋西南黄土区刺槐、油松林地耗水规律的研究.北京林业大学学报, 1998, 20(4): 36-40
    180.吴丽萍, 王学东, 尉全恩,等. 樟子松树干液流的时空变异性研究. 水土保持研究, 2003, 10(4): 66-68
    181.奚如春. 油松侧柏元宝枫蒸腾耗水的空穴栓塞和水容调节机制[D]. 博士研究生学位论文. 北京林业大学, 2006
    182.肖以华, 陈步峰, 陈嘉杰,等. 马占相思树干液流的研究. 林业科学研究,2005, 18(3): 331-335
    183.谢贤群, 左大康,等. 农田蒸发—测定与计算. 气象出版社, 1991
    184.熊伟, 王彦辉,徐德应. 宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应. 林业科学, 2003, 39(2): 1-7
    185.徐军亮, 马履一, 王华田.油松人工林 SPAC 水势梯度的时空变异.北京林业大学学报,2003, 25(5): 1-5
    186.严昌荣, Alec Downey, 韩兴国,等. 北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究. 生态学报, 1999, 19(6): 793-797
    187.杨朝选, 焦国利, 王新峰, 张世英,等. 干旱过程中桃树茎和叶水势的变化. 果树科学, 1999, 16(4): 267-271
    188.尹光彩, 周国逸, 王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究.生态学报,2003, 23(10): 1984-1990
    189.虞沐奎, 姜志林, 鲁小珍,等.火炬松树干液流的研究.南京林业大学学报, 2003, 27(3): 7-10
    190.喻方圆, 徐锡增, Robert D.Guy. 水分和热胁迫处理对 4 种针叶树苗木气体交换和水分利用效率的影响. 林业科学, 2004, 40(2): 38-44
    191.翟洪波, 李吉跃, 姜金璞. 干旱胁迫对油松侧柏水力结构特征的影响. 北京林业大学学报, 2002, 24(5/6): 45- 49
    192.张光先, 张凤秀, 陈德万,等. 桑科植物水分传输阻力生物物理模型研究. 西南农业大学学报, 1995, 17(3): 264-267
    193.张宁南, 徐大平, Jim Morris,等.雷州半岛尾叶桉人工林树液茎流的特征研究.林业科学研究, 2003, 16(6): 661-667
    194.张硕新, 申卫军, 张远迎,等. 6 个抗旱树种木质部栓塞脆弱性的研究.西北林学院学报, 1997, 12(2): 1-6.
    195.张小由, 龚家栋. 周茅先,等.胡杨树干液流的时空变异性研究.中国沙漠, 2004, 303(10): 6-9
    196.张小由, 龚家栋.利用热脉冲技术对梭梭液流的研究.西北植物学报, 2004, 24(12): 2250-2254
    197.张永强, 姜杰. 水分胁迫对冬小麦叶片水分生理生态过程的影响. 干旱区研究, 2001, 18(1): 58-61
    198.赵凤君, 高荣孚, 沈应柏, 苏晓华, 张冰玉. 水分胁迫下美洲黑杨不同无性系间叶片δ13C 和水分利用效率的研究. 林业科学, 2005, 41(1): 36-40
    199.周国逸, 黄志宏, Jim Morris,等. 桉树人工林树液流动密度随边材径向深度的变化. 植物学报, 2002, 44(12): 1418-1424
    200.周平, 李吉跃, 招礼军. 北方重要造林树种苗木蒸腾耗水特性研究. 北京林业大学学报, 2002, 24(5/6): 50-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700