用户名: 密码: 验证码:
带隙可调II-VI族纳米材料的合成及其检测Cu(II)和光催化降解有机污染物的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发光性能随组成、结构变化是零维半导体纳米材料的独特性能之一。与传统有机荧光染料相比,半导体量子点具有独特的优势:荧光产率高,光学稳定性好。表面修饰量子点作为全新的荧光指示器可应用于不同的生物分析和生物过程。表面修饰不同的有机配体用于水溶液中金属离子检测则使量子点成为全新的化学传感器。
     半导体光电技术可以将太阳光转变为化学能和电能。半导体纳米材料光催化技术在环境净化方面的应用,是纳米半导体材料另一独特性能。半导体材料直接利用太阳光降解空气和水中的污染物,使得半导体材料在环境治理中的充分利用具有巨大的应用前景。光催化技术经过多年的研究已经取得了一定的进展,各国研究者亦一直致力于寻找性能优良的光催化材料,并在光催化理论方面积累了深厚的基础,但是目前仍然存在许多问题需要进一步的探索和研究。
     本论文是在总结现有文献的基础上致力于运用不同Ⅱ-Ⅵ族半导体固体结构的结晶学相关特性和功能特性,通过溶剂热、微波加热等合成方法制备带隙可调的Ⅱ-Ⅵ族半导体纳米材料,以改进或改善纳米材料的物理、化学、光学性能并探索其在重金属离子检测和光催化方面的应用。主要包括以下四个方面的工作,归纳如下:
     1.强发光CdSe纳米晶的低温水相合成及其光学性质
     我们以氯化镉(CdCl2·3/2H2O)和无水亚硒酸钠(Na2SeO3)分别为镉源和硒源,巯基丁二酸(HOOCCH(SH)CH2COOH, MSA)为稳定剂和配体,柠檬酸三钠(C6H5Na3O7·2H2O)为辅助配体,硼氢化钠(NaBH4)为还原剂,低温下合成水溶性、强发光的CdSe量子点,实验中发现反应温度和加热速度对CdSe荧光量子产率具有显著影响。
     实验中首先通过比较水浴加热和微波加热制备的纳米晶的荧光发光效率高低来确定合适的制备CdSe纳米晶的合成方式。分别在25℃,30℃,35℃,40℃,45℃,50℃和60℃通过水浴加热和微波加热制备了一系列CdSe纳米晶。从实验结果可知,40℃左右水浴加热是获得发光效率高的CdSe纳米晶的适宜方式,得到的CdSe纳米晶的荧光量子产率达到30%。而更低或更高的加热温度则不利于发光效率的提高,当温度升高至80℃以上,不论水浴加热还是微波辐射加热,所得CdSe纳米晶的荧光量子产率迅速降低至3%以下。迅速加热的微波辐射方式不利于获得发强光的CdSe纳米晶,快速加热方式下制备CdSe纳米晶的吸收光谱逐渐失去明显的激子吸收峰,但是吸光度却逐渐增强。
     实验中得到的CdSe纳米晶是非晶态。25℃至60℃制备的纳米晶的XRD谱图皆无明显的衍射峰,高分辨电镜下亦无其清晰的衍射条纹。虽然高温下(120℃)得到的纳米晶有良好的结晶,但是其荧光发光效率极低。实验结果表明低温下的缓慢生长有利于提高CdSe纳米晶的发光效率。利用微波辐射将加热温度提高至120℃时,CdSe纳米晶的荧光发射峰表现出明显的激子发射和缺陷发射的特征。结合文献报道情况,我们认为制备的CdSe纳米晶的荧光发射属于缺陷发光。
     2.一次法微波辅助合成荧光发光可调的均匀CdSexTe1-x纳米晶合金
     以荧光性能优异、广泛研究的CdTe量子点作为研究对象,在合成高质量的二元组成的发光CdTe量子点的基础上,通过CdTe和CdSe的合金化制备CdSe发光量子点。利用硼氢化钠作为还原剂制备了水溶性的CdSexTe1-x量子点,并对量子点的发光性能与组成相关性进行了详细研究。
     影响半导体纳米晶的荧光效率的因素很多,如纳米晶的结晶性,表面稳定剂,溶液环境,反应生成条件等。我们固定现有反应体系的反应条件,即水溶液,巯基丁二酸作为纳米晶稳定剂且浓度恒定,溶液的pH值控制在在9-10,重点考察两步骤微波加热方式在较低温度下微波加热时间不同对纳米晶成核过程的影响,这种影响的直观结果表现在纳米晶荧光效率的高低。借鉴CdSe、CdTe在有机溶剂中的成核与生长条件,即高温(~300℃)迅速成核、低温(<300℃)快速生长,同时结合CdTe纳米晶水溶液微波合成条件,我们确定微波加热的第一步温度设定在80℃,第二步的反应条件固定在温度120℃,时间10分钟。我们分别考察了组成x在0-0.6之间的CdSexTe1-x纳米晶的荧光产率。实验结果表明,80℃低温下短时间范围内的微波加热,即1-120s,能够显著提高CdSexTe1-x纳米晶的荧光产率。通过比较,确定了不同x值对应不同的最佳成核时间。
     由CdSevxTe1-x纳米晶合金XRD图(111)峰得到的晶格常数(d)与组成成分段线性关系,数据拟合结果表明二者存在良好的线性光系。当0     3.微波辅助顺序合成Ⅱ型CdTe/CdSe核/壳纳米晶及其在Cu(Ⅱ)检测中的应用
     利用微波加热方法,使用前述量子点合成方法制备CdTe量子点后,再在其外包覆CdSe层制备Ⅱ型CdTe/CdSe异质复合结构量子点,实现对CdTe发光调节和表面改性。
     核/壳异质结构的形成通常需要两个条件。一,核层材料能够为壳层材料提供外延生长位点;二,避免壳层材料的均相独立成核与生长。通过比较可知,CdTe和CdSe的晶格常数差别不大于3.5%。二者之间较小的晶格常数之差是CdSe外延生长于CdTe的基础。因此,CdTe/CdSe核/壳纳米晶成功合成的关键是限制CdSe的独立成核与生长。实验中镉源即氯化镉(CdCl2·3/2H2O)的浓度和溶液的pH是影响CdTe/CdSe核/壳纳米晶合成的重要参数。当氯化镉浓度过高或pH≥11时,CdSe几乎完全不能外延生长至CdTe表面上,而是独立成核与生长,制备的纳米晶溶液的吸收光谱中出现CdSe的吸收峰。
     CdTe/CdSe核/壳异质结构量子点可实现对污水中有害重金属离子Cu(Ⅱ)的选择性检测并具有较宽的线性检测范围。
     4.溶剂热合成ZnxCd1-xS纳米材料及其光催化性能研究
     将总量为1mmol按照一定的化学计量比x混合的Zn(CH3COO)2与Cd(CH3COO)2和2mmol的铜试剂分别溶于水中,利用共沉淀法制备ZnxCd1-xS前躯体。取ZnxCd1-xS前躯体置于乙醇或水或乙二胺的溶剂内,在180℃或210℃的恒温条件下反应,即获得ZnxCd1-xS纳米颗粒。
     XRD结构分析表明乙醇溶液中制备的ZnxCd1-xS纳米颗粒是六方相(纤锌矿)结构。ZnxCd1-xS的所有衍射峰皆位于六方相CdS和ZnS二者之间。随着Zn含量的增加,ZnxCd1-xS的主要衍射峰逐渐向更大的衍射角(20),即向ZnS移动。ZnxCd-1-xS纳米颗粒的衍射峰(100),(002)和(101)具有相近的衍射强度。而衍射峰(110),(103),和(112)明显变宽,说明形成的Zn-Cd1-xS颗粒是小至纳米尺度的。制备温度在180-210℃之间对Zn-Cd1-xS纳米颗粒的晶体结构没有明显的影响,不同组成的纳米颗粒仍旧是六方相晶体。
     而由相同的前驱体在水溶液中制备的ZnxCd1-xS纳米颗粒则表现出与在乙醇溶液中不完全相同的晶体结构。整体上ZnxCd1-xS纳米颗粒还是六方相晶体。但是XRD衍射峰(103)的强度随x降低,即随着ZnxCd1-xS纳米颗粒中Cd的增加而降低,并在高温时逐渐消失。同时在衍射峰(101)附近出现了新的衍射峰。通过实验结果比较可以断定,溶剂效应,即乙醇与水的不同是ZnxCd1-xS晶体结构不同的主要原因。溶剂效应使得ZnxCd1-xS的生长具有特异性并导致所得晶体结构不同。不同组成x的对ZnxCd1-xS晶体结构也有选择性。
     只有Zn组份较高的ZnxCd1-xS(x=0.83)纳米颗粒对有机污染物对氯苯酚(4-CP)具有较高的光催化降解效率。不同溶剂条件下制备的相同组成的ZnxCd1-xS纳米颗粒对有机污染物4-CP具有不同的催化降解效率。乙醇溶液中制备的ZnxCd1-xS的催化效率显著高于水中制备的,乙醇中高温下制备的ZnxCd1-xS的催化效率明显高于低温,但是水溶液中低温制备的ZnxCd1-xS反而具有更高的催化效率。不同的溶剂,乙醇,水和乙二胺对ZnxCd1-xS的光催化性能影响显著,乙醇溶液中高温下制备的ZnxCd1-xS晶体的结晶性良好,具有较强的抗光腐蚀性能。
     研究结果表明,对ZnxCd1-xS半导体纳米颗粒组份进行调节,通过不同溶剂对其表面修饰、改性,可以提高ZnxCd1-xS半导体纳米颗粒对有机污染物的可见光催化性能,在纳米材料可见光催化领域具有潜在的应用价值。
In this dissertation, many efforts had been devoted to the synthesis of II-VI group semiconductor nanocrystals based on the correlations of separate nanocrystal constituents between structural and functional speciality. A series of II-VI group semiconductor nanocrystals are successfully synthesized, and their physical and chemical properties are systematically studied, such as optical properties and photocatalytic activities. Further study shows that the chemical, physical or optical properties of theses semiconductor nanocrystals have been largely enhanced or modified, or even resulting in novel functionality.
     1. Aqueous synthesis of highly luminescent amorphous CdSe nanocrystals at low temperature
     We utilize CdC12·3/2H2O and Na2SeO3 as Cd and Se sources, repectively. MSA was stabilzers and ligands, NaBH4 was reducing agent. Aqueous CdSe nanocrystals was prepared at low temperature (low than 100℃) with high PL QYs. The reaction temperature and heating speed had distinctive effect on QYs of CdSe NCs.
     We prepared a series of CdSe NCs at temperature between 25 and 60℃through water bath and microwave irradiation. The experimental results showed that water bath at 40℃was the suitable method for preparing highly fluorescent CdSe NCs. The PL QYs of prepared CdSe NCs were as high as 30%. But more high temperature is not suitable for preparing highly fluorescent CdSe NCs. Microwave irradiation that is a fast heating method was not suitable for preparing CdSe NCs with high PL QYs. CdSe NCs obtained through fast heating method had unobvious exciton absorption peak. CdSe NCs were not crystalloid. XRD patterns of CdSe NCs prepared at 20-60℃had no obvious diffraction peaks. HRTEM pictures did not show clear crystal stripes. CdSe NCs prepared at high temperature had good crystalline but with poor fluorescent quality. The PL of CdSe NCs should be defect related emission.
     In summary, synthesis of CdSe NCs at low temperature through water bath resulting in high fluorescence.
     2. One-pot microwave assisted synthesis of homogeneously alloyed CdSexTe1-x nanocrystals with tunable photoluminescence
     Many factors affect the photoluminescence quantum yields (PL QYs) of nanocrystals (NCs), such as crystalline, surface state, solution surroundings, reaction conditions, et al. In our reaction system, we focus on the microwave heating methods which had obvious influence on nucleation of CdSexTe1-x NCs. As a result, the NCs had distinctly different PL QYs output. Conventionally, synthesis of CdSe or CdTe NCs in organic solvents is realized always at high temperature through fast nucleation and fast growth. Microwave can heat rapidly and uniformly, which could accelerate fast nucleation of CdSexTe1-x NCs similarly. The temperature and time of the first process were 80℃and 15s-120s, respectively. We fixed 120℃as the temperature of the second process, which was regulated as the optimum condition according to the QYs of obtained CdSexTe1-x NCs. Microwave heating at 80℃for a few seconds can evidently improve the PL QYs of CdSexTe1-x NCs. Different x had special corresponding heating time.
     The lattice distance (d) of (111) peaks from XRD patterns of CdSexTe1-x NCs show segmental linear relationship with x When 0     3. Microwave assisted sequential synthesis of Type II colloidal CdTe/CdSe core/shell nanocrystals and detection on Cu(II)
     After CdTe NCs were prepared through method metioned in 2.2 under microwave irradiation, epitaxial deposition of CdSe shell on the surface of CdTe NCs can also be realized.
     Two preconditions should be met for synthesis of core/shell NCs. One is that the core materials can supply epitaxial sites for the shell materials. The other is that avoidance of separate nucleation of the shell materials. There is only little difference less than 3.5% between CdTe and CdSe NCs in crystal lattices, which is the basis of deposition of CdSe shell on CdTe surface. Therefore, the key point is the avoidance of the separate nucleation of CdSe NCs in synthesis of CdTe/CdSe core/shell NCs. The Cd concentration and pH are important reaction parameters which should be well controlled in the preparation of core/shell NCs. Too high concentration of Cd or pH would impede the CdSe deposition onto CdTe NCs, and separate nucleation of CdSe can not be avoided.
     CdTe/CdSe core/shell NCs can be applied to selective detection of Cu(II) in waste water and the detection limit was as low as 1.7×10-9mol/L.
     4. Synthesis of solvent dependent ZnxCd1-xS nanoparticles for photodegradation of organic pullutants
     ZnxCd1-xS precursors were prepared by co-precipitating Zn(CH3COO)2 and Cd(CH3COO)2 with sodium diethyldithiocarbamate (DDTC) under certain x in water. Then the precursors were put into different solvents, such as ethanol, water or ethylenediamine at 180℃or 210℃and ZnxCd1-xS nanoparticles were obtained.
     XRD characteristic of ZnxCd1-xS nanoparticles in ethanol showed that hexagonal phase (wurtzite) were formed. As Zn content increased, the diffraction peaks of ZnxCd1-xS nanoparticles moved toward ZnS. Diffraction peaks of (100), (002) and (101) had similar intensity. The (110), (103) and (112) had broad peaks, which illustrated the appearance of nanocrystals.
     ZnxCd1-xS nanoparticles prepared in water showed different crystal structures. In general the ZnxCd1-xS nanoparticles were hexagonal phase. But intensity of diffraction peak (103) decreased gradually with the x increased at high reaction temperature. At the same time new peak appeared around (101). The difference between ZnxCd1-xS nanoparticles should attribute to solvent effect.
     Only ZnxCd1-xS (x=0.83) showed effective photocatalytic activity on 4-CP. ZnxCd1-xS (x=0.83) prepared in different solvents also showed different photocatalytic activity on organic pollutants. ZnxCd1-xS (x=0.83) prepared in ethanol at high temperature (210℃) showed the highest photocatalytic efficiency, and had strong anti-corrosion properties.
     Our results showed that both modulation on composition of ZnxCd1-xS nanoparicles and surface modification through different solvents could effectively improved the photocatalytic activity of ZnxCd1-xS nanoparicles on organic pollutants, which should find potential applications of semiconductor ZnxCd1-xS nanoparicles in photocatalysis.
引文
[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [2]Alivisators A. P., Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996,271(5251):933-937.
    [3]Klein D. L., Roth R. A., Lim K. L., et al. A single-electron transistor made from a cadmium selenide nanocrystal, Nature,1997,389,699-701.
    [4]顾震宇,朱为宏,钟新华,胶体半导体纳米晶的能带宽调控新方法,化学进展,2008,20(5),629-636.
    [5]Peng X. G., Wickham J., Alivisatos A. P., Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ colloidal semiconductor nanocrystal growth:"Focusing" of size distributions, J. Am. Chem. Soc.,120(21):5343-5344.
    [6]Ohtomo A., Kawasaki M., Koida T., Masubuchi K., Koinuma H., Sakurai Y., Yoshida Y., Yasuda T., Segawa Y., MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy, Appl. Phys. Lett.,1998,72(19):2466-2468.
    [7]Bagnall D. M., Chen Y. F., Shen M. Y, Zhu Z., Goto T., Yao T., Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE, J. Crys. Growth.,1998,184/185:605-609.
    [8]殷厚苹,程铸生,用作光存储材料的近红外燃料,上海染料,1999,27(1):10-14.
    [9]Klimov V. I., Mechanisms for Photogeneration and Recombination of Multiexcitons in Semiconductor Nanocrystals:Implications for Lasing and Solar Energy Conversion, J. Phys. Chem. B,2006,110(34),16827-16845.
    [10]Liu Y C., Brandon R., Cate M., Peng X. G., Stony R. and Johnson M., Detection of Pathogens Using Luminescent CdSe/ZnS Dendron Nanocrystals and a Porous Membrane Immunofilter, Anal. Chem.,2007,79(22):8796-8802.
    [11]Gurusinghe N. P., Hewa-Kasakarage N. N., Zamkov M., Composition-Tunable Properties of CdSxTe1-x Alloy Nanocrystals, J. Phys. Chem. C,2008,112(33): 12795-12800.
    [12]Graf C., Hofmann A., Ackermann T., Boeglin C., Viswanatha R., Peng X. G., Rodriguez A. F., Nolting F., and Ruhl E., Magnetic and Structural Investigation of ZnSe Semiconductor Nanoparticles Doped With Isolated and Core-Concentrated Mn2+Ions, Adv. Funct. Mater.,2009,19(15):2501-2510.
    [13]Bailey R. E., Smith A. M., Nie S. M., Quantum dots in biology and medicine, Physica E,2004,25(1):1-12.
    [14]Wei S. H. and Zunger A., Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors:Chemical trends, Phys. Rev. B,1999,60(8): 5404-5411.
    [15]a) Zhong X. H., Feng Y. Y, Knoll W., Ha n M. Y., Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc., 2003,125(44):13559. b) Li Y C., Fu Y. M., Yang C. H., Li Y. F., Composition-and Shape-Controlled Synthesis and Optical Properties of ZnxCd1-xS Alloyed Nanocrystals, Adv. Funct. Mater.,2005,15(3):433-441.
    [16]Peng Z. A. and Peng X. G., Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc.,2001,123(1):183-184.
    [17]Qu L. H., Peng Z. A., and Peng X. G., Alternative Routes toward High Quality CdSe Nanocrystals, Nano Lette.,2001,1(6):333-337.
    [18]Yu W. W. and Peng X. G., Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers, Angew. Chem. Int. Ed.,2002,41(13):2368-2371.
    [19]Battaglia D., Li J. J., Wang Y. J., and Peng X. G., Colloidal Two-Dimensional Systems:CdSe Quantum Shells and Wells, Angew. Chem. Int. Ed.,2003,42(41): 5035-5039.
    [20]Chen Y. F., Kim M., Lian G. D., Johnson M. B., and Peng X. G., Side Reactions in Controlling the Quality, Yield, and Stability of High Quality Colloidal Nanocrystals, J. Am. Chem. Soc.,2005,127(38):13331-13337.
    [21]Peng X. G., An Essay on Synthetic Chemistry of Colloidal Nanocrystals, Nano Res.,2009,2(6):425-447.
    [22]Wang X. Y., Qu L. H., Zhang J. Y., Peng X. G., and Xiao M., Surface-Related Emission in Highly Luminescent CdSe Quantum Dots, Nano Lett.,2003,3(8): 1103-1106.
    [23]Yu W. W., Qu L. H., Guo W. Z., and Peng X. G., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater.,2003, 15(14):2854-2860.
    [24]Yu W. W., Wang Y. A., and Peng X.G., Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals, Chem. Mater.,2003,15(22):4300-4308.
    [25]Blackman B., Battaglia D., Peng X. G., Bright and Water-Soluble Near IR-Emitting CdSe/CdTe/ZnSe Type-Ⅱ/Type-Ⅰ Nanocrystals, Tuning the Efficiency and Stability by Growth, Chem. Mater.,2008,20(15):4847-4853.
    [26]Berezovsky J., Ouyang M., Meier F., Awschalom D. D., Spin dynamics and level structure of quantum-dot quantum wells, Phys. Rev. B.,2005,71(8),081309R (1-4).
    [27]Viswanatha R., Battaglia D. M., Curtis M. E., Mishima T. D., Johnson M. B., Peng X. G., Shape Control of Doped Semiconductor Nanocrystals (d-Dots), Nano Res.,2008,1(2):138-144.
    [28]Aldana J., Lavelle N., Wang Y. J., Peng X. G., Size-Dependent Dissociation pH of Thiolate Ligands from Cadmium Chalcogenide Nanocrystals, J. Am. Chem. Soc., 2005,127(8):2496-2504.
    [29]Xie R. G., Li Z., Peng X. G., Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals, J. Am. Chem. Soc.,2009,131(42): 15457-15466.
    [30]Wei S. H., Zhang S. B., Zunger A., First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, J. Appl. Phys., 2000,87(3):1304-1311.
    [31]Bernard J. E. Zunger A., Electronic Structure of ZnS, ZnSe, ZnTe, and Their Pseudobinary Alloys, Phys. Rev. B,1987,36(6):3199-3228.
    [32]Zhong X. H., Han M. Y., Dong Z. L., White T. J., Knoll W., Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability, J. Am. Chem. Soc.2003,125(28):8589-8594.
    [33]Amir F. Z., Clark K., Maldonado E., Kirk W. P., Jiang J. C., Ager Ⅲ J. W., Yu K. M., Walukiewicz W., Epitaxial growth of CdSexTe1-x thin films on Si(100) by molecular beam epitaxy using lattice mismatch graded structures, J. Crys. Growth, 2008,310(6):1081-1087.
    [34]Franzl T., Muller J., Klar T. A., Rogach A. L., Feldmannl J., Talapin D. V., Weller H., CdSe:Te nanocrystals:Band-edge versus Te-related emission. J. Phys. Chem. C,2007,111(7):2974-2979.
    [35]Bailey R. E. Nie S. M., Alloyed Semiconductor Quantum Dots:Tuning the Optical Properties without Changing the Particle Size, J. Am. Chem. Soc.,2003, 125(23):7100-7106.
    [36]Al-Salim N., Young A. G., Tilley R. D., McQuillan A. J., Xia J., Synthesis of CdSeS Nanocrystals in Coordinating and Noncoordinating Solvents:Solvent's Role in Evolution of the Optical and Structural Properties, Chem. Mater.,2007,19(21): 5185-5193.
    [37]Leea J. H., Songa W. C., Yia J.S., Yangb K.J., Hanc W.D., Hwangd J., Growth and properties of the Cd1-xZnxS thin films for solar cell applications, Thin Solid Films, 2003,431-432,349-353.
    [38]Korgel B. A., Monbouquette H. G., Controlled synthesis of mixed core and layered (Zn,Cd)S and (Hg,Cd)S nanocrystals within phosphatidylcholine vesicles. Langmuir,2000,16(8):3588-3594.
    [39]Wang W., Germanenko L., E1-Shall M. S., Room-Temperature Synthesis and Characterization of Nanocrystalline CdS, ZnS, and CdxZn1-xS. Chem. Mater.,2002, 14(7):3028-3033.
    [40]Sung Y. M., Lee Y J., Park K. S., Kinetic analysis for formation of Cd1-xZnxSe solid-solution nanocrystals. J. Am. Chem. Soc.,2006,128(28):9002-9003.
    [41]Harrison M. T., Kershaw SV., Butt M. G., EychmOller A., Weller H., Rogach A. L., Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence, Mater. Sci. Eng. B,2000,69-70:355-360.
    [42]Kershaw S. V., Burr M. G., Harrison M. T., Rogach A. L., Weller H., Eychmaller A., Colloidal CdTe/HgTe quantum dots with high photoluminescence quantum efficiency at room temperature. Appl. Phys. Lett.,1999,75(12):1694-1696.
    [43]Rogach A. L., HalTion M. T., Kemhaw S. V., Komowski A., Butt M. G., Eychmiiller A., Weller H., Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys. Stat. Sol. B,2001,224(1):153-158.
    [44]Li Y. C., Zhong H. Z., Li R., Zhou Y., Yang C. L., Li Y. F., High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1-xNanocrystals, Adv. Funct.Mater.,2006,16(13):1705-1716.
    [45]Balet L. P., Ivanov S. A., Piryatinski A., Achermann M., Klimov V. I., Inverted Core/Shell Nanocrystals Continuously Tunable between Type-Ⅰ and Type-Ⅱ Localization Regimes, Nano Lett.,2004,4(8):1485-1488.
    [46]Kortan A. R., Hull R., Opila R. L., Bawendi M. G., Steigerwald M. L., Carrol P. J., Brus L. E., Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc.,1990, 112(4):1327-1332.
    [47]a) Haus J. W., Zhou H. S., Honma L., Komiyama H., Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B.,1993,47(3): 1359-1377. b) Schcoss D., Mews A., EychmOller A., Weller H., Quantum-dot quantum well CdS/HgS/CdS:Theory and experiment. Phys. Rev. B,1994,49(24): 17072-17084.
    [48]Zhong X. H., Xie R. G., Zhang Y.,Basch T., Knob W., High-quality violet-to red-emitting ZnSe/CdSe core/shell nanocrystals". Chem. Mater.,2005,17(16): 4038-4042.
    [49]Chen C. Y., Cheng C. T., Yu J. K, Pu S. C., Cheng Y M., Chou P. T., Chou Y H., Chiu H. T., Spectroscopy and Femtosecond Dynamics of Type-Ⅱ CdSe/ZnTe Core-Shell Semiconductor Synthesized via the CdO Precursor. J. Phys. Chem. B, 2004,108(30):10687-10691.
    [50]Wang C. H., Chen T. T., Tan K. W., Chen Y F., Cheng C. T., Chou P. T., Photoluminescence properties of CdTe/CdSe core-shell type-Ⅱ quantumdots. J. Appl. Phys.,2006,99(12):123521-123524.
    [51]Chou P. T., Chen C. Y., Cheng C. T., Pu S. C., W u K. C., Cheng Y. M., Lai C., W., Chou Y. H., Chiu H. T., Spectroscopy and femtosecond dynamics of type-Ⅱ CdTe/CdSe core-shell quantum dots. ChemPhysChem,2006,7(1):222-228.
    [52]a) Klimov V. I., Mikhailovsky A. A., Xu S., Malko A., Hollingsworth J. A. Leatherdale C. A., Eisler H. J., Bawendi M. G., Optical gain and stimulated emission in nanocrystal quantum dots. Science,2000,290(5490):314-317. b) Kim S., Fisher B., Eisler H. J., Bawendi M. G., Type-Ⅱ Quantum Dots:CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructures, J. Am. Chem. Soc.2003,125(38): 11466-11467.
    [53]Kazes M., Lewis D. Y., Ebenstein Y., Mokari T., Banin U., Lasing from semiconductor quantum rods in a cylindrical microcavity. Adv. Mater.,2002,14(4): 317-321.
    [54]Mikhailovsky A. A., Malko A. V., Hollingsworth J. A., Bawendi M. G., Klimov V. I., Multiparticle interactions and stimulated emission in chemically synthesized quantum dots. Appl. Phys. Lett.,2002,80(13):2380-2382.
    [55]McDaniel H., Zuo J. M., Shim M., Anisotropic Strain-Induced Curvature in Type-Ⅱ CdSe/CdTe Nanorod Heterostructures. J. Am. Chem. Soc.,2010,132(10): 3286-3288.
    [56]Niu J. Z., Shen H. B., Zhou C. H., Xu W. W., Li X. M., Wang H. Z., Lou S. Y., Du Z. L., Li L. S., Controlled synthesis of high quality type-Ⅱ/type-Ⅰ CdS/ZnSe/ZnS core/shell1/shell2 nanocrystals, Dalton Trans.,2010,39(13):3308-3314.
    [57]Yoffe A. D., Semiconductor quantum dots and related systems:electronic, optical, luminescence and related properties of low dimensional systems, Adv. Mater.,2001, 50(1):1-208.
    [58]Shieh F., Saunders A. E., Korgel B. A., General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures, J. Phys. Chem. B,2005, 109(18):8538-8542.
    [59]a) Fukumura T., Jin Z.W., Ohtomo A., Koinuma H., Kawasaki M., An oxide-diluted magnetic semiconductor:Mn-doped ZnO, Appl. Phys. Lett.,1999, 75(21):3366-3368. b) Roberti T. W., Cherepy N. J., Zhang J. Z., Nature of the power-dependent ultrafast relaxation process of photoexcited charge carriers in Ⅱ-Ⅵ semiconductor quantum dots:Effects of particle size, surface, and electronic structure, J. Chem. Phys.,1998,108(5):2143-2151. c) Sorokina I. T., Cr2+-doped Ⅱ-Ⅵ materials for lasers and nonlinear optics, Optical Mater.,2004,26(4):395-412.
    [60]a) Dietl T., Ohno H., Ferromagnetism in Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor structures, Physica. E,2001,9(1):185-193. b) Bhatti H. S., Singh K., Verma N. K., Laser induced photoluminescence and morphological characterization of Cd(1-x)-yZn(x)Mn(y)S nanocrystals, J. Mater. Sci.-Mater. El.,2009,20(1):255-259.
    [61]Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A. P., Semiconductor nanocrystals as fluorescent biological labels. Science,1998,281(5385):2013-2016.
    [62]Chan W. C. W., Nie S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science,1998,281(5385):2016-2018.
    [63]Swafford L. A., Weigand L. A., Bowers M. J., McBride J. R., Rapaport J. L. Watt T. L., Dixit S. K., Feldman L. C., Rosenthal S. J., Homogeneously Alloyed CdSxSe1-x Nanocrystal Synthesis, Characterization, and Composition/Size-Dependent Band Gap. J. Am. Chem. Soc.,2006,128(37):12299-12306.
    [64]Kuno M., Higginson K. A., Qadri S. B., Yousuf M., Lee S. H., Davis B. L. Mattoussi H. J., Molecular Clusters of Binary and Ternary Mercury Chalcogenides:Colloidal Synthesis, Characterization, and Optical Spectra. J. Phys. Chem. B,2003,107(24):5758-5767.
    [65]Korta A. R., Hull R., Opila R. L., Bawendi M. G., Steigerwald M. L., Carrol P. J., Brus L. E., Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc.,1990, 112(4):1327-1332.
    [66]Haus J. W., Zhou H. S., Honma L., Komiyama H., Quantum confinement in semiconductor heterostructure nanometer-size particles. Phys. Rev. B,1993,47(3): 1359-1377.
    [67]Schcoss D., Mews A., Eychmuller A., Weller H., Quantum-dot quantum well CdS/HgS/CdS:Theory and experiment. Phys. Rev. B,1994,49(24):17072-17084.
    [68]Isarov A.V., Chrysochoos J., Optical and Photochemical Properties of Nonstoichiometric Cadmium Sulfide Nanoparticles:Surface Modification with Copper(Ⅱ) Ions Langmuir,1997,13(12):3142-3149.
    [69]Gatas-Asfura K. M., Leblanc R. M., Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ). Chem. Commun.,2003,21,2684-2685.
    [70]Chen Y., Rosenzweig Z., Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem.,2002,74(19):5132-5138.
    [71]Cai Z. X., Yang H., Zhang Y., Yan X. P., Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal. Chim. Acta,2006,559(2): 234-239.
    [72]Li J., Mei F., Li W. Y., He X. W., Zhang Y K., Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(Ⅱ). Spectrochim. Acta A,2008, 70(4):811-817.
    [73]Chen B., Yu Y., Zhou Z. T., Zhong P., Synthesis of novel QDs as fluorescent sensors for Hg2+ions. Chem. Lett.,2004,33(12):1608-1609.
    [74]Chen J. L., Gao Y. C., Xu Z. B., Wu G. H., Chen Y. C., Zhu C. Q., A novel fluorescent array for mercury(Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal. Chim. Acta,2006,577(1):77-84.
    [75]Oh E., Hong M. Y., Lee D., Nam S. H., Yoon H. C., Kim H. S., Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc.,2005,127(10):3270-3271.
    [76]Ji X., Zheng J., Xu J., Rastogi V. K., Cheng T. C., DeFrank J. J., Leblanc R. M., (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J. Phys. Chem. B,2005,109(9):3793-3799.
    [77]Chen Y. F., Rosenzweig Z., Luminescent CdS quantum dots as selective ion probes. Anal. Chem.,2002,74(19):5132-5138.
    [78]W. J. Jin, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel, Photo activated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun.,2005,883-885.
    [79]Chan W. C. W., Maxwell D. J., Gao X. H.; Bailey R. E., Han M. Y., Nie S. M., Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.,2002,13(1):40-46.
    [80]Lakowicz J. R., Gryczynski I., Gryczynski Z., Murphy C. J., Luminescence Spectral Properties of CdS Nanoparticles, J. Phys. Chem. B,1999,103(36): 7613-7620.
    [81]Sarkar S. K., Chandrasekharan N., Gorer S., Hodes G., Appl. Phys. Lett.,2002, 81,5045.
    [82]Ruedas-Rama M. J., Hall E. A. H., A quantum dot-lucigenin probe for Cl-Analyst,2008,133(11):1556-1566.
    [83]Jin W. J., Costa-Fernandez J. M., Pereiro R., Sanz-Medel A., Surface-modified CdSe quantum dots as luminescent probes for cyanide determination, Anal. Chim. Acta,2004,522,1-8.
    [84]Jin W. J., Fernandez-Arguelles M. T., Costa-Fernandez J. M., Pereiro R., Sanz-Medel A., Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions, Chem. Commun.,2005,883-885.
    [85]a)祝华,夏宗凤,张曼平,苯酚和对氯苯酚的二氧化钛光催化降解研究,青岛海洋大学学报,1995,25(2):247-254.b)张中海,新型纳米光催化材料的制备及其用于化学需氧量测定的研究,华东师范大学博士学位论文,2008.
    [86]Liao C. H., Mirat D. G., Chemical oxidation by photolytic decomposition of hydrogen peroxide, Environ. Sci. Technol.,1995,29(12):3007-3014.
    [87]曾旭,徐高田,王宇晖,纳米Ti02光催化降解酸性红B的实验研究,环境科学与技术,2006,29(6):16-17.
    [88]杜飞鹏,余颖,曾艳,纳米Ti02光催化氧化技术研究进展,环境科学与技术2004,27(2):94-96.
    [89]Huang C. P., Dong C., Tang Z., Advanced chemical oxidation:its present role and potential future in hazardous waste treatment, Waste Manage,1993,13(5-7):361-377.
    [90]员汝胜,吴保朝,王占义,王绪绪,不同有机化合物在Ti02负载活性炭纤维上的光降解-分子尺寸的影响,工业催化,2007,15(12):52-57.
    [91]a) Fujishima A., Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238,37-38. b) Zou Z. G., Ye J. H., Sayama K., Arakawa H., Direct splitting of water under visible light irradiation witoxide semiconductor photocatalyst, Nature,2001,414,625-627.
    [92]Frank S. N., Bard A. J., Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders, J. Phys. Chem.1977,81(15): 1484-1488.
    [93]Hoffman, M. R., Martin, S. T., Choi, W., Environmental applications of semiconductor photocatalysis, Chem. Rev.1995,95(1):69-96.
    [94]Herrmann, J. M., Guillard, C., Pichat, P., Heterogeneous photocatalysis:An emerging technology for water treatment, Catal. Today,1993,17 (1-2):7-17.
    [95]Yamashita, H.; Ichihashi, Y.; Anpo, M.; Photocatalytic decomposition of NO at 275K on titannium oxides included within Y-zeolite cavities:The structure and role of the active sites, J. Phys. Chem.1996,100 (40):16041-16044.
    [96]Yamashita, H.; Ichihashi, Y.; Harada, M.; Photocatalytic degradation of 1-Octanol on anchored titanium oxide and on TiO2 powder catalysts, J. Catal.1996,158 (1): 97-101.
    [97]Kenji, H.; Teruaki, H.; Photocatalytic degradation of organopnospnorous insecticides in aqueous semiconductor suspensions, Water Res.1990,24 (11): 1415-1417.
    [98]Regan, O.; Gratzel, M.; A low-cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature,1991,353,737-740.
    [99]Hesse, H.; Weickert, C. J.; Al-Hussein, M.; Dossel, L.; Feng, X. L.; Mullen, K.; Schmidt-Mende, L.; Discotic materials for organic solar cells:Effects of chemical structure on assembly and performance, Sol. Energ. Mat. Sol. C.2010,94(3): 560-567.
    [100]Luo, J.; Liu, C. M.; Yang, S. H.; Cao, Y.; Hybrid solar cells based on blends of poly(3-hexylthiophene) and surface dye-modified, ultrathin linear-and branched-TiO2 nanorods, Sol. Energ. Mat. Sol. C.2010,94 (3):501-508.
    [101]Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M.; Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature,1998,395,583-585.
    [102]M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, R. Noufi, Progress toward 20% efficiency in Cu(In,Ca)Se-2 polycrystalline thin-film solar cells, Prog. Photovoltaics,1999,7(4):311-316.
    [103]Kamat P. V., Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters, J. Phys. Chem. C,2008,112(48):18737-18753.
    [104]a) Robel I., Subramanian V., Kuno M., Kamat P. V., Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films, J. Am. Chem. Soc,2006,128(7):2385-2393. b) Nozik A. J., Quantum dot solar cells, Physica E-Low-Dimensional Systems & Nanostructures,2002,14(1-2): 115-120.
    [105]a)唐培松,高活性纳米TiO2的合成、表征及可见光催化性能研究,浙江大学博士论文,2006. b) Brinkley D., Engel T., Evidence for structure sensitivity in the thermally activated and photo catalytic dehydrogenation of 2-propanol on TiO2, J. Phys. Chem. B,2000,104(42):9836-9841.
    [106]Anpo M., Takeuchi M., The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation, J. Catal.,2003,216(1-2): 505-516.
    [107]Yamashita H., Harada M., Anpo M., Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2, Catal. Today,2003,84(3-4):191-196.
    [108]Serpone N., Lawless D., Disdier J., Spectroscopic, photoconductivity, and photocatalytic studies of TiO2 colloids:Naked and with the lattice doped with Cr3+, Fe3+, and V5+cations, Langmuir,1994,10(3):643-652.
    [109]Yuan Z. H., Jia J. H., Zhang L. D., Influence of co-doping of Zn(Ⅰ)+Fe(Ⅲ) on the photocatalytic activity of TiO2 for phenol degradation, Mater. Chem. Phys.,2002, 73(2-3):323-326.
    [110]Choi W. Y.,Termin A., Hoffmann M. R., The Role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem.,1994,98(51):13669-13679.
    [111]Karakitsou K. E., Verykios X. E., Effects of altervalent cation doping of TiO2 on its performance as photocatalyst for water cleavage, J. Phys. Chem.,1993,97(6): 1184-1189.
    [112]a) Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T., Matsumura M., Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Appl. Catal. A-Gen,2004,265(1):115-121. b) Asahi R., Morikawa T., Ohwaki T., Visible-light photocatalysis in nitrogen doped titanium oxides, Science, 2001,293(5528):269-271. c) Lindgren T., Mwabora J. M., Avendano E., Jonsson J., Hoel A., Granqvist C. G., Lindquist S. E., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering, J. Phys. Chem. B,2003,107(24):5709-5716.
    [113]Khan S., Al-Shahry M., Ingler Jr. W. B., Efficient photochemical water splitting by a chemically modified n-TiO2, Science,2002,297(5590):2243-2245.
    [114]Sakthivel S., Janczarek M., Kisch H., Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B,2004, 108(50):19384-19387.
    [115]a) Bessekhouad Y., Robert D., Weber J. V., Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant, J. Photochem. Photobio. A,2004,163(3):569-580. b) Kumar A., Jain A. K., Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole, J. Mol. Catal. A-Chem.,2001, 165(1-2):265-273.
    [116]Wang C., Zhao J. C., Wang X. M., Preparation, characteration and phtotocatalytic of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal. B,2002, 39(3):269-279.
    [117]Ho W.,Yu J. C., Lin J., Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2, Langmuir,2004,20(14):5865-5869.
    [118]Hirai T., Suzuki K., Komasawa I., Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles, J. Coll. Inter. Sci.,2001, 244(2):262-265.
    [119]Vogel R., Hoyer P., Weller H., Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors, J. Phys. Chem.,1994,98(12):3183-3188.
    [120]Vinodgopal K., Kamat P. V., Enhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, Environ. Sci. Technol., 1995,29(3):841-845.
    [121]Linsebigler A. L., Lu G. Q., Yates J. T., Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev.,1995,95(3):735-758.
    [122]Zhao W., Chen C., Li X., Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation:influence of platinum as a functional co-catalyst, J. Phys. Chem. B,2002,106(19):5022-5028.
    [123]Makarova O., Rajh T., Thurnauer M. C., Surface Modification of TiO2 Nanoparticles For Photochemical Reduction of Nitrobenzene, Environ. Sci. Technol. 2000,34(22):4797-4803.
    [124]Janus M., Morawski A. W., New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition, Appl. Catal. B:Environ.,2007, 75(1-2):118-123.
    [125]Lin C. J., Lu Y. T., Hsieh C. H., Chien S. H., Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting, Appl. Phys. Lett.2009,94(11):113102.
    [126]Domenech X., Ayllon J. A., Peral J., H2O2 formation from photocatalytic processes at the ZnO/water interface, Environ. Sci. Pollut. R.,2001,8(4):285-287.
    [127]Ma G. J., Yan H. J., Zong X., et al., Photocatalytic splitting of H2S to produce hydrogen by gas-solid phase reaction, Chinese J. Catal.,2008,29(4):313-315.
    [128]Kwon Y. T., Song K. Y., Lee W. I., Choi G. J., Do Y. R., Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction, J. Catal.,2000,191(1):192-199.
    [129]Santato C., Odziemkowski M., Ulmann M., Augustynski J., Crystallographically oriented Mesoporous WO3 films:Synthesis, characterization, and applications, J. Am. Chem. Soc,2001,123(43):10639-10649.
    [130]Hiskia A., Mylonas A., Papaconstantinou E., Comparison of the photoredox properties of polyoxometallates and semiconducting particles, Chem. Soc Rev.2001, 30(1):62-69.
    [131]Miyauchi M., Nakajima A., Watanabe T., Hashimoto K., Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater.,2002, 14(6):2812-2816.
    [132]Chen F., Xie Y. D., Zhao J. C., Lu G. X., Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation, Chemosphere, 2001,44(5):1159-1168.
    [133]Gao Y., Chen B. H., Li H. L., Ma Y X., Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties, Mater. Chem. Phys., 2003,80(1):348-355.
    [134]Wang W. Z., Germanenko I, El-Shall M. S., Room-temperature synthesis and characterization of nanocrystalline CdS, ZnS, and CdxZn1-xS, Chem. Mater.,2002, 14(7):3028-3033.
    [135]Zong X., Yan H. J., Wu G. P., Ma G. J., Wen F. Y, Wang L., Li C., Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation, J. Am. Chem. Soc.,2008,130(23):7176-7177.
    [136]Li W. J., Li D. Z., Chen Z. X., Huang H. J., Sun M., He Y H., Fu X. Z., High-efficient Degradation of Dyes by ZnxCd1-xS Solid Solutions under Visible Light Irradiation, J. Phys. Chem. C,2008,112(38):14943-14947.
    [137]Dickinson, A., James, D., Perkins, N., Cassidy, T., Bowker, M. J., The photocatalytic reforming of methanol, Mol.Catal. A,1999,146(1-2):211.
    [1]Murray C. M., Norris D. J., Bawendi M. G., Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [2]Pan D., Jiang S., An L., Jiang B., Controllable Synthesis of Highly Luminescent and Monodisperse CdS Nanocrystals by a Two-Phase Approach under Mild Conditions, Adv. Mater.,2004,16(12):982-985.
    [3]Jose R., Zhelev Z., Bakalova R., Baba Y., Ishikawa M., White-Light-Emitting CdSe Quantum Dots Synthesized at Room Temperature, Appl. Phys. Lett.,2006, 89(1):0131151-0131153.
    [4]Xie R. G., Li Z., Peng X. G., Nucleation Kinetics vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals, J. Am. Chem. Soc.,2009,131(42): 15457-15466.
    [5]Wang H. Z., Tashiro A., Nakamura H., Uehara M., Miyazaki M., Watari T., Maeda H., Synthesis of CdSe magic-sized nanocluster and its effect on nanocrystal preparation in a microfluidic reactor, J. Mater. Res,2004,19(11):3157-3161.
    [6]Bailey R. E., Nie S. M., Alloyed Semiconductor Quantum Dots:Tuning the Optical Properties without Changing the Particle Size, J. Am. Chem. Soc.2003, 125(23):7100-7106.
    [7]Yu K., Hu M. Z., Wang R. B., Piolet M. L., Frotey M., Zaman Md. B., Wu X. H., Leek D. M., Tao Y., Wilkinson D., Li C. S., Thermodynamic Equilibrium-Driven Formation of Single-Sized Nanocrystals:Reaction Media Tuning CdSe Magic-Sized versus Regular Quantum Dots, J. Phys. Chem. C,2010,114(8):3329-3339.
    [8]Xia Y. S., Zhu C. Q., Aqueous synthesis of luminescent magic sized CdSe nanoclusters, Mater. Lett.2008,62(14):2103-2105.
    [9]a) Park Y S., Dmytruk A., Dmitruk I., Yasuto N., Kasuya A., Takeda M., Ohuchi N., Aqueous-Phase Synthesis of Ultra-Stable Small CdSe Nanoparticles, J. Nanosci. Nanotechnol.2007,7(11):3750. b) Park Y. S., Dmytruk A., Dmitruk I., Kasuya A., Takeda M., Ohuchi N., et al, Size-Selective Growth and Stabilization of Small CdSe Nanoparticles in Aqueous Solution, ACS Nano,2010,4(1):121-128.
    [10]Williams J. V., Kotov N. A., Savage P. E., A Rapid Hot-Injection Method for the Improved Hydrothermal Synthesis of CdSe Nanoparticles, Ind. Eng. Chem. Res.2009, 48(9):4316-4321.
    [11]Bowers II M. J., McBride J. R., Rosenthal S. J., White-Light Emission from Magic-Sized Cadmium Selenide Nanocrystals, J. Am. Chem. Soc.,2005,127(4): 15378-15379.
    [12]Yu W. W., Qu L., Guo W., Peng X., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater.,2003, 15(14):2854-2860.
    [13]a) Kasuya A., Sivamohan R., Barnakov Y. A., Dmitruk I. M., Nirasawa T., Romanyuk V. R., Kumar V., Mamykin S. V., Tohji K., Jeyadevan B., et al. Ultra-stable nanoparticles of CdSe revealed from mass speetrometry, Nat.Mater.2004,3,99-102. b) Seifert G., Nanomaterials-Nanocluster magic, Nat. Mater.2004,3,77-78. c) Herron N., Calabrese J. C., Farneth W. E., Wang Y., Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core, Science,1993, 259(5100):1426-1428. d) Botti S., Marques M., Identification of fullerene-like CdSe nanoparticles from optical spectroscopy calculations, Physical Review B,2007,75(3): 035311-0353116. e) Chen H. S., Kumar R. V., Discontinuous Growth of Colloidal CdSe Nanocrystals in the Magic Structure, J. Phys. Chem. C,2009,113(1):31-36. f) Nagaoka M., Ishii, S. Noguchi Y., Ohno K., First-Principles Calculation of Photoabsorption Spectra of Cadmium Selenide Clusters, Mater. Trans.,2008,49(11): 2420-2423. g) Gutsev G. L., O'Neal Jr. R. H., Belay K. G., Weatherford C. A., Non-quantum-confinement optics in (CdS)n clusters, Chem. Phys.,2010,368(3): 113-120.
    [14]a) Peng X. G., Manna L., Yang W. D., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Shape control of CdSe nanocrystals, Nature,2000,404,59-61. b) Peng Z. A., Peng X. G., Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, J. Amer. Chem. Soc.,2001,123(1):183-184. c) Ouyang J. Y., Zaman Md. B., Yan F. J., Johnston D., Li G., Wu X. H., Leek D., Ratcliffe C. I., Ripmeester J. A., Yu K., Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses, J. Phys. Chem. C,2008,112(36):13805-13811.
    [15]a) Babentsov V., Sizov F., Defects in quantum dots of ⅡB-Ⅵ semiconductors, Opto-Elecronics Review,2008,16(3):208-225. b) Chen X. B., Samia A. C. S., Lou Y. B., Burda C., Investigation of the Crystallization Process in 2 nm CdSe Quantum Dots, J. Am. Chem. Soc.2005,127,4372-4375. c) Schreuder M. A., McBride J. R., Dukes Ⅲ A. D., Sammons J. A., Rosenthal S. J., Control of Surface State Emission via Phosphonic Acid Modulation in Ultrasmall CdSe Nanocrystals:The Role of Ligand Electronegativity, J. Phys. Chem. C,2009,113, (19):8169-8176. d) Xiong S., Huang S. H., Tang A. W., Teng F., Synthesis and luminescence properties of water-dispersible ZnSe nanocrystals, Mater. Lett.,2007,61,5091-5094.
    [1](a) Murray C. B., Kagan C. R., Bawendi M. G., Synthesis and Characterization of Mondisperse Nanocrystals and Close-Packed Nanocrystal Assemblies, Annu. Rev. Mater. Sci.,2000,30(),545-610. (b) Alivisatos A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots, Science,1996,271(5251):933-937.
    [2](a) Bruchez M. Jr., Moronne M., Gin P., Weiss S., Alivisatos A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels, Science,1998, 281(5385):2013-2016. (b) Chan W. C. W., Nie S. M., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science,1998,281(5385):2016-2018. (c) Akerman M. E., Chan W. C. W., Laakkonen P., Bhatia S. N., Ruoslahti E., Nanocrystal targeting in vivo, Proc. Natl. Acad. Sci. U.S.A.2002,99(20): 12617-12621. (d) Dubertret B., Skourides P., Norris D. J., Noireaux V., Brivanlou A. H., Libchaber A., In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles, Science,2002,298(5599):1759-1762. (e) Wu X. Y., Liu H. J., Liu J. Q., Haley K. N., Treadway J. A., Larson J. P., Ge N. F., Peale F., Bruchez M. P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol.2003,21(),41-46. (f) Jaiswal J. K., Mattoussi H., Mauro J. M., Simon S. M., Long-term multiple color imaging of live cells using quantum dot bioconjugates, Nat.Biotechnol.2003,21 (),47-51. (g) Murphy C. J., Peer Reviewed:Optical Sensing with Quantum Dots, Anal. Chem., 2002,74(19):520A-526A.
    [3]Swafford L. A., Weigang L. A., Bowers ⅡM. J., McBride J. R., Rapaport J. L. Watt T. L., et al. Homogeneously Alloyed CdSxSe1-x Nanocrystals:Synthesis, Characterization, and Composition/Size-Dependent Band Gap, J. Am. Chem. Soc., 2006,128(37):12299-12306.
    [4]Li Y. C., Zhong H. Z., Li R., Zhou Y., Yang C. H., Li Y. F., High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1-x Nanocrystals, Adv. Funct. Mater.2006,16(13):1705-1716.
    [5]Zhou Y., Li Y. C., Zhong H. Z., Hou J. H., Ding Y. Q., Yang C. H., Li Y. F., Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1-x nanocrystals, Nanotechnology,2006,17(16):4041-4047.
    [6]Piven N., Susha A. S., Doblinger M., Rogach A. L., Aqueous Synthesis of Alloyed CdSexTe1-x Nanocrystals, J. Phys. Chem. C,2008,112(39):15253-15259.
    [7]Gurusinghe N. P., Hewa-Kasakarage N. N., Zamkov M., Composition-Tunable Properties of CdSexTe1-x Alloy Nanocrystals, J. Phys. Chem. C,2008,112(33): 12795-12800.
    [8]Kuno M., Higginson K. A., Qadri S. B., Yousuf M., Lee S. H., Davis B. L., et al. Molecular Clusters of Binary and Ternary Mercury Chalcogenides:Colloidal Synthesis, Characterization, and Optical Spectra, J. Phys. Chem. B,2003,107(24): 5758-5767.
    [9]Zhang Y., Li Y., Yan X. P., Aqueous Layer-by-Layer Epitaxy of Type-Ⅱ CdTe/CdSe Quantum Dots with Near-Infrared Fluorescence for Bioimaging Applications, Small,2009,5(2):185-189.
    [10]Chou L. Y. T., Fischer H. C., Perrault S. D., Chan W. C. W., Visualizing Quantum Dots in Biological Samples Using Silver Staining, Anal. Chem.,2009, 81(11):4560-4565.
    [11]Bernard J. E., Zunger A., Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys, Phys. Rev. B,1987,36(6):3199-3228.
    [12]Zhang H., Wang L. P., Xiong H. M., Hu L. H., Yang B., Li W., Hydrothermal Synthesis for High-Quality CdTe Nanocrystals, Adv. Mater,2003,15(20): 1712-1715.
    [13]Gaponik N., Talapin D. V., Rogach A. L., Hoppe K., Shevchenko E. V., Komowski A., et al. Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B,2002,106(29):7177-7185.
    [14]Galema S. A., Microwave chemistry, Chem. Soc. Rev.1997,26(3):233-238.
    [15]Mingos D. M. P., The Applications of Microwaves in Chemical Syntheses, Res. Chem. Intermediat.,1994,20,85-91.
    [16]Chen D., Shen G. Z., Tang K. B., Lei S. J., Zheng H. G., Qian Y. T., Microwave-assisted polyol synthesis of nanoscale SnSx (x=1,2) flakes J. Cryst. Growth.,2004,260(3-4):469-474.
    [17]He Y., Lu H. T., Sai L. M., Lai W. Y., Fan Q. L., Wang L. H., et al. Synthesis of CdTe Nanocrystals through Program Process of Microwave Irradiation, J. Phys. Chem. B,2006,110(27):13352-13356.
    [18]Peng X. G., Wickham J., Alivisatos A. P., Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions, J. Am. Chem. Soc.1998,120(21):5343-5344.
    [19]Wei S. H., Zhang S. B., Zunger A., First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, J. Appl. Phys. 2000,87,1304-1311.
    [20]Willardson R. K., Goering H. L., Compound Semiconductors (Reinhold, New York,1962).
    [21]Wang R. B., Calvignanello O., Ratcliffe C. I., Wu X. H., Leek D. M., Zaman M. B., et al. Homogeneously-Alloyed CdTeSe Single-Sized Nanocrystals with Bandgap Photoluminescence, J. Phys. Chem. C,2009,113(9):3402-3408.
    [22]Ratcliffe C. I., Yu K., Ripmeester J. A., Zaman M. B., Badarau C., Singh S., Solid state NMR studies of photoluminescent cadmium chalcogenide nanoparticles Phys. Chem. Chem. Phys.,2006,8(30):3510-3519.
    [23](a) Efros A. L., Rosen M., Kuno M., Nirmal M., Norris J. D., Bawendi M. G., Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states, Phys. Rev. B,1996,54(7):4843-4856. (b) Efros A. L. Luminescence polarization of CdSe microcrystals, Phys. Rev. B,1992,46(12): 7448-7458.
    [24](a) Franceschetti A., Zunger A., Pseudopotential calculations of electron and hole addition spectra of InAs, InP, and Si quantum dots, Phys. Rev. B,2000,62(4): 2614-2623. (b) Franceschetti A., Zunger A., Direct Pseudopotential Calculation of Exciton Coulomb and Exchange Energies in Semiconductor Quantum Dots, Phys. Rev. Lett.1997,78(5):915-918.
    [25]Hu J. T., Wang L. W., Li L. S., Yang W. D., Alivisatos A. P., Semiempirical Pseudopotential Calculation of Electronic States of CdSe Quantum Rods, J. Phys. Chem. B,2002,106(10):2447-2452.
    [26](a) Wheele S., Dimmock J. O., Exciton Structure and Zeeman Effects in Cadmium Selenide, Phys. Rev.1962,125(6):1805-1815. (b) Marple D. T. F., Effective Electron Mass in CdTe, Phys. Rev.,1963,129(6):2466-2470.
    [27]Bailey R. E., Nie S. M., Alloyed Semiconductor Quantum Dots:Tuning the Optical Properties without Changing the Particle Size, J. Am. Chem. Soc.2003, 125(23):7100-7106.
    [28]Bernard J. E., Zunger A., Optical bowing in zinc chalcogenide semiconductor alloys, Phys. Rev. B,1986,34(8):5992-5995.
    [29]Muthukumarasamy N., Jayakumar S., Kannan M. D., Balasundaraprabhu R., Structural phase change and optical band gap bowing in hot wall deposited CdSexTe1-x thin films, Sol. Energy,2009,83(4):522-526.
    [1]Peng X. G., Manna L., Yang W. D., Wickham J., Scher E., Kadavanich A., Alivisatos A. P., Shape control of CdSe nanocrystals, Nature,2000,404:59-61.
    [2]Zhong X. H., Han M. Y., Dong Z. L., White T. J., Knoll W., Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability, J. Am. Chem. Soc. 2003,125(28):8589-8594.
    [3]Bruchez Jr. M., Moronne M., Gin P., Weiss S., Alivisatos A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels, Science,1998,281(5385):2013-2016.
    [4]Chan W. C. W., Nie S. M., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science 1998,281(5385),2016-2018.
    [5]Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots, Science 2000,290(5490):314-317.
    [6]Artemyev, M. V.; Woggon, U.; Wannemacher, R.; Jaschinski, H.; Langbein, W., Light Trapped in a Photonic Dot:Microspheres Act as a Cavity for Quantum Dot Emission, Nano Lett.2001,1,309-314.
    [7]Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer, Nature,1994,370(): 354-357.
    [8]Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U., Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes, Science,2002,295(5559): 1506-1508.
    [9]Blackman B., Battaglia D. M., Mishima T. D., Johnson M. B., Peng X. G., Control of the Morphology of Complex Semiconductor Nanocrystals with a Type Ⅱ Heterojunction, Dots vs Peanuts, by Thermal Cycling, Chem. Mater.2007,19(15): 3815-3821.
    [10]Dorfs D., Franzl T., Osovsky R., Brumer M., Lifshitz E., Klar T. A., Eychmuller A., Type-Ⅰ and Type-Ⅱ Nanoscale Heterostructures Based on CdTe Nanocrystals:A Comparative Study, Small,2008,4(8):1148-1152.
    [11]Zhong H. Z., Zhou Y., Yang Y., Yang C. H., Li Y. F., Synthesis of Type Ⅱ CdTe-CdSe Nanocrystal Heterostructured Multiple-Branched Rods and Their Photovoltaic Applications, J. Phys. Chem. C,2007,111(17):6538-6543.
    [12]Donega C. de M., Liljeroth P., Vanmaekelbergh D., Physicochemical Evaluation of the Hot-Injection Method, a Synthesis Route for Monodisperse Nanocrystals, Small, 2005,1(12):1152-1162.
    [13]Li J. J., Wang Y. A., Guo W. Z., Keay J. C., Mishima T. D., Johnson M. B., Peng X. G., Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/Shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction, J. Am. Chem. Soc.2003,125(41):12567-12575.
    [14]Rogach A. L., Nagesha D., Ostrander J. W., Giersig M., Kotov N. N., "Raisin Bun"-Type Composite Spheres of Silica and Semiconductor Nanocrystals, Chem. Mater.2000,12(9):2676-2685.
    [15]Gaponik N., Talapin D. V., Rogach A. L., Hoppe K., Shevchenko E. V. Kornowski A., Eychmiiller A., Weller H., Thiol-Capping of CdTe Nanocrystals:An Alternative to Organometallic Synthetic Routes, J. Phys. Chem. B,2002,106(29):
    7177-7185.
    [16]He Y., Lu H. T., Sai L. M., Su Y. Y., Hu M., Fan C. H., Huang W., Wang L. H., Microwave Synthesis of Water-Dispersed CdTe/CdS/ZnS Core-Shell-Shell Quantum Dots with Excellent Photostability and Biocompatibility, Adv. Mater.,2008,20(18):
    3416-3421.
    [17]Duan J. L., Song L. X., Zhan J. H., One-pot synthesis of highly luminescent CdTe quantum dots by microwave irradiation reduction and their Hg2+-sensitive properties, Nano Res,2009,2(1):61-68.
    [18]Yu W. W., Qu L. H., Guo W. Z., Peng X. G., Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals, Chem. Mater.,2003, 15(14):2854-2860.
    [19]Smith A. M., Mohs A. M., Nie S. M., Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain, Nature Nanotech.,2008,4(), 56-63.
    [20]Silva A. A. P., Vasconcellos A. R., Luzzi R., Meneses E. A., Laureto E., Optical properties in complex-structured nanometric quantum wells:Photoluminescence, photoluminescence excitation, and Stokes shift, J. Appl. Phys.,2009,106(), 083521(1-12).
    [21]Chen C. Y., Cheng C. T., Lai C. W., Hu Y. H., Chou P. T., Chou Y. H., Chiu, H. T., Type-Ⅱ CdSe/CdTe/ZnTe (Core-Shell-Shell) Quantum Dots with Cascade Band Edges:The Separation of Electron (at CdSe) and Hole (at ZnTe) by the CdTe Layer, Small,2005,1(12):1215-1220.
    [22]Battaglia D., Li J. J., Wang Y. J., Peng X. G., Colloidal Two-Dimensional Systems:CdSe Quantum Shells and Wells, Angew. Chem. Int. Ed.,2003,42(41): 5035-5039.
    [23]Li J. J., Tsay J. M., Michalet X., Weiss S., Wavefunction engineering:From quantum wells to near-infrared type-Ⅱ colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy, Chem. Phys.,2005,318(1-2):82-90.
    [24]Wang C. H., Chen T. T., Chen Y. F., Ho M. L., Lai C. W., Chou P. T., Recombination dynamics in CdTe/CdSe type-Ⅱ quantum dots, Nanotechnology,2008, 19(11):115702(1-4).
    [25]Osovsky R., Cheskis D., Kloper V., Sashchiuk A., Kroner M., Lifshitz E., Continuous-Wave Pumping of Multiexciton Bands in the Photoluminescence Spectrum of a Single CdTe-CdSe Core-Shell Colloidal Quantum Dot, Phys. Rev. Lett., 2009,102(19):197401(1-4).
    [1]Korgel B. A., Monbouquette H. G., Controlled Synthesis of Mixed Core and Layered (Zn.Cd)S and (Hg,Cd)S Nanocrystals within Phosphatidylcholine Vesicles, Langmuir,2000,16(8):3588-3594.
    [2]Zhong X. H., Feng Y. Y., Knoll W., Han M. Y., Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width, J. Am. Chem. Soc.,2003,125(44): 13559-13563.
    [3]Li Y. C., Ye M. F., Yang C. H., Li X. H., Li Y. F., Composition-and Shape-Controlled Synthesis and Optical Properties of ZnxCd1-xS Alloyed Nanocrystals, Adv. Func. Mater.,2005,15(3):433-441.
    [4]Bhattacharjee B., Mandal S. K., Chakrabarti K., Ganguli D., Chaudhuri S., Optical properties of Cd1-xZnxS nanocrystallites in sol-gel silica matrix, J. Phys. D-APPL. Phys.2002,35(20):2636-2643.
    [5]Lee J. H., Song W. C., Yi J. S., Yang K. J., Han W. D., wang J. H., Growth and properties of the Cd1-xZnxS thin films for solar cell applications, J. Hwang, Thin Solid Films,2003,431,349-353.
    [6]Huynh W. U., Dittmer J. J., Alivisatos A. P., Hybrid Nanorod-Polymer Solar Cells, Science,2002,295(5564):2425-2427.
    [7]Gur N. A., Fromer I., Geier M. L., Alivisatos A. P., Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution, Science,2005,310(5747): 462-465.
    [8]Plass R., Pelet S., Krueger J., Gratzel M., Bach U. J., Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells, J. Phys. Chem. B,2002,106(31): 7578-7580.
    [9]Bruchez M., Moronne M., Gin P., Weiss S., Alivisatos A. P., Semiconductor Nanocrystals as Fluorescent Biological Labels, Science,1998,281(5385): 2013-2016.
    [10]Chan W. C. W., Nie S. M., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection, Science,1998,281(5385):2016-2018.
    [11]Medintz I. L., Uyeda H. T., Goldman E. R., Mattoussi H., Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.2005,4,435-446.
    [12]Calza P., Minero C., Pelizzetti E., Photocatalytic transformations of chlorinated methanes in the presence of electron and hole scavengers, J. Chem. Soc. Faraday Trans.1997,93(21):3765-3772.
    [13]Stafford U., Gray K. A., Kamat P. V., Photocatalytic Degradation of 4-Chlorophenol:a Mechanistically-Based Model, Res. Chem. Intermed.1997,23(4): 355-388.
    [14]Calza P., Minero C., Pelizzetti E., Photocatalytically Assisted Hydrolysis of Chlorinated Methanes under Anaerobic Conditions, Environ. Sci. Technol.1997, 31(8),2198-2203.
    [15]Mas D., Pichat P., Gullard C., Intermediate Products and Reductive Reaction Pathways in the TiO2 Photocatalytic Degradation of 1,1,1-Trichloroethane in Water, Res. Chem. Intermed.1997,23(3):275-290.
    [16]Ruzgas T., Emneus J., Gorton L., Marko V. G., The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds, Anal. Chim. Acta, 1995,311(3):245-253.
    [17]Shankar M. V., Anandan S., Venkatachalam N., Arabindoo B., Murugesan V., Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2, Chemosphere,2006,63(6):1014-1021.
    [18]Lettmann C., Hildenbrand K., Kisch H., Macyk W., Maier W. F., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst, Applied Catalysis B:Environmental,2001,32(4):215-227.
    [19]Liao J. H., Shi L. Y., Yuan S. H., Zhao Y., Fang J. H., Solvothermal Synthesis of TiO2 Nanocrystal Colloids from Peroxotitanate Complex Solution and Their Photocatalytic Activities, J. Phys. Chem. C,2009,113(43):18778-18783.
    [20]Yin H. B., Wada Y., Kitamura T., Yanagida S., Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts, Environ. Sci. Technol,2001,35(1):227-231.
    [21]Li Y. D., Liao H. W., Ding Y., Qian Y. T., Yang L., Zhou G. E., Nonaqueous Synthesis of CdS Nanorod Semiconductor, Chem. Mater.,1998,10(9):2301-2303.
    [22]Wang L., Wei, H. W. Fan Y. J., Liu X. Z., Zhan J. H., Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites, Nanoscale Res. Lett.,2009,4(6):558-564.
    [23]Zhang S. C., Zhang C., Man Y., Zhu Y. F., Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, J. Solid State Chem.,2006,179(1):62-69.
    [24]Li W. J., Li D. Z., Chen Z. X., Huang H. J., Sun M. S., He Y. H., Fu X. Z., High-efficient Degradation of Dyes by ZnxCd1-xS Solid Solutions under Visible Light Irradiation, J. Phys. Chem. C,2008,112(38):14943-14947.
    [25]Chen Y. Q., Zhang X. H., Jia C., Su Y., Li Q., Synthesis and Characterization of ZnS, CdS, and Composition-Tunable ZnxCd1-xS Alloyed Nanocrystals via a Mix-Solvothermal Route, J. Phys. Chem. C,2009,113(6):2263-2266.
    [26]Shi J. S., Yan H. J., Wang X. L., Feng Z. C., Lei Z. B., Li C. Composition-dependent optical properties of ZnxCd1-xS synthesized by precipitable-hydrothemal process, Solid State Commun.,2008,146(5-6):249-252.
    [27]Liu G., Chen Z. G., Dong C. L., Zhao Y. N., Li F., Lu G. Q., M H.. Cheng, Visible Light Photocatalyst:Iodine-Doped Mesoporous Titania with a Bicrystalline Framework, J. Phys. Chem. B,2006,110(42):20823-20828.
    [28]Liu G., Wang X. W., Wang L. Z., Chen Z. G., Li F., Lu G. Q., Cheng H. M., Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states, J. Colloid Interface Sci.,2009,334(2):171-175.
    [29]Kominami H., Kato J., Takada Y., Doushi Y., Ohtania B., Nishimoto S., Inoue M., Inui T., Kera Y., Novel synthesis of microcrystalline titanium(Ⅳ) oxide having high thermal stability and ultra-high photocatalytic activity:thermal decomposition of titanium(Ⅳ) alkoxide in organic solvents, Catal. Lett.,1997,46(3-4):235-240.
    [30]Kominami H., Kato, J. Murakami S., Kera Y., Inoue M., Inui T., Ohtani B., Synthesis of titanium(IV) oxide of ultra-high photocatalytic activity:high-temperature hydrolysis of titanium alkoxides with water liberated homogeneously from solvent alcohols, J. Mol. Catal. A:Chem.,1999,144(1):165-171.
    [31]Kominami H., Kumamotoa H., Kera Y., Ohtani B., Photocatalytic decolorization and mineralization of malachite green in an aqueous suspension of titanium(Ⅳ) oxide nano-particles under aerated conditions:correlation between some physical properties and their photocatalytic activity, J. Photochem. Photobiol. A,2003,160(1-2):99-104.
    [32]Rehman S., Ullah R., Butt A. M., Gohar N. D., Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater.,2009,170(2-3):560-569.
    [33]Mahdavi F., Bruton T. C., Li Y. Z., Photoinduced reduction of nitro compounds on semiconductor particles, J. Org. Chem.,1993,58(3):744-746.
    [34]Lambert T. N., Chavez C. A., Hernandez-Sanchez B., Lu P., Bell N. S., Ambrosini A., Friedman T., Boyle T. J., Wheeler D. R., Huber D. L., Synthesis and Characterization of Titania-Graphene Nanocomposites, J. Phys. Chem. C,2009, 113(46):19812-19823.
    [35]Gudea K., Gun'kob V. M., Blitz J. P., Adsorption and photocatalytic decomposition of methylene blue on surface modified silica and silica-titania, Colloids and Surfaces A:Physicochem. Eng. Aspects,2008,325(1-2):17-20.
    [36]Bohle D. S., Spina C. J., Cationic and Anionic Surface Binding Sites on Nanocrystalline Zinc Oxide:Surface Influence on Photoluminescence and Photocatalysis, J. Am. Chem. Soc.2009,131(12):4397-4404.
    [37]Makarova O., Rajh T., Thurnauer M., Martin A., Kemme P. A., Cropek D., Surface Modification of TiO2 Nanoparticles For Photochemical Reduction of Nitrobenzene, Environ. Sci. Technol.2000,34(22):4797-4803.
    [38]Cropek D., Kemme P. A., Makarova O. V., Chen L. X., Rajh T., Selective Photocatalytic Decomposition of Nitrobenzene Using Surface Modified TiO2 Nanoparticles, J. Phys. Chem. C,2008,112(22):8311-8318.
    [39]Janus M., Kusiak E., Morawski A. W., Carbon Modified TiO2 Photocatalyst with Enhanced Adsorptivity for Dyes from Water, Catal. Lett.,2009,131(3-4):506-511.
    [40]Janus M., Morawski A.W., New method of improving photocatalytic activity of commercial Degussa P25 for azo dyes decomposition, Applied Catalysis B: Environmental,2007,75(1-2):118-123.
    [41]Famengo A., Anantharaman S., Ischia G., Causin V., Natile M. M., Maccato C., Facile and Reproducible Synthesis of Nanostructured Colloidal ZnO Nanoparticles from Zinc Acetylacetonate:Effect of Experimental Parameters and Mechanistic Investigations, Eur. J. Inorg. Chem.,2009,33,5017-5028.
    1 C. M. Murray, D. J. Norris, M. G Bawendi, J. Am. Chem. Soc.1993,115,8706.
    2 D. Pan, S. Jiang, L. An, B. Jiang, Adv. Mater.2004,16,982.
    3 R. Jose, Z. Zhelev, R. Bakalova, Y. Baba, M. Ishikawa, Appl. Phys. Lett.2006,89, 0131151.
    4 K. Yu, M. Z. Hu, R.B. Wang, M. L. Piolet, M. Frotey, Md. B. Zaman, X. H. Wu, D. M. Leek, Y. Tao, D. Wilkinson, C. S. Li, J. Phys. Chem. C,2010,114,3329.
    5 Y. S. Xia, C.Q. Zhu, Mater. Lett.2008,62,2103.
    6 a) Y. S. Park, A. Dmytruk, I. Dmitruk, Y. Noda, A. Kasuya, M. Takeda, N. Ohuchi, et al, J. Nanosci. Nanotechnol.2007,7,3750. b) Y. S. Park, A. Dmytruk, I. Dmitruk, A. Kasuya, M. Takeda, N. Ohuchi, et al, ACS NANO,2010,4,121.
    7 J. V. Williams, N. A. Kotov, P. E. Savage, Ind. Eng. Chem. Res.2009,48,4316.
    8 M. J. Bowers Ⅱ, J. R. McBride, S. J. Rosenthal, J. Am. Chem. Soc.2005,12,15378.
    9 W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater.2003,15,2854.
    10 a) X. G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature,2000,404,59. b) Z. A. Peng, X. G. Peng, J. Amer. Chem. Soc. 2001,123,183. c) J. Y. Ouyang, Md. B. Zaman, F. J. Yan, D. Johnston, G. Li, X. H. Wu, et al. J. Phys. Chem. C,2008,112,13805.
    11 a) V. Babentsov, F. Sizov, Opto-Elecronics Review 2008,16,208. b) X. B. Chen, A. C. S. Samia, Y. B. Lou, C. Burda, J. Am. Chem. Soc.2005,127,4372. c) M. A. Schreuder, J. R. McBride, A. D. Dukes Ⅲ, J. A. Sammons, S. J. Rosenthal, J. Phys. Chem. C 2009,113,8169. d) S. Xiong, S. H. Huang, A. W. Tang, F. Teng, Mater. Lett. 2007,61,5091.
    [1]L. A. Swafford, L. A. Weigang, M. J. Bowers Ⅱ, J. R. McBride, J. L. Rapaport, T. L. Watt, et al., J. Am. Chem. Soc.128,12299 (2006).
    [2]Y. C. Li, H. Z. Zhong, R. Li, Y. Zhou, C. H. Yang, Y. F. Li, Adv. Funct. Mater. 16,1705(2006).
    [3]Y. Zhou, Y. C. Li, H. Z. Zhong, J. H. Hou, Y. Q. Ding, C. H. Yang, Y. F. Li, Nanotechnology,17,4041 (2006).
    [4]N. Piven, A. S. Susha, M. Doblinger, A. L. Rogach. J. Phys. Chem. C 112,15253 (2008).
    [5]N. P. Gurusinghe, N. N. Hewa-Kasakarage, M. Zamkov. J. Phys. Chem. C 112, 12795 (2008).
    [6]M. Kuno, K. A. Higginson, S. B. Qadri, M. Yousuf, S. H. Lee, B. L. Davis, et al. J. Phys. Chem. B 107,5758 (2003).
    [7]Y. Zhang, Y. Li, X. P. Yan. Small 5,185 (2009).
    [8]L. Y. T. Chou, H. C Fischer, S. D. Perrault, W. C. W. Chan. Anal. Chem.81,4560 (2009).
    [9]J. E. Bernard, A. Zunger. Phys. Rev. B 36,3199 (1987).
    [10]H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang, W. Li, Adv. Mater.15, 1712(2003).
    [11]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Komowski, et al. J. Phys. Chem. B 106,7177 (2002).
    [12]S. A. Galema, Chem. Soc. Rev.26,233 (1997).
    [13]D. M. P. Mingos, Res. Chem. Intermediat.20,85 (1994).
    [14]D. Chen, G. Z. Shen, K. B. Tang, S. J. Lei, H. G. Zheng, Y. T. Qian, J. Cryst. Growth 260,469 (2004).
    [15]Y. He, H. T. Lu, L. M. Sai, W. Y. Lai, Q. L. Fan, L. H. Wang, et al. J. Phys. Chem. B 110,13352 (2006).
    [16]S. H. Wei, S. B. Zhang, A. Zunger. J. Appl. Phys.87,1304 (2000).
    [17]R. K. Willardson, H. L. Goering, Compound Semiconductors (Reinhold New York 1962).
    [18]X. G. Peng, J. Wickham, A. P. Alivisatos. J. Am. Chem. Soc.120,5343 (1998).
    [19]R. B. Wang, O. Calvignanello, C. I. Ratcliffe, X. H. Wu, D. M. Leek, M. B. Zaman, et al. J. Phys. Chem. C 113,3402 (2009).
    [20]C. I. Ratcliffe, K. Yu, J. A. Ripmeester, M. B. Zaman, C. Badarau, S. Singh. Phys. Chem. Chem. Phys.8,3510 (2006).
    [21]J. E. Bernard, A. Zunger. Phys. ReV. B 34,5992 (1986).
    [22]N. Muthukumarasamy, S. Jayakumar, M. D. Kannan, R. Balasundaraprabhu. Solar Energy 83,522 (2009).
    [1]B. A. Korgel, H. G. Monbouquette, Langmuir,16 (2000) 3588.
    [2]X. H. Zhong, Y. Y. Feng, W. Knoll, M. Y. Han, J. Am. Chem. Soc.125 (2003) 13559.
    [3]Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li, Y. F. Li, Adv. Func. Mater.15 (2005) 433.
    [4]B. Bhattacharjee, S. K. Mandal, K. Chakrabarti, D. Ganguli, S. Chaudhuri, J. Phys. D-APPL. Phys.35 (2002) 2636.
    [5]J. H. Lee, W. C. Song, J. S. Yi, K. J. Yang, W. D. Han, J. Hwang, Thin Solid Films,431 (2003) 349.
    [6]W. U. Huynh, J. J. Dittmer, A. P. Alivisatos, Science,295 (2002) 2425.
    [7]N. A. Gur, I. Fromer, M. L.Geier, A. P. Alivisatos, Science 310 (2005) 462.
    [8]R. Plass, S. Pelet, J. Krueger, M. Gratzel, U. J. Bach, Phys. Chem. B 106 (2002) 7578.
    [9]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science,281 (1998) 2013.
    [10]W. C. W. Chan, S. M. Nie, Science,281 (1998) 2016.
    [11]I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater.4 (2005) 435.
    [12]P. Calza, C. Minero, E. Pelizzetti, J. Chem. Soc. Faraday Trans.93 (1997) 3765.
    [13]U. Stafford, K. A. Gray, P. V. Kamat, Res. Chem. Intermed.23 (1997) 355.
    [14]P. Calza, C. Minero, E. Pelizzetti, Environ. Sci. Technol.31 (1997) 2198.
    [15]D. Mas, P. Pichat, C. Gullard, Res. Chem. Intermed.23 (1997) 275.
    [16]T. Ruzgas, J. Emneus, L. Gorton, V. G. Marko, Anal. Chem. Acta 31 (1995) 245.
    [17]M. V. Shankar, S. Anandan, N. Venkatachalam, B. Arabindoo, V. Murugesan Chemosphere 63 (2006) 1014.
    [18]C. Lettmann, K. Hildenbrand, H. Kisch, W. Macyk, W. F. Maier, Applied Catalysis B:Environmental 32 (2001) 215.
    [19]J. H. Liao, L. Y. Shi, S. H. Yuan, Y. Zhao, J. H. Fang, J. Phys. Chem. C 113 (2009)18778.
    [20]H. B. Yin, Y. Wada, T. Kitamura, S. Yanagida, Environ. Sci. Technol,35 (2001) 227.
    [21]Y. D. Li, H. W. Liao, Y. Ding, Y. T. Qian, Li Yang, G. E. Zhou Chem. Mater.10 (1998)2301.
    [22]L. Wang, H. W. Wei, Y. J. Fan, X. Z. Liu, J. H. Zhan, Nanoscale Res. Lett.6 (2009) 558.
    [23]S. Zhang, C. Zhang, Y. Man, Y. F. Zhu, J. Solid State Chem.179 (2006) 62.
    [24]W. J. Li, D. Z. Li, Z. X. Chen, H. J. Huang, M. S. Sun, Y. H. He, X. Z. Fu, J. Phys Chem. C 112 (2008)14943.
    [25]Y. Q. Chen, X. H. Zhang, C. Jia, Y. Su, Q. Li, J. Phys. Chem. C 113 (2009) 2263.
    [26]J. S. Shi, H. J. Yan, X. L. Wang, Z. C. Feng, Z. B. Lei, C. Li, Solid State Commun.146 (2008) 249.
    [27]G. Liu, Z. G. Chen, C. L. Dong, Y. N. Zhao, F. Li, G. Q. Lu, H. M. Cheng, J. Phys. Chem. B 110 (2006) 20823.
    [28]G. Liu,; X. W. Wang, L. Z. Wang, Z. G. Chen, F. Li, G. Q. Lu, H. M. Cheng, J. Colloid Interface Sci.334 (2009) 171.
    [29]H. Kominami, J. Kato, Y. Takada, Y. Doushi, B. Ohtania, S. Nishimoto, M. Inoue, T. Inui, Y. Kera, Catal. Lett.46 (1997) 235.
    [30]H. Kominami, J. Kato, S. Murakami, Y. Kera, M. Inoue, T. Inui, B. Ohtani, J. Mol. Catal. A:Chem.144 (1999) 165.
    [31]H. Kominami, H. Kumamotoa, Y. Kera, B. Ohtani, J. Photochem. Photobiol. A 160(2003)99.
    [32]S. Rehman, R. Ullah, A. M. Butt, N. D. Gohar, J. Hazard. Mater.170 (2009) 560.
    [33]F. Mahdavi, T. C. Bruton, Y. Z. Li, J. Org. Chem.58 (1993) 744.
    [34]T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler, D. L. Huber, J. Phys. Chem. C 113(2009)19812.
    [35]K. Gudea, V. M. Gun'kob, J. P. Blitz, Colloids and Surfaces A:Physicochem. Eng. Aspects,325 (2008) 17.
    [36]D. S. Bohle, C. J. Spina, J. Am. Chem. Soc.131 (2009) 4397.
    [37]O. Makarova, T. Rajh, M. Thurnauer, A. Martin, P. A., Kemme, D. Cropek, Environ. Sci. Technol.34 (2000) 4797.
    [38]D. Cropek, P. A. Kemme, O. V. Makarova, L. X. Chen, T. Rajh, J. Phys. Chem. C 112(2008)8311.
    [39]M. Janus, E. Kusiak, A. W. Morawski, Catal. Lett.131 (2009) 506.
    [40]M. Janus, A.W. Morawski, Applied Catalysis B:Environmental 75 (2007) 118.
    [41]A. Famengo, S. Anantharaman, G. Ischia, V. Causin, M. M. Natile, C.Maccato, Eur. J. Inorg. Chem.,33 (2009) 5017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700