用户名: 密码: 验证码:
一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据矿物学、晶体化学、表面化学和浮选理论,通过浮选实验、Zeta电位及接触角测定,采用红外光谱、X射线衍射、偏光显微镜、扫描电子显微镜、原子力显微镜等近代和现代测试方法,对一水硬铝石和二八面体型层状硅酸盐矿物的晶体结构、化学组成与表面润湿性、电性、可浮性及药剂作用机理进行了研究。
     由晶体化学计算可知,高岭石、叶蜡石和伊利石三种矿物晶体端面上单位面积断裂键数皆有如下关系:N_(Si-O(110)<N_(Si-O(010)<NSi-O(100),N_(Al-O(110)<N_(Al-O(010)<N_(Al-O(100),从理论上解释了高岭石、叶蜡石和伊利石三种矿物晶体端面上晶面润湿性的各向异性。矿物晶体底面(001)层间静电能的大小决定其层面润湿性,其大小关系为:高岭石(TOa型)≥伊利石(TOaT型(含层间阳离子))>叶蜡石(TOaT型)。矿物亲水性大小关系为:高岭石≈伊利石>叶蜡石;与接触角测试的结果一致。并解释了在几种常规捕收剂作用下,矿物表面润湿性的变化规律。
     对于一水硬铝石矿物来说,三个主要晶面(010)、(100)和(001)上的单位面积断裂键数有如下关系:N_(Al-O(010)<N_(Al-O(100)<N_(Al-O(001);一水硬铝石表面吸附的动力学模拟可以说明,一水硬铝石的(010)晶面、(100)晶面和(001)晶面,分别吸附几种捕收剂离子的吸附能(负值)大小为:(010)晶面的吸附能>(100)晶面的吸附能>(001)晶面的吸附能;分别吸附这些药剂离子的单位面积吸附量
    
    (molecules·cell一,·nm一,)的大小顺序为:(010)晶面>(100)晶面>
     (001)晶面。由对一水硬铝石矿物与油酸钠作用前后表面原子力-
    位移曲线分析,定量地计算出其表面的平均粘附力和单位面积上平均
    粘附能的大小,与接触角测试的结果一致;揭示经捕收剂作用之后,
    一水硬铝石由高能表面变为低能表面。
     通过红外光谱分析可知,十二胺(阳离子捕收剂)和油酸钠(阴
    离子捕收剂)在一水硬铝石、高岭石、伊利石和叶蜡石表面的吸附主
    要以静电力作用的物理吸附为主,与矿物的表面电性有关。
     通过测定多种一水硬铝石的主要化学组成和相应的表面等电点
    (l’eP)值,发现一水硬铝石在蒸馏水中的ieP值与其铝硅比值线性相
    关,随铝硅比增大,其ieP值增大,并拟和出了一水硬铝石表面等电
    点值的经验公式为:i印(cal)‘=一20.3 X 5102(矶%)+7.74 X A12O3(wt%)
    +18.8 X TioZ伪沈%)。高岭石、伊利石和叶蜡石这三种二八面体型层
    状硅酸盐矿物的结构单元层结构由TOa型、TOaT型(含层间阳离
    子)至TOaT型,(A12O3/5102)比值由0.86变为0.42,其表面Zeta
    电位值则相应地减少了,而与其层间电荷面密度关系不大。矿物端面
    的理论表面零电点(Pz。)值的大小顺序为:高岭石(7 .76)>伊利
    石(6.84))叶蜡石(6.26)。
     硬质和软质高岭土具有相近的表面等电点(l’eP)值,几种硬质高
    岭土的ieP值变化范围为2.6一3.8。在较宽的pH值范围,硬质高岭土
    比软质高岭土的电位低。ieP值与其中510:的重量百分含量(wt%)
    呈负相关,与A12O3的,沈%呈正相关,而高岭石的结晶度指数(HI)
    
    并不是决定高岭石l’eP值的主要因数。在高岭石晶体端面上等电点
    处,高岭土表面的Zeta电位与T Fe的叭沈%呈负相关性,与高岭石的
    结晶度指数(扭)呈正相关。
     通过DLVO理论计算,分析了高岭石、伊利石和叶蜡石三种二
    八面体型层状硅酸盐矿物片状颗粒在水溶液中的团聚与分散行为,在
    酸性溶液中主要以“端面一底面,,形式团聚,在中性溶液中主要以“端面
    一底面”、“端面一端面”形式存在,在碱性溶液中主要以分散的形式存
    在,与沉降实验和SEM观察结果基本一致。
In this work, the studies relating to the crystal structure, chemical composition wettability, electrokinetics and floatability of diaspore and dioctahedral phyllosilicates as well as the mechanisms of their interactions with flotation reagents were carried out. It was based on mineralogy, crystal chemistry, surface chemistry and flotation theory, with the help of the zeta potential measurement, contact angle measurement, flotation test, polar microscope, scanning electron microscope, X-ray diffraction, infrared spectroscopy and atomic force microscope.
    The number of the broken bonds per unit area for different crystal planes of kaolinite, pyrophyllite and illite, which was calculated by crystal chemistry of the minerals, is in the order of Nsi-O(110)= illite > pyrophyllite, the same with the order of hydrophilicity. The results were approximately consistent with the measured value of contact angles.
    
    
    The wettability of minerals is interpreted in the absence and presence of collectors.
    Among the three crystal planes in diaspore, the number of Al-O broken bond per unit area in the crystal plane subject to the following order: NAMXOOI) > NAI-OOOO) > NAI-O(OIO)- The molecule kinetics method was employed to simulate the adsorption of the collectors on diaspore. Adsorptive energy and adsorptive capacity of the collectors on the various surfaces of diaspore were in the order of (010)>(100)>(001). The atomic force microscope (AFM) was used to measure the adhesional energy per area and surface force on the diaspore interface in the absence and presence of collector (sodium oleate). The results were approximately consistent with the measured value of contact angles. It showed that diaspore was turned from high energy surface to low energy surface after interacting with collectors.
    With the help of infrared spectroscopy, it is known that the linkage between dodecylamine (cationic collector) and sodium oleate (anionic collector) and diaspore, kaolinite, illite and pyrophyllite is fundamentally electrostatic forces, which contributes to physical adsorption. The adsorption is related with surface electric property of minerals.
    The effect of chemical composition of diaspores on their electrokinetics was investigated. Increasing Si2 content in a diaspore sample was found to decrease its iso-electric point (iep). A linear
    
    
    correlation appeared to exist between the measured iso-electric point and alumina to silica mass ratio in diaspore samples. A empirical equation of iep for diaspore was conducted below: zep(cal),- = -20.3xSiO2(wt%) + 7.74xAl2O3(wt%)+18.8xTiO2(wt%). The structure layer turns from TOa type to TOaT type ( balanced by interlamellar cations ) , then to TOaT type for kaolinite , illite and pyrophyllite, respectively; alumina to silica mass ratio turns from 0.86 to 0.42; the surface zeta potentials turn small, but they show little relation with their surface charge density. The decreasing order of the measured iep or calculated pzc from kaolinite to illite, and then to pyrophyllite correlated well with that of the number of broken Al-O bonds and the ratio of broken Al-O to Si-O bonds. The calculated point of zero charge (pzc} of edge plane is in the order of kaolinite (7.76) > illite (6.84) > pyrophyllite (6.26).
    The surface zeta potential variation of hard kaolin as a function of pH was almost the same as that of soft kaolin. The iep of hard kaolin varied from 2.5 to 3.8. SiO2(wt%) of the severa
引文
[1]布申斯基著.王恩孚,张汉英,祝修怡译.铝土矿地质学[M].北京:地质出版社,1984年8月.
    [2]朱训主编.中国矿情(第二卷)[M].北京:科学出版社,1998年8月.285-311.
    [3]《矿产资源综合利用手册》编辑委员会编.矿产资源综合利用手册[M].北京:科学出版社,2000.
    [4]Papanastassiou D, Csoke B, Solymar K. Improved preparation of the Greek diaspodc bauxite for bayer-process [C]. Light Metals: Proceedings of Session, TMS Annual Meeting, Feb. 17-21, 2002. 2002TMS, p 67-74.
    [5]Ma Chaojian, Tian Xingjiu, Liu Runtian, Yang Xujun. Selection of bayer digestion technology and equipment for Chinese bauxite [C]. Light Metals: Proceedings of Session, TMS Annual Meeting, Feb.4-8, 1996. 1996TMS, p187-191.
    [6]赵祖德,姚良均,彭如清等编著.世界铝土矿和氧化铝工业[M].北京:地质出版社,1994年8月.
    [7]陈岱,阉鼎欧.我国氧化铝生产形势和发展设想[J].轻金属,1997,(1):12-20.
    [8]胡为柏主编.浮选[M].北京:冶金工业出版社,1989年10月.
    [9]胡熙庚,黄和慰,毛钜凡编著.浮选理论与工艺[M].长沙:中南工业大学出版社,1991年9月.
    [10]陈万坤,彭关才著.一水硬铝石型铝土矿的强化溶出技术[M].北京:冶金工业出版社,1997年12月.
    [11]王濮,潘兆橹,翁玲宝等编著.系统矿物学(上册)[M].北京:地质出版社,1982年6月.596-599.
    [12]Rodeiek J H. Crystal structure refinement and electron density distribution in diaspore [J]. Phys Chem Minerals, 1979, 5:179-200.
    [13]Hazemann J L, Manceau A, Sainctavit Ph, Malgrange C. Structure of the α-Fe_xAl_(1-x)OOH solid solution[J]. Phys Chem Minerals, 1992, 19:25-38.
    
    
    [14]Keller W D. Diaspore recrystallized at low temperature [J]. American Mineralogist, 1978, 63:326-329.
    [15]Newman A C D. Chemistry of Clays and Clay Minerals [M]. London: Longman Group UK Limited, 1987. 168-169.
    [16]Busing W R, Ley H A. A single crystal neutron diffraction study of diaspore, AlO(OH) [J]. Acta Crystallogy, 1958, 11:798-803.
    [17]Rosso K M, Rustad J R,. Structure and energies of AlOOH and FeOOH polymorphs from plane wave pseudopotential calculations [J]. American Mineralogist, 2001, 86: 312~317.
    [18]L?ffler L, Mader W. Electron microscopic study of the dehydration of diaspore [J]. American Mineralogist, 2001, 86: 293~303.
    [19]Mendelovici E, Villalba R, Sagarzazu A. Selective destruction and differentiation of clay minerals from natural diaspore admixture by mortar grinding [J]. International Journal of Mineral Processing, 1983, 11:131-138.
    [20]Stegmann M C, Vivien D, Mazieres C. Studies on the infrared vibration mode of aluminum oxyhydmtes boehmite and diaspore [J]. Spectrochim Acta, 1973, 29A: 1653-1663.
    [21]Frost R L, Kloprogge J T, Russell S C, et al. Dehydroxylation and the vibrational spectroscopy of aluminum (oxo)hydroxides using infi-ared emission spectroscopy [J]. Part Ⅲ: diaspore. Applied Spectroscopy, 1999,53(7):829-835.
    [22]李启津.一水硬铝石的标型特征及其研究信息[J].轻金属,1986,(4):1-5.
    [23]陈武,季寿元编.矿物学导论[M].北京:地质出版社,1985年5月.
    [24]潘兆橹主编.结晶学及矿物学(下册)[M].北京:地质出版社,1990年10月.
    [25]F.利鲍著.席耀忠译.庄柄群校.硅酸盐结构化学[M].北京:中国建筑工业出版社,1989年10月.
    [26]任磊夫编.粘土矿物与粘土岩[M].北京:地质出版社,1992年2月.
    [27]Bickmore B R, Bosbach D, Hochella JR, et al. In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms [J]. American Mineralogist, 2001,
    
    86:411-423.
    [28]White G N, Zelazny L W. Analysis and implications of the edge structure of dioctahedral phyllosilicate [J]. Clays and clay minerals, 1988, 36: 141-146.
    [29]Sainz-Diaz C I, Cuadros J, Hemandez-Laguna A. Analysis of cation distribution in the octahedral sheet of dioctahedral 2:1 phyllosilicates by using inverse Monte Carle Carlo methods [J]. Phys Chem Minerals, 2001, 28:445-454.
    [30]王濮,潘兆橹,翁玲宝等编著.系统矿物学(中册)[M].北京:地质出版社,1984年8月.380-460.
    [31]Berry L G, Mason B, Dietrich R V. Mineralogy [M]. Delhi: CBS Publishers & Distributors, 1985.
    [32]Brady P V, Cygan R T, Nagy K L. Molecular controls on kaolinite surface charge [J]. Journal of Colloid and Interface Science, 1996, 183: 356-364.
    [33]姚林波.高岭石的结构缺陷、杂质元素存在形式及热转换研究[D].贵阳:中科院地化所,1995.
    [34]Mestdagh M M, Herbillon A J, Rodrique L, Rouxhet P G. Evaluation du role du fer structure\al sur la cdstallinit? des kaolinites[J]. Bull.Min? ral.,1982, 105:457-466.
    [35]Ma C, Eggleten R A. Surface layer types of kaolinite: A high-resolution transmission electron microscope study [J]. Clays and Clay Minerals, 1999, 47(2): 181~191.
    [36]Farmer V C. Differing effects of particle size and shape in the infrared and Raman spectra of kaolinite [J]. Clay Minerals, 1988, 33:601-604.
    [37]Shoval S, Yariv S, Michaelian K H, et al. Hydroxylstreching bands "A" and "Z" in Raman and infrared spectra of kaolinite [J]. Clay Minerals, 1999, 34:551-563.
    [38]Balan E, Saltta A M, Mauri F, et al. First-principles modeling of the infrared spectrum of kaolinite [J]. American Mineralogist,2001, 86:1321-1330.
    [39]Rieder M,Cavazzini G,D'yakonov Y et al.云母的命名[J].矿物学报,2001,21(2):119-128.
    [40]Weaver C E,Pollard L D.张德玉译.张天乐校.The Chemistry of Clay
    
    Minerals[M].北京:地质出版社,1983.
    [41]Gatti M, Ferraris G, Ivaldi G. Thermal strain analysis in the crystal structure muscovite at 700℃[J]. Eur. J. Mineral. 1989, 1:625-632.
    [42]Gatti M, Ferraris G, Hull S, et al. Poweder neutron diffraction study of 2M_1 muscovite at room pressure and at 2 GPa.[J]Eur. J. Mineral. 1994, 6:171-178.
    [43]王河锦,周键.关于伊利石结晶度诸指数的评价[J].岩石学报,1998,14(3):395-405.
    [44]Jaboyedoff M, Bussy F, K?bler B, et al. Illite "crystallinity" revisted [J]. Clays and Clay Minerals, 2001, 49(2):156-167.
    [45]刘文新.不同来源天然伊利石理化性质的对比研究[D].北京:中科院生态环境研究中心,1999年4月.
    [46]Prost R., Laperche V. Far-infrared study of potassium in micas [J]. Clays and Clay Minerals, 1990, 38(4):351-355.
    [47]Zeyagin b b, Mishchenko K S, Soboeva S V. Structures ofpyrophyllite and talc in relation to the polytypes of mica-type minerals [J]. Soviet Physics-Crystallography, 1969, 13: 511-515.
    [48]Wardle R, Brindley G W. The crystal structures of pyrophyllite-1Tc, and of its dehydroxylate [J]. American Mineralogist, 1972, 57: 732-750.
    [49]Lee J H, Stephen Guggertheim. Single crystal X-ray refinement of pyrophyllite-1Tc [J]. American Mineralogist, 1981, 66: 350-357.
    [50]汪灵.中国东南沿海叶蜡石成矿学及叶蜡石高温物相和性质研究[D].长沙:中科院长沙大地所,1994年11月.
    [51]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1998年.
    [52]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993年6月.
    [53]Stumm W, Morgan. J J. Aquatic Chemistry [M]. New York: John Wiley & Sons,Inc., 1970.
    [54]沈钟,王果庭编著.胶体与表面化学[M].北京:化学工业出版社,1997年9月(第二版),54-76.
    
    
    [55]断世铎,谭逸玲编.界面化学[M].北京:高等教育出版社,1990年6月.
    [56]李葵英编著.界面与胶体化学[M].哈尔滨:哈尔滨工业大学出版社,1998年4月.
    [57]Parks G A. The isoelectric points of solides, solid hydroxides, and aqueous hydroxo complex systems [J]. Chemical Review, 1965, 65:177-198.
    [58]Yoon R H, Salman T, Donnay G. Predicting point of zero charge of oxides and hydroxides [J]. Journal of Colloid and interface Science, 1979,70(3):483-493.
    [59]欧阳坚.微细粒矿物分散和疏水团聚理论与应用研究[D].长沙:中南工业大学,1995年3月.
    [60]张国范.铝土矿浮选脱硅基础理论及工艺研究[D].长沙:中南大学,2001年9月.
    [61]张剑锋.新型有机抑制剂的合成及结构与性能关系研究[D].长沙:中南大学,2001年12月.
    [62]Hemingway B S, Robie R A, and Kittrick J A. Revised values for the Gibbs free energy of formation of [AI(OH)_4 aq], diaspore, boehmite, and bayerite at 298.15 K and 1 bar, and the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples [J]. Geochim. Cosmochirn. Acta, 1978, 42: 1533-1543.
    [63]Peryea F J, Kittrick J A. Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions [J]. Clays and Clay Minerals, 1988, 36(5):391-396.
    [64]Hemingway B S, Kittrick J A, Peryea F J. Relative solubility of cortmdum, gibbsite, boehmite, and diaspore at standard state conditions: an addendum [J]. Clays and Clay Minerals, 1989, 37(6):566-567.
    [65]Johnson S B, Franks G V, Scales P J, et al. Surface chemistry-rheology relationships in concentrated mineral suspensions [J]. Mineral Processing, 2000, 58: 267~304.
    [66]Herring T M, Clarke A Q, Watts J C. The surface charge of kaolin [J]. Colloiods Surfaces. 1992, 68:161-169.
    [67]Rand B, Melton I E. Particle interactions in aqueous kaolinite suspensions [J].
    
    Journal of Colloid and Interface Science, 1977, 60(2): 308-320.
    [68]Wieland E, Stumm W. Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°[J]. Geochimica et Cosmochimica Acta., 1992, 56:3339-3355.
    [69]Williams D J A, Williams K P. Electrophoresis and Zeta potential of kaolinite [J]. Journal of Colloid and Interface Science, 1978, 65(1):79-87.
    [70]Yuan J, Pruett R J. Zeta potential and related properties of kaolin clays from Georgia [J]. Minerals and Metallurgical Processing, 1998, (2): 50-52.
    [71]Tari G, Bobos J, Gomes C S F, et al. Modification of surface charge properties during kaolinite to halloysite-7? transformation [J]. Journal of Colloid and Interface Science, 1999, 210:360-366.
    [72]Beene G M, Brayant R, Williams D J A. Electrochemical properties of illite [J]. Journal of Colloid and Interface Science. 1991, 147(2):358-369.
    [73]Hussaln S A, Demirci S, (?)bayo? lu G. Zeta potential measurements on three clays from Turkey and effects of clays on coal flotation [J]. Journal of Colloid and Interface Science, 1996, 184:535-541.
    [74]Siddiqui M K. The electric double-layer structure of illite and attapulgite [J]. Clay Minerals, 1976, 11:251-253.
    [75]崔吉让,方启学,黄国智.一水硬铝石与高岭石的晶体结构和表面性质[J].有色金属,1999,5 1(4):25-30.
    [76]黄祖洽,丁鄂江.表面浸润和浸润相变[M].上海:上海科学技术出版社,1994年10月.
    [77]王淀佐.浮选剂作用原理及应用[M].北京:冶金工业出版社,1994年5月(第二版).
    [78]Drelich J. Contact angles measured at mineral surfaces covered with adsorbed collector layers [J]. Minerals & Metallurgical Processing, 2001, 18(1):31-37.
    [79]Kwok D Ng H, Neumann A W. Experimental study on contact angle patterns [J]. Journal of colloid and interface science, 2000, 225: 323-328.
    [80]Sakai H, Fuji T. The dependence of the apparent contact angles on gravity [J]. Journal of colloid and interface science, 1999, 210: 152-156.
    [81]Janczuk B, Bialopiotrowicz T. Components of surface free energy of some clay
    
    minerals [J]. Clays and Clay Minerals, 1988, 36(3):243-248.
    [82]Lee L T, Rahbari R, Lecourtier J, et al. Adsorption of polyacrylamides on the different faces of kaolinites [J]. Journal of Colloid and Interface Science, 1991, 147(2): 351~357.
    [83]Ma C, Eggleten R A. Cation exchange capacity of kaolinite [J]. Clays and Clay Minerals 1999, 47(2):174~180.
    [84]Elfarissi F, Pefferkom E. Fragmentation of koalinite aggregates induced by ion-exchange reactions within adsorbed humic acid layers [J]. Journal of Colloid and Interface Science, 2000, 221:64~74.
    [85]Saada A, Siffert B, Papirer E. Comparison of the hydrophilicity / hydrophobicity of illites and kaolinites [J]. Journal of Colloid and Interface Science, 1995,174: 185~190.
    [86]Schrader M E, Yariv S. Wettability of clay minerals. Journal of Colloid and Interface Science, 1990, 136(1):85~94.
    [87]Bantingies J-L, Moulin C C D, Dexpert H. Wettabilty contrasts in kaolinite and illite clays: characterization by infrared and X-ray absorption spectroscopies [J]. Clays and Clay Minerals, 1997, 45(2): 184~193.
    [88]李海谱.改性高分子药剂对铝硅矿物作用机理及其结构——性能研究[D].长沙:中南大学,2002年9月.
    [89]曹学锋,胡岳华,蒋玉仁等.新型捕收剂N-十二烷基-1,3-丙二胺浮选铝硅酸盐类矿物的机理[J].中国有色金属学报,2001,11(4):693-696.
    [90]李海谱,胡岳华,蒋玉仁等.变性淀粉在铝硅矿物浮选分离中的作用机理[J].中国有色金属学报,2001,11(4):697-701.
    [91]蒋玉仁,胡岳华,曹学锋.新型螯合捕收剂COBA结构与捕收性能的关系[J].中国有色金属学报,2001,11(4):702-706.
    [92]张剑锋,胡岳华,王淀佐.苯二氧基二乙酸的相转移催化合成及其浮选性能[J].中国有色金属学报,2001,11(4):707-711.
    [93]胡岳华,蒋玉仁,李海谱等.一水硬铝石型铝土矿反浮选脱硅新药剂[P].专利申请号:01137228.1,2001.
    
    
    [94]胡岳华,蒋玉仁,曹学锋等.一种铝土矿反浮选的取代胺类化合物[P].专利申请号:0113 1510.5,2001.
    [95]Kunsong Ma, Alain C. Pierre. Clay sediment-structure formation in aqueous kaolinite suspensions [J]. Clays and Clay Minerals, 1999, 47(4):522-526.
    [96]Subrahmanyam T V, Prestidge C A, Ralston J. Contact angle and surface analysis studies ofsphalerite particles [J]. Minerals Engineering, 1996, 9(7): 727-741.
    [97]Subrahmanyam T V, Monte M B M, Middea A, et al. Contact angles of quartz by capillary penetration of liquid and captive bubble techniques [J]. Minerals Engineering, 1999, 12(11):1347-1357.
    [98]白春礼编著.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992年10月.
    [99]白春礼,田芳,罗克著.扫描力显微术[M].北京:科学出版社,2000年2月.
    [100]刘新星,胡岳华.原子力显微镜及其在矿物加工中的应用[J].矿冶工程,2000,20(1):32~35.
    [101]Binng G, Quate C F, Gerber Ch. Atomic force microscope [J]. Physical Review Letters, 1986, 56(9): 930~933.
    [102]殷子明.黔中和豫西铝土矿成因研究[D].长沙:中南工业大学,1987年.
    [103]张笑玉.华北地台北缘中、西部石炭二叠纪煤系高岭岩的形成及其与有机作 用的关系探讨[D].北京:北京大学,1994年5月.
    [104]张振儒.近代岩矿测试新技术[M].长沙:中南工业大学出版社,1987年,12-14.
    [105]姚林波,高振敏.运用X射线衍射和多重峰分离程序解析高岭石的结构缺陷[J].矿物学报,1996,16(2):6.
    [106]马兰芳.高岭土的粘度及其改进[J].非金属矿,2000,23(9):16-18.
    [107]刘岫峰.我国主要铝土矿区中高岭石、含水云母类矿物的特征及对溶解性能影响的研究[D].成都:成都地质学院,1989.5.
    [108]北京矿冶研究总院.“我国若干重要铝资源矿石工艺矿物学研究(中州铝矿连选矿样)”科研报告(国家“九五”科技攻关项目96-122-01-02)[R].北
    
    京矿冶研究总院,1998年6月.
    [109]北京矿冶研究总院.“河南铝土矿工艺矿物学研究报告”科研报告(国家“九五”科技攻关项目96-122-01-02)[R].北京矿冶研究总院,1999年10月.
    [110]Giese R F. Surface energy calculations for muscovite [J]. Nature, 1974,248:580-581.
    [111]Giese R F. Interlayer bonding in talc and pyrophyllite [J]. Clays and Clay Minerals, 1975, 23:165-166.
    [112]Giese R E Interlayer bonding in kaolinite, dickite and pyrophyllite [J]. Clays and Clay Minerals, 1973, 21:145-149.
    [113]Neder R B, Burghammer M, Grasl TH, et al. Referement of the kaolinite structure from single crystal synchrotron data [J]. Clays and Clay Minerals, 1999, 47(4):487-494.
    [114]李云龙.黑钨矿系列晶体化学特征与其可浮性关系的研究[D].长沙:中南工业大学,1988年3月.
    [115]Vieillard P. A new method for the prediction of gibbs free energies of formation of hydrated of hydrated clay minerals based on the electronegativity scale [J]. Clays and Clay Minerals, 2000, 48(4):459~473.
    [116]Hartman H, Garrison Sposito, Andrew Yang. Molecular-scale imaging of clay mineral surfaces with the atomic force microscope [J]. Clays and Clay Minerals,1990, 38(4): 337~342.
    [117]吴平宵,张惠芳,郭九皋.原子力显微镜在粘土矿物学研究中的应用[J].地球化学进展,1998,13(4):351~354.
    [118]Eggleston C M, Hochella M F Jr. The structure of hematite {001} surfaces by scanning tunneling microscopy: image interpretation, surface relaxation, and step structure [J]. Am Mineral, 1992, 77:911-922.
    [119]Kunsong Ma, Alain C. Pierre. Clay sediment-structure formation in aqueous kaolinite suspensions[J]. Clays and Clay Minerals, 1999, 47(4):522-526.
    [120]Xie Zhixin, John V W. Incongruent dissolution and surface area of kaolinite [J]. Geochimica et Cosmoehimiea Act, 1992, 56:3357-3363.
    [121]Casewit C J, Colwell K S. Application of a universal force field to organic
    
    molecules [J]. J. Am. Chem. Sot., 1992,114:10035-10046.
    [122]Casewit C J, Colwell K S. Application of a universal force field to main group compounds [J]. J. Am. Chem. Sot., 1992,114:10046-10055.
    [123]孙伟,胡岳华,邱冠周,徐竟.闪锌矿(110)表面离子吸附的动力学模拟[J].中国有色金属学报.2002,12(1):187-190.
    [124]孙伟.高碱石灰介质中电位调空浮选技术原理与应用[D].长沙:中南大学,2001年12月.
    [125]刘广义.一水硬铝石型铝土矿浮选脱硅研究[D].长沙:中南工业大学,1999年3月.
    [126]Frost R L. Hydroxyl deformation in kaolins [J]. Clays and Clay Minerals, 1998,46(3): 280-289.
    [127]董宏军,陈正学.表面力对自载体浮选选择性的影响[J].矿产保护综合利用,1995,:31-34.
    [128]骆兆军,胡岳华,王毓华,邱冠周.铝土矿反浮选体系分散与凝聚理论[J].中国有色金属学报,2001,11(4):680-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700