用户名: 密码: 验证码:
碳纤维预应力筋及拉索锚固系统的试验研究和理论分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高级复合材料-碳纤维增强塑料CFRP (Carbon Fiber Reinforced Polymer/Plastics)筋或拉索是一种横观各向同性材料,其抗剪强度与抗拉强度之比较低,导致传统的预应力筋或拉索锚具不再适用于CFRP预应力筋或拉索,否则将会由于抗剪强度过低而导致过早失效。因此,若在预应力混凝土或拉索结构中应用CFRP预应力筋或拉索,必须研制适合CFRP预应力筋或拉索的锚固系统。目前有关CFRP预应力筋或拉索锚固系统的系统研究成果及其应用仍较少,为了使其研究成果进一步完善,应用范围进一步扩大,对CFRP预应力筋及拉索的锚固系统进行系统研究具有重要的实用价值和理论意义。
     本文依托国家自然科学基金资助项目和教育部优秀青年教师资助基金对CFRP预应力筋及拉索的锚固系统进行了系列的试验研究和理论分析。主要的研究内容及其相应的研究成果如下:
     (1)开发了一种新的CFRP筋粘结式锚具,即采用活性粉末混凝土RPC(Reactive Powder Concrete)作为粘结介质的粘结式锚具。静载试验详细研究了CFRP筋在RPC中的锚固性能,试验参数包括CFRP筋的表面形状、预张拉力、锚固长度、根数、间距以及套筒内壁倾角等。试验结果表明,对于抗拉强度不大于3000MPa的表面压纹CFRP筋,RPC抗压强度不小于130MPa,普通粘结试件的临界锚固长度为20倍筋材直径;对于预张拉粘结试件,当预张比为56%时,锚固系统具有最短临界锚固长度,为13倍筋材直径。根据试验结果,建立了平均粘结强度、平均粘结强度对应的滑移量、临界锚固长度以及粘结滑移本构模型,并验证了其适用性。
     (2)通过试验研究得到了CFRP筋在RPC中粘结应力沿埋长分布的实测曲线,并建立了粘结应力沿埋长分布的位置函数的计算式。在试验研究的基础上,从粘结锚固性能的平衡方程、变形方程以及本构方程出发,推导了粘结应力、CFRP筋轴向应力、滑移量以及位置函数等锚固变量沿锚长分布的理论计算公式。试验结果验证了理论推导的可行性。对CFRP筋的粘结锚固变量沿埋长分布进行了预测分析及相关的参数分析。分析结果表明,对于光滑CFRP筋,当埋长在15倍筋材直径至45倍筋材直径之间时,不均性系数变化均很小,且接近1.0;对于压纹CFRP筋,当锚长小于或等于12.5倍筋材直径时,粘结应力沿埋长分布较为均匀,其不均系数在1.02~1.05之间;当埋长大于12.5倍且小于或等于临界锚固长度20倍筋材直径时,粘结应力沿埋长分布不均匀,其不均性系数在1.06~1.14之间。
     (3)研究了FRP筋粘结式锚具的粘结界面模型以及界面径向弹性模量,推导了受钢套筒约束的粘结介质及FRP筋在径向应力作用下的位移计算式,并验证了其可行性。然后再根据弹性应变能等效原则,得到了由径向位移表达的界面径向弹性模量的计算式。参数分析了各变量对界面径向弹性模量的影响。分析表明,当粘结介质外径大于1倍筋材直径,筋材肋间距大于1倍筋材直径,筋材肋宽大于0.5倍筋材直径,钢套筒厚度大于2.5mm时,其粘结介质RPC外径、筋材肋间距、筋材肋宽、钢套筒厚度等参数对粘结界面的径向弹性模量影响较小。在有限元数值分析时,考虑界面径向弹性模量的Bar-scale模型能够较好的预测粘结模型的径向反应。
     (4)传统的夹片式锚具应用于CFRP预应力筋时必须进行改进,改进后的夹片式锚具由夹片、锚杯、塑料薄膜以及薄壁铝套管等组成。试验研究锚杯长度、锚杯倾角、夹片预紧力、筋材预张拉、凹齿间距、深度和宽度以及铝套管厚度等参数对夹片式锚具极限承载力及CFRP筋和夹片的滑移量等锚固变量的影响。试验结果表明,当锚杯倾角为3°、夹片预紧力为100kN、铝片厚度为1mm、凹齿间距和深度分别为12.85mm和0.3mm时,夹片式锚具的实测极限荷载最大为185kN,相应的锚固效率系数为96.4%。锚杯环向应力和轴向应力的实测值与预测值吻合良好,验证了锚杯应力分析的可靠性。基于试验结果建立了夹片式锚具极限荷载的计算式。
     (5)采用ANSYS软件建立了CFRP筋夹片式锚具数值模型,该模型为轴对称模型,涉及材料非线性和接触非线性。计算终止判断依据为Tsai-Wu准则。计算结果与实测结果对比验证了数值模型的有效性。参数分析表明,各参数的最佳取值:锚杯倾角为2.5°、夹片与锚杯之间的角度差为0.1°、锚杯长度为90mm、锚具自由端处夹片端部至锚杯端部之间的距离为10mm、薄壁铝套管的厚度为1mm、夹片与锚杯之间的摩擦系数为0.03、铝套管和CFRP筋之间的摩擦系数为0.50。数值结果是试验结果有益的补充。
     (6)根据普通拉索锚固体系的特点,提出了锚固CFRP筋的复合式锚具。静载试验研究了锚杯长度、粘结锚固长度、夹片预紧力、筋材预张拉力等试验参数对复合式锚具的极限承载力及CFRP筋和夹片的滑移量等锚固变量的影响。试验结果表明,当锚杯长度为60mm、粘结锚固长度为100mm、夹片预紧力为60kN时,复合式锚具的极限荷载最大,其值为208kN,对应的锚固效率系数为108.2%,大于95%,满足规范要求。提出的复合式锚具极限荷载计算公式具有较好的适用性。
Due to it that the ratio of the shear strength to the tensile strength of the Carbon Fiber Reinforced Polymer/Plastics (CFRP) tendons is lower, so the shear strength is the major concern. The wedge anchor for prestressing steel tendons can’t be applied to anchor CFRP tendons, otherwise the shear stress causes premature failure of the tendon. Thus, the anchorage system for CFRP tendons must be investigated when used in pretressing concrete or cable structure. The researches on anchorage system for CFRP tendons have arrived considerable accomplishments, but they are still insufficient for CFRP tendons/cables application. So it is of important practical and theoretical significance for the investigation on the anchorage system.
     An experimental study and corresponding theory analysis are conducted to investigate the anchorage performance of CFRP tendons under the financial support of Natural Science Foundation of China and Excellent Young Teachers Program of Ministry of Education of China. This dissertation involves mainly the following investigations and corresponding results:
     1. A new bond-type anchor for CFRP tendons is developed, whose bond medium is Reactive Powder Concrete (RPC). Due to the Reactive Powder Concrete with excellent performance, it has been put forward as the bond medium and a series of tests have been carried out to develop a new bond-type of anchorage system for CFRP tendon and cable. Those parameters of surface shape, pretensioning load, bond length, number and space of CFRP tendons, the slope of inner wall of outer steel tube used in the anchorage system, have been studied. The tests results show that the grouted length of 20 diameters of CFRP tendon is enough for the indented surface CFRP tendon of tensile strength less than 3000 MPa. When the pretensioning load arrives 56% of ultimate load of general CFRP bar, the indented surface CFRP tendon with tensile strength is less than 3000 MPa, critical bond length of the pretensioning tendon in RPC of compressive strength 130 MPa is 13 diameters of CFRP bar. The equations developed to determine bond capacity, and the corresponding slip, and critical bond length are applicable. An analytical model of bond stress–slip relationships for CFRP tendon has been proposed.
     2. The bond stress distribution of CFRP (Carbon Fiber Reinforced Polymer/Plastics) tendon in RPC (Reactive Powder Concrete) along bond length has been studied. Based on the experimental investigation, CFRP tendon stress and slip and displacement funtion along bond length can be presented from the equilibrium equations and the linear elastic relationship between stress and strain and constitutive model. Comparison of experimental and analytical results with CFRP tendon stress and bond stress shows good agreement, so its effectiveness to represent the theory equations has been demonstrated. Bond stresses of CFRP tendon without groove along bond length are obtained and parameter analysis results show that when the grouted length of the smooth surface for CFRP tendon is ranged between 15 bar diameters and 45 bar diameters, the ratios of maximum to minimum bond stress and maximum to average bond stress are about 1.0. When the grouted length of the indented surface CFRP tendon is less than 12.5 diameters of CFRP tendon,bond stress distribution along bond length is comparatively uniform, and the ratios of maximum to minimum bond stress and maximum to average bond stress are about 1.02~1.05. When the grouted length of the indented surface CFRP tendon is more than 12.5 diameters and less than or equal to 20 diameters of CFRP tendon,bond stress distribution along bond length is not uniform, and the ratios of maximum to minimum bond stress and maximum to average bond stress are about 1.06~1.14.
     3. Base on the investigation on radial elastic modulus of an interface between FRP reinforcement and concrete, bond model and radial elastic modulus of an interface of bond-type anchorage for FRP tendon is defined. Based on this equivalence measure of the strain energies stored in the elastic bodies, closed-form elastic solutions are obtained for axisymmetric hollow or solid cylinders subjected to a radial traction. The overall agreement between the analytical and numerical solutions suggests that the analytical solution is correct. Then radial elastic modulus of an interface for bond-type anchorage is available from the analytical expressions. Those parameters such as constituent properties, outside radius of bond medium, thickness of steel sleeve, radial traction, material constants and so on have been studied. The results show that when bond medium radius is more than 1.0 bar diameters, the periodic length of the bar’s surface structure is more than 1.0 bar diameters, the rib’s width is more than 0.5 bar diameters, steel sleeve thickness is more than 2.5mm, it is lesser influence to radial elastic modulus of an interface for bond medium radius and the periodic length of the bar’s surface structure and the rib’s width and steel sleeve thickness. The radial response can be evaluated preferably in Bar-scale model, in which radial elastic modulus is considered.
     4. Conventional wedge-type anchorage systems for steel tendon must be improved for CFRP tendons due to their material particularity. Wedge-type anchors for CFRP tendons have been developed. The new anchors are assembled from smooth indented wedges, conical barrel, a plastic film, and an aluminum soft metal sleeve. The static tests show, when the anchor involves 3°of slope of conical barrel, 100kN of presetting load level, 1.0 mm of thickness of an aluminum soft metal sleeve, 12.85 mm of space and 0.3 mm of depth of indented wedges, the anchorage system can perform well and undertake 185kN load of the ultimate capability, the related anchorage efficiency is 96.4%. Many factors were demonstrated to affect the anchorage performance and the slip of CFRP tendon, which include length and slope of conical barrel, presetting load level, space and depth and width of indented wedges, and thickness of an aluminum sleeve. Based on the agreement with the analytical and experimental stresses of conical barrel, the present approach is proved. The equations developed for evaluating ultimate load of the anchors are feasible.
     5. Finite element model of wedge-type anchor for CFRP tendons is established using ANSYS soft with array parameters. The model is axisymmetric with plasticity and contact analysis. Tsai-Wu failure criterion is as terminative condition. Based on the good agreement with the analytical and experimental results, the validity of the present approach is proved. The optimum values of various parameters are obtained. The results show that slope of barrel is 2.5°, angle difference between the wedge and barrel is 0.1°, length of conical barrel is 90 mm, seating distance of the wedge is 10 mm, thickness of an aluminum sleeve is 1 mm, friction coefficient between the wedges and barrel is 0.03, friction coefficient between the tendon and aluminum sleeve is 0.50. So the numerical results are benefit to improve the test results.
     6. Based on the character of anchorage systems for steel tendon, mechanical gripping-bond type anchorage system is developed for CFRP tendons usage in the stay-cable bridge. Those parameters of barrel length, bond length presetting load level, pretensioning load used in the anchorage system are studied. The static tests show, when the anchor involves 60 mm of barrel length, 100 mm of bond length, 60 kN of presetting load level, the anchorage system can perform well and undertake 208kN load of the ultimate capability, the related anchorage efficiency is 108.2%, which is more than 95%. The equation developed for evaluating ultimate load of the mechanical gripping-bond type anchorage systems is applicable.
引文
[1] Kumar P. Durability critical issues for the failure [J]. Concrete International, 1997, 21(7):7-31
    [2] Abass B. Long-term and fatigue behaviour of carbon fibre reinforced polymer prestressed concrete beams[D]: [The degree of Doctor of Philosophy, Queen’s University]. Canada: Queen’s University, 2000:1-5
    [3]刘椿,朱尔玉,朱晓伟.预应力混凝土桥梁的发展状况及其耐久性研究进展[J].铁道建筑, 2005, 45(11): 1-2
    [4]闻宝联,涂光备,刘凯立,王宝来,张鸿宾.钢筋混凝土桥梁病害调查及维护研究[J].桥梁建设, 2004, 36(1): 78-81
    [5] Hiroshi F. FRP composites in Japan [J]. Concrete International, 1999, 21(10): 29-32
    [6] Nanni A, Bakis C E, Dixon T O. Performance of FRP tendon-anchor systems for prestressed concrete structures [J]. PCI Journal, 1996, 41(1): 34-43
    [7] Ezzeldin Y, Sayed A, Nigel G S. A new steel anchorage system for post tensioning applications using carbon fibre reinforced plastic tendons. Can J civ Eng, 1998, 25(1): 113-127
    [8]吕国玉.碳纤维增强塑料预应力筋锚具的设计研究[D]:[武汉理工大学硕士学位论文].武汉:武汉理工大学, 2003: 1-2
    [9] Thomas K. Use of fibre reinforced polymers in bridge construction [M]. Switzerland: International Association for Bridge and Structural Engineering, 2003: 23-36
    [10] Luc R, Taerwe S M. FRP for concrete construction activities in Europe[J]. Concrete International, 1999, 21(10): 33-36
    [11]李宏男,赵颖华,黄承逵.纤维增强复合材料在土木工程中研究与应用[A].见:第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集[C].昆明:清华大学出版社, 2002: 43-50
    [12]叶列平,冯鹏. FRP在工程结构中的应用与发展[J].土木工程学报, 2006, 39(3):24-35
    [13]方志,郭棋武,刘光栋等.碳纤维复合材料(CFRP)斜拉索的应用[A].见:中国公路学会桥梁与结构工程学会2001年桥梁学术讨论会论文集[C].北京:人民交通出版社, 2001: 79-85
    [14]曾宪桃,车惠民.复合材料FRP在桥梁工程中的应用及其前景[J].桥梁建设, 2002, 34(2): 66-70
    [15]孙杰,孙峙华,胡荣根.碳纤维复合材料在桥梁工程中的应用及其前景[J].公路交通技术, 2004, 2(1): 46-48
    [16]曾攀,孙卓.纤维增强塑料(FRP)在桥梁建设中的应用现状[J].广州大学学报(自然科学版), 2006, 5(2): 90-93
    [17] Building Disaster Prevention Association. Seismic retrofit design and construction guidelines for existing reinforced concrete buildings and steel encased reinforced concrete buildings using continuous fiber reinforced materials [S]. Japan: Building Disaster Prevention Association, 1999: 27-54
    [18] ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures[S]. American: ACI Committee 440, 2000: 21-36
    [19] CEB-FIP. Externally bonded FRP reinforcement for RC structure[S]. European: CEB-FIP, 2001: 71-89
    [20] ISIS Canada Corporation. Strengthening reinforcement concrete structures with externally—bonded fiber reinforced polymers[S]. Canada: ISIS Canada Corporation, 2001: 10-52
    [21] Meier U, Stseklin I, Terrasi G P. Making better use of the strength of advanced material in structural engineering[A]. In: Proc.the International Conference on FRP Composites in Civil Engineering[C]. Hong Kong: Elsevier Science, 2001: 41-48
    [22]吴红林,黄侨,王彤.纤维复合材料在加固混凝土桥梁中的应用研究[J].玻璃钢/复合材料, 2004, (2): 39-41
    [23]张玉成,徐德新.新型CFRP材料在桥梁工程中的应用及前景[J].重庆交通学院学报, 2005, 24(3): 28-30
    [24]姜红光,王廷臣,陈建国,徐辉. CFRP材料在桥梁工程中的应用[J].中外公路, 2005, 25(5): 117-120
    [25]李汇峰,熊旭光.碳纤维加固桥梁应用研究[J].公路, 2003, (2): 103-107
    [26]岳清端.我国碳纤维(CFRP)加固修复技术研究应用现状与展望[J].工业建筑, 2000, 30(10): 23-26
    [27]陈开利. CFRP材料在桥梁加固工程中的应用[J].桥梁建设, 2001, 33(1): 44-45
    [28]周履.用FRP力筋修建的预应力混凝土桥梁25例[J].国外桥梁, 1998, 18(4):31-32
    [29]陶学康,孟履祥,关建光等.纤维增强塑料筋在预应力混凝土结构中的应用[J].建筑结构, 2004, 34(4): 63-71
    [30]李宏男,赵颖华,黄承逵.纤维增强复合材料在土木工程中的研究与应用[A].见:第二界全国土木工程用纤维增强复合材料应用技术学术交流会论文集[C].昆明:清华大学出版社, 2002: 43-50
    [31]吴海军,陆萍,周志祥. CFRP在新建桥梁中的应用与展望[J].重庆交通学院学报, 2004, 23(1): 1-5
    [32]蔡国宏.国外桥梁建设与发展的新动态[J].国外公路, 1998, 18(4): 9-15
    [33]罗小宝,徐文平. FRP在大跨径桥梁上的应用研究[J].工业建筑(增刊), 2004, 34(370): 311-315
    [34]姚树镇.对发展玻璃钢桥之浅见[J].桥梁建设, 1990, 22(3): 18- 21
    [35]蒋剑彪,崔毅,梅葵花,吴刚,张敏.国内首座CFRP斜拉桥的关键技术[J].公路交通科(技应用技术版), 2006, 23(2): 111-114
    [36]李乔.混凝土结构设计原理[M].北京:中国铁道出版社, 2001: 34-53
    [37]杜拱辰.现代预应力混凝土结构[M].北京:中国建筑工业出版社, 1988: 21-36
    [38]预应力混凝土结构设计规程(DBJ08-69-97)[S].北京:中国建筑工业出版社, 1997: 125-136
    [39]无粘结预应力混凝土技术规程(JGJ/92-93) [S].北京:中国建筑工业出版社, 1994: 74-89
    [40]预应力筋用锚具、夹具和连接器(GB/T 14370-2000) [S].北京:中国标准出版社, 2001: 10-25
    [41]预应力筋用锚具、夹具和连接器应用技术规程(JTJ 85-2002) [S].北京:中国建筑工业出版社, 2002: 7-10
    [42]古小兵.镦头锚在桥梁工程中的应用和探讨[J].湖南交通科技, 2001, 27(1): 56-57
    [43]曾捷.钢质锥形锚圈缺陷判定标准的探讨[J].广东公路交通,2001, 68(2): 44-45
    [44]崔丽.预应力钢铰线群锚(VLM、QM、OVM)体系的施工技术与操作方法[J].辽宁交通科技, 2002, 25(2): 28-31
    [45]李明.扁锚锚固体系在现浇桥梁施工中的应用述评[J].山西交通科技, 2005, 33(1): 60-62
    [46]唐小萍.平行钢绞线拉索与平行钢丝拉索的特性、经济性比较分析[J].桥梁建设, 1997, 29(4): 17-19
    [47]唐明翰,李义.现代斜拉索[J].桥梁建设, 1997, 29(4): 29-32
    [48]经柏林,谢华鸾.斜拉桥拉索研究综述[J].中国市政工程, 2003, 28(6): 19-21
    [49]杨进,华有恒.汕头宕石大桥主桥斜拉索选型及锚固方案[J].桥梁建设, 1997, 29(4): 13-16
    [50] Ezzeldin Y, Sayed A, Nigel G S. A new steel anchorage system for post tensioning applications using carbon fibre reinforced plastic tendons [J]. Can J civ Eng, 1998, 25(1): 113-127
    [51] Reda T, M M, Shrive N G. Fatigue assessment of non-metallic anchors for post-tensioning CFRP tendons [A]. In: International Conference of Composites in Construction[C]. Portugal, 2001: 345-350
    [52] Kersens J, Bennenk W. Prestressing with carbon composite rods: a numerical method for developing reusable prestressing systems [J]. ACI Structural Journal, 1998, 95(1): 43-50
    [53] Mahmoud M. Reda T, and Nigel G S. New concrete anchors for carbon fiber reinforced polymer post-tensioning tendons-part1: state-of-the-art review/design [J]. ACI Structural Journal, 2003, 100(1): 86-95
    [54]詹界东,杜修力,邓宗才.预应力FRP筋锚具的研究与发展[J].工业建筑, 2006, 36(12): 65-68
    [55] Tsdros G. Provisions for using FRP in the Canadian highway bridge design [J]. Concrete International, 2000, 22(7): 42-47
    [56] Dolan C W. FRP prestressing in the USA [J]. Concrete International, 1999, 21(10): 21-24
    [57] Compbell T I, Shrive N G, Soudki K A, et al. Design and evaluation wedge-type anchor for FRP Tendon [J]. Canadian Journal of Civil Engineering, 2000, 27(5): 985-992
    [58] Erki M A, Rizkalla S H. Anchors for FRP reinforcement [J]. Concrete International, 1993, 15(6): 54-59
    [59] Kerstens J, Bennenk W, Camp J W. Prestressed with carbon composite rods–a numerical method for developing resuable prestressing systems [J]. ACI Structural Journal, 1998, 95(1): 43-50
    [60] Harada T, Atsuda H, Khin M, Tokumisu S, et al. Development of non-metallic anchoring devices for FRP tendons [A]. In: Non-Metallic (FRP) Reinforcement for Concrete Structures[C]. London : E&FN Spon, 1995: 41-48
    [61] Nanni A, Bakis C E, Niel P E, et al. Short-Term Sustained Loading of FRP Tendon-Anchor Systems [J]. Construction and Building Materials, 1996, 10(4): 255-266
    [62] AL-Mayah A, Soudki K, Plumtree A. Experimental and analytical investigation of stainless steel anchor for CFRP prestressing tendons [J]. PCI Journal, 2001, 46(2): 88-100
    [63] Khin M, Harada T, Tokumisu S, et al. Anchor mechanism for FRP tendons using highly expansive materials for anchoring [A]. In:Advanced Composite Materials in Bridges and in Bridges and Structures[C]. Canada: CSCE, 1996: 959-964
    [64] Burong Z, Brahin B. A new bond-type anchorage system for prestressed applications with FRP tendons [A]. In: Advanced Composite Materials in Bridges and Structures[C]. Ottawa: CSCE, 2000: 119-123
    [65] Rostasy F S, Budelmann H. Principles of design of FRP tendons and anchors for post-tensioned concrete [A]. In: Fiber-Reinforced Plastic Reinforcement for Concrete Structures[C]. Farmington Hills : American Concrete Institute, 1993: 633-649
    [66]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋锚杆及其应用[J].岩石力学与工程学报, 2004, 23(13): 205-210
    [67] Mitchell R, Woolley R M, Halsey N. High-strength end fittings for FRP rod and rope [J]. Journal of the Engineering Mechanics Division, 1974, 100(4):687-703
    [68] Sippel T M. Design testing and modeling of an anchor system for resin bond fiber glass rods used prestressing tendons [A]. In:Advanced Composite Materials in Bridges and Structures[C]. Montreal: ASCE, 1992: 363-372
    [69] Kakihara R, Kamiyoshi M, Kumagai S,et al. A new aramid rod for the reinforcement of prestressed concrete structures [A]. In: Advanced Composite Materials in Civil Engineering Structures[C]. Las: Vegas, 1991: 134-142
    [70] Brahim B U, Zhang B R, Adil C. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications [J]. Construction and Building Materials, 2000,14(3): 157-170
    [71] Enka, B. The twaron resin prestressing element for concrete [A]. Netherlands: Corporate Report , 1986: 76-83
    [72] Wolff R, Miesser H J. New materials for prestressing and monitoring heavy structures [J]. Concrete International, 1989, 11(9): 86-89
    [73] Rostàsy F S. FRP tensile elements for prestressed concrete—state of the art, potentials, and limits [A]. In: Fiber-Reinforced Plastic Reinforcement for Concrete Structures[C]. Mich: American Concrete Institute, Farmington Hills, 1993: 347-365
    [74] Mochida S, Tanaka T, and Yagi K. The development and application of a groundanchor using new materials [A]. In: Proceedings of Advanced Composite Materials in Bridges and Structures[C]. Ottawa: Canadian Society for Civil Engineering, 1992: 393-402
    [75] Meier U. Extending the life of cables by the use of carbon fibre [A]. San Francisco: IABSE Symposium, 1995: 1235-1240
    [76] Mahmoud M, Reda T, and Nigel G S. New concrete anchors for carbon fiber reinforced polymer post-tensioning tendons-part2: development/experiment investigation [J]. ACI Structural Journal, 2003, 100(1): 96-104
    [77] Noisternig J E, Jungwirth D. Design and analysis of anchoring systems for a carbon fiber composite cable [A]. In: Advanced Composite Materials in Bridges and Structures[C]. Quebec : CSCE, 1996: 935-942
    [78] Campbell T I, Keatley J P, and Barnes K M. Analysis of an anchor for CFRP prestressing tendons [A]. In: 2nd Structural Specialty Conference[C]. Canada: CSCE, 1998: 551-560
    [79] Campbell T I, Shrive N G, Soudki K A, Al-Mayah A, Keatley J P, and Reda M. Design and evaluation of a wedge-type anchor for FRP tendons. Canadian Journal of Civil Engineering, 2000, 27(5): 985-992
    [80]张志文,朱虹,吕志涛.预应力FRP筋锚具的研发[J].工业建筑(增刊), 2004, 34(370): 259-262
    [81]梁栋.碳纤维(CFRP)预应力筋及拉索锚固系统静力性能的试验研究[D]: [湖南大学硕士学位论文].长沙:湖南大学, 2004: 5-46
    [82]张鹏,邓宇.单根碳纤维塑料筋新型锚具的研制[J].施工技术, 2003, 32(11): 32-34
    [83]吕志涛,梅葵花.国内首座CFRP索斜拉桥的研究[J].土木工程学报, 2007, 40(1): 54-59
    [84] Cosenza E, Manfredi G, and Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete [J]. Journal of Composites for Construction, 1997, 1(2):40-51
    [85]朱浮声,张海霞. FRP筋与混凝土粘结滑移力学性能研究综述[J].混凝土, 2006, 196(2): 12-15
    [86] Zaharani A, M M. Bond behavior of fiber reinforced plastic reinforcements with concrete [D]: [The degree of Doctor of Philosophy, Pennaylvanis State University]. Park: Pennaylvanis State University, 1995: 25-47
    [87] Kanakubo T, Yonemau K, Fukuyoma H, et al. Bond performance of concrete members reinforced with FRP bars [A]. ACI: On Fiber Reinforced PlasticReinforcement for Concrete Structure, 1993: 67-89
    [88] Makitani E, Irisawa I, Nishiura N. Investigation of bond in concrete member with fibre reinforced polymer bars [A]. ACI: International symposium fibre reinforced plastic reinforcement for concrete structures, 1993: 315-331
    [89] Nanni A, AI-Zaharani M. Bond of FRP reinforcement to concrete experimental results [A]. RILEM: Proc 2nd Int, 1995: 79-83
    [90]高丹盈, Brahim B.纤维聚合物筋与混凝土粘结性能的影响因素[J].工业建筑, 2001, 31(2): 9-14
    [91] Tighiouart B, Benmokrane B, Gao D. Investigation of bond in concrete member with fiher reinfored polymer (FRP) bars [J]. Construction and Building Materials, 1998, 25(12): 453-462
    [92] Zenon A, Kypros P. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J].Journal of Composites for Structure,2004, 8(2): 173-181
    [93] Benmokrane B, Tighiouart B, ChaaUa1 O. Bond strength and load distribution of composite GFRP reinforcing bars in concrete [J].ACI Materials Journal,1996,93(3): 246-253
    [94]张启明.纤维聚合物筋与混凝土的粘结性能[J].河南科学, 2001, 19(4): 390-392
    [95] Malvar J L. Tensile and bond properties of GFRP reinforcing bars [J]. ACI Materials, 1997, 92(3): 276-285
    [96]谢晶晶.纤维增强塑料筋锚杆锚固机理及设计方法的研究[D]: [郑州大学硕士学位论文] .郑州:郑州大学土木工程学院, 2002: 26-29
    [97] AL-Zaharani M M, Nanni A, Al-Dulaijan A U. Bond of FRP to concrete in reinforcement rods with axisymmetric deformations [A]. Canada: 2nd International Conference on Advanced Composite Materials in Bridge Structures, 1996: 35-47
    [98] Ehsani M R, Saadatmanesh H, Tao S. Design recommendation for bond of GFRP rebars to concrete[J]. Journal of structure Engineering, 1996, 122(3):247-254
    [99] Chaallal O, Benmokrane. Pullout and bond of glass fiber rods embedded in concrete and cement grout [J]. Materials and Structures, 1993, 26(5): 167-175
    [100]薛伟辰,康清梁.纤维塑料筋粘结锚固性能的试验研究[J].工业建筑, 1999, 29(12): 5-7
    [101]高丹盈, B.Brahim.纤维聚合物筋混凝土的粘结机理及锚固长度的计算方法[J].水利学报, 2000, (11): 70-78
    [102] Eligehausen R, Popov E P, Bertero V V. Local bond stress-slip relationshipsof deformed bars under generalized excitations [R]. Berkeley: Univ of California, 1983: 102-113
    [103] Faoro M. Bearing and deformation behaviour of structural components with reinforcements comprising resin bounded glass fibre bars and conventional ribbed steel bars [A]. Proe: Int Conf on Bond in concrete, 1992: 145-162
    [104] Cosenza E, Manfredi G, and Realfonzo R. Analytical modeling of bond between FRP reinforcing bars and concrete [A]. In: Proc., 2nd Int. RILEM Symp[C]. L Taerwe : FRPRCS-2, 1995: 36-47
    [105] Malvar L J. Bond stress-slip characteristics of FRP rebar [R]. California: Naval facilities Engineering Service Center, 1994: 67-85
    [106] Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP bars to concrete [J]. Journal of composites for construction, 1997, 1(2): 40-51
    [107]高丹盈,朱海棠,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑, 2003, 33(7): 41-44
    [108]李传习,田仲初,万国强.夹片群锚的锚固性能研究及设计原则[J].长沙交通学院学报, 1997, 13(3): 61-66
    [109] Feylessoufi A, Villieras F, Richard P. Water environment and nonstructural network in a reactive powder concrete[J]. Cement and Concrete composites, 1996, 18(6): 23-209
    [110]杨剑. CFRP预应力筋超高性能混凝土梁受力性能研究[D]: [湖南大学博士论文].长沙:湖南大学, 2007: 19-22
    [111]预应力筋用锚具、夹具和连接器应用技术规程(JTJ 85-2002) [S].北京:中国建筑工业出版社, 2002: 6-21
    [112]方志,蒋田勇,梁栋. CFRP筋在活性粉末混凝土中的锚固性能.湖南大学学报(自然科学版),2007,24(7): 1-5.
    [113]梁栋.碳纤维(CFRP)预应力筋及拉索锚固系统静力性能的试验研究[D]: [湖南大学硕士论文].长沙:湖南大学, 2004: 7-32
    [114]徐有邻.钢筋混凝土粘结滑移本构关系的简化模型[J].工程力学(增刊), 1997, (1): 34-38
    [115] Jiang D H, et al. Study of the transfer of tensile forces by bond [J]. ACI Journal, 1984, 81 (3): 251-259
    [116] Gu M L, Chen Z Y, and Farhad A. Embedded fiber optic crack sensor for reinforced concrete structures [J]. ACI Structure, 2000, 22(3): 468-476
    [117]卢富永.单调静力加载下FRP筋与混凝土的粘结性能[D]: [哈尔滨工业大学硕士论文].哈尔滨:哈尔滨工业大学, 2005: 55-64
    [118]岑小艳.碳纤维增强塑料筋与活性粉末混凝土的粘结性能试验研究[D]: [湖南大学硕士论文].长沙:湖南大学, 2006: 40-46
    [119] Homayoun H, Abrishaml D M. Analysis of bond stress distribution in pullout specimens [J]. Journal of structural engineering, 1996, 122(3): 255-261
    [120] Cox J V, Guo J. Modeling the stress states dependency of the bond behavior of FRP tendon [A]. In: Fourth International Symposium on FRP Reinforcement for RC Structures[C]. American: ACI, 1999: 791-805
    [121] Cox J V, Herrmann L R. A plasticity model for the bond between matrix and reinforcement [J]. In: Proc. 6th Japan-U.S. Conference on Composite Materials[C]. Composites 92: Recent advances in Japan and the United States, 1992: 156-174
    [122] Cox J V, Herrmann L R. Development of a plasticity bond model for steel reinforcement [J]. Mechanics of Cohesive-frictional Materials, 1998, 3(2): 155-180
    [123] Cox J V, Herrmann L R. Validation of a plasticity bond model for steel reinforcement [J]. Mechanics of Cohesive-frictional Materials, 1999, 4(4): 361-389
    [124] Cox J V, Yu H. Radial elastic stiffness associated with the bond between steel bars and concrete [J]. ACI Structural Journal, 2001, 98(1): 16-27
    [125] Yu H, Cox J V. Radial elastic modulus for the interface between FRP reinforcing bars and concrete [J]. Journal of Reinforced Plastics and Composites, 2002, 21(14): 1285-1318
    [126] Hailing Yu. Analytical and computational modeling of the mechanical interlocking between steel/FRP reinforcing bars and concrete [D]: [The degree of Doctor of Philosophy, Johns Hopkins University]. Maryland: Johns Hopkins University, 2000: 28-103
    [127]赵通,左德元,童建刚.夹片式锚固体系锥角的有限元参数化设计[J].西南交通大学学报, 2004, 39(5): 614-618
    [128]陶浩,段红杰,刘建秀.预应力锚具的强度性能破坏研究[J].机械设计, 2003, 20(8): 13-15
    [129]张玉中,李瑞林,杜冬峡. QM-7型锚板应力分析[J].中南公路工程, 1996, 21 (12): 44-46
    [130]曹玉忠,卢泽生,李晨光.体外预应力锚具弹塑性有限元分析[J].特种结构, 2000, 17 (4): 49-50
    [131] Soudki K, Plumtree A, El-Mayeh A. Behaviour of CFRP anchorages underload [R]. Waterloo: University of Waterloo, 1999: 115-119
    [132] Campbell T I, Keatley J P, Barnes K M. Analysis of the Calgary anchor [R]. Kingston: Queen’s University, 1997: 33-45
    [133]李宝昌.轴对称结构半解析法有限元分析[D]: [华北电力大学硕士学位论文].保定:华北电力大学, 2005: 5-11
    [134]张朝晖. ANSYS8.0结构分析及实例解析[M].北京:机械工业出版社, 2005: 147-160
    [135] Wriggers, VuVan, Stein. Finite element formulation of large deformation impact-contact problems with friction [J]. Computers and Structures, 1990, 37(5): 319-331
    [136] Parisch H. A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis [J]. International Journal for Numerical Methods in Engineering,1989, 28(5):1803-1812
    [137]王春玲.塑性力学[M].北京:中国建材工业出版社, 2005: 51-62
    [138]肖兵.弹塑性接触有限元分析及其在透平机械强度计算中的应用[D]: [西安交通大学].西安:西安交通大学, 2000: 24-33
    [139]田仲初,蒋田勇,何斌,颜东煌.纳潮口大桥施工过程的仿真模型建立与分析[J].交通学院学报,2004, 20(3): 6-10
    [140]合金结构钢丝(YB/T 5301-2006)[S].北京:中国标准出版社, 2006: 5-12
    [141]傅衣铭,熊慧而,任毕乔.材料力学(I)[M].长沙:湖南大学出版社, 1999: 40-41
    [142]张志民,张开达,杨乃宾编著.复合材料结构力学[M].北京:北京航空航天大学出版社, 1993: 120-148
    [143]鞠苏,肖加余,江大志,曾竞成.复合材料管接头与钢管间摩擦力及其对管接头强度的影响-数值分析[J].复合材料学报, 2007, 24(3): 167-172
    [144] AL-Mayah A, Soudki K, and Plumtree A. Novel anchor system for CFRP rod: finite-element and mathematical models [J]. Journal of composite for construction, ASCE, 2007, 11(5): 469-476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700