用户名: 密码: 验证码:
南秦岭与扬子地体西北缘志留—泥盆系碎屑锆石物源分析及构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分隔华北板块和华南板块的秦岭造山带内部存在两条缝合带,指示其经历了多期裂解和碰撞。南秦岭位于中古生代商丹缝合带与三叠纪勉略缝合带之间,主要由古生代沉积岩、浅变质沉积岩和晚元古代变质火山岩组成。秦岭南侧的华南板块实际上是一个复合地体,由华夏板块和扬子地体在820 Ma左右沿江南造山带拼接而成。中古生代的裂解事件及随后的洋壳扩张使得南秦岭从华南板块中分离。与此同时,东亚的许多地块也开始从冈瓦纳大陆逐步裂解分离,并形成古特提斯洋。由此可见,中古生代是南秦岭,华南板块和冈瓦纳大陆地质演化过程中一个非常重要的时期。本论文通过对扬子地体西北缘泥盆系和南秦岭志留—泥盆系中碎屑锆石的U-Pb年代学和Hf同位素的分析,约束了其这一时期沉积物的物源,并在此基础上探讨了南秦岭、华南板块和冈瓦纳大陆之间的构造古地理关系。
     扬子地体下泥盆统石英砂岩中碎屑锆石的年龄谱主要显示三组年龄区间:0.85-1.0Ga(晚元古代早期),680-800 Ma和650-500 Ma(泛非造山时代),除此之外还有少量但广泛分布的大于1.0 Ga(前格林维尔时代)的年龄。通过对华南板块西北缘下泥盆统的碎屑锆石的U-Pb年龄与华南板块西南缘、印度北缘特提斯喜马拉雅和西澳大利亚珀斯盆地同时期地层碎屑锆石年代学的对比,发现它们的碎屑锆石年龄组成具有高度的相似性。结合对东冈瓦纳大陆格林威尔和泛非造山带的分析,认为上扬子地块下泥盆统石英砂岩物源主要是来自East African Orogen, Kuunga Orogen和华南板块内部(包括江南造山带、汉南-攀西弧和扬子基底)。以上结果显示华南板块在冈瓦纳大陆聚合时期应是东冈瓦纳大陆的一个重要组成部分。这一研究结果质疑了目前被大多数国内外学者所持有的一个观点,即在冈瓦纳大陆聚合时期,华南板块是一个远离冈瓦纳大陆的块体。虽然每个年龄组分的锆石Hf同位素均显示新生地壳生长和早期地壳物质的改造,但是物源流域区域范围内的幔源新生地壳生长主要集中于3.1 Ga,1.9 Ga和1.0 Ga,并且在新生地壳生长之后都经历了长时期对早期地壳物质的改造。另外值得注意的是,Hf同位素显示的物源流域区域范围内的幔源新生地壳生长时间和东冈瓦纳幔源新生地壳生长时间高度吻合[Kemp et al.,2006]。这种现象进一步支持我们所获结论的可靠性。
     南秦岭泥盆—志留系砂岩中大多数碎屑锆石的年龄聚集在以下三个年龄区间:ca.400-500 Ma,ca.750-900 Ma和ca.900-1000 Ma,峰值分别为450 Ma,820 Ma和970Ma。志留系中碎屑锆石的εHf(t)值位于球粒陨石均一线之下,意味着大多数碎屑锆石εHf(t)值指示其原岩产生于古老地壳物质的重熔。泥盆系碎屑锆石的分布特征与志留系碎屑锆石年龄的分布具有很强的相似性,证明在南秦岭泥盆系对志留系具有很强的继承性。泥盆系中除400-500 Ma大多数的碎屑锆石εHf(t)值位于球粒陨石均一线之上,其他年龄组分的锆石的εHf(t)绝大多为负值,与志留系中的一样。400-500 Ma和晚元古代中期(750-900 Ma)的碎屑锆石的形态主要为棱角状,显示出近物源的特点,而年龄为900-1000 Ma以及大于1.0 Ga的碎屑锆石大多数磨圆较好,暗示其物源区较远。已有的秦岭泥盆系沉积研究和北秦岭热年代学资料指示,北秦岭不可能作为南秦岭泥盆-志留系的沉积物源。我们认为南秦岭泥盆-志留系的沉积物提供年龄为加里东期(400-500 Ma)和晚元古代中期(750-900 Ma)碎屑锆石的物源应该为华南早古生代褶皱造山带和江南造山带。南秦岭志留系碎屑锆石Hf同位素特征显示,U-Pb年龄为400-500 Ma的碎屑锆石εHf(t)值指示其原岩为重熔的古老地壳物质,这与华南早古生代褶皱造山带中加里东期的花岗岩多为S型的事实相符。南秦岭下泥盆统西岔河组中的砾岩主要为棱角状黑色硅质岩或硅质泥岩,少数灰质砾石中含有志留系化石。因此,西岔河组的沉积物一部分应来自下伏志留系。其年龄为400-500 Ma且εHf(t)值为正值的碎屑锆石物源应为南秦岭与华南裂解分离过程中发育的幔源岩浆岩组合。我们的研究结果还指示南秦岭在志留纪时期可能与华南早古生代造山带距离较近,也就是说南秦岭很可能是在现今福建和两广地区与华南裂开分离出来的。此后,南秦岭通过商丹缝合带于华北地块相碰撞。与此同时,华南板块与冈瓦纳大陆相分离,并且在漂移过程中经历了顺时针旋转,最终于晚三叠世通过勉略缝合带于南秦岭地体相碰撞,形成秦岭造山带。
The Qinling orogen, dividing the North China block and the South China block, is thought to have evolved by the multistage rifting and collision over a prolonged history, with two mountain chains and two sutures. Between the Middle Paleozoic Shangdan and Triassic Mianlue sutures is the South Qinling orogen, which is predominated by Paleozoic metasedimentary and metavolcanic rocks and Triassic granitoids. South to the Mianlue suture is the South China block, which is actually a composite terrane formed by the assembly of the Yangtze and Cathaysian blocks through the Jiangnan orogen around 820 Ma. Middle Paleozoic rifting and then seafloor spreading led to breakaway of the South Qinling belt from the South China block. Synchronously, separation of East Asian crustal fragments from Gondwanaland and openning the Palaeo-Tethys. Accordingly, it can be concluded that the Middle Paleozoic is a very important period in the evolution of South Qinling belt, the South China block, as well as Gondwana. This dissertation presents a study of detrital zircon U-Pb geochronology and Hf isotope geochemistry of quartz arenites of the Lower Devonian in northwestern margin of Yangtze terrane and Middle Paleozoic sandstones in South Qinling, putting some constraints on their provenance and exploring the tectonic and paleogeograhic relationship between the South Qinling, South China block and Gondwanaland.
     U-Pb detrital zircon geochronology from Lower Devonian quartz arenites of the northwestern margin of the Yangtze block yields dominant early Neoproterozoic (0.85-1.0 Ga), Pan-African (0.5-0.65 Ga) and middle Neoproterozoic (0.68-0.8 Ga) age populations and minor Mesoproterozoic to middle Mesoarchean (1.0-3.0 Ga) ages. Middle Mesoarchean to Mesoproterozoic rocks, however, are widespread in the South China block. Although Hf isotopic compositions show both juvenile crustal growth and crustal reworking for all the age groupings, the crust growth, essentially mantle-derived, occurred mainly around 3.1 Ga,1.9 Ga and 1.0 Ga, respectively. Zircon typology and youngest grain ages indicate that this suite of quartz arenites was the product of multiphase reworking. Abundant magmatic zircon detritus with concordant U-Pb Grenvillian and Pan-African ages, together with accompanying variousεHf(t) values, indicate an exotic provenance for the quartz arenite external to the South China block. Qualitative comparisons of age spectra for the late Neoproterozoic sediments of the Cathaysian Block, early Paleozoic sediments of pre-rift Tethyan Himalaya sequence in North India and lower Paleozoic sandstone from the Perth Basin in West Australia, show that they all have two the largest age clusters representing Grenvillian and Pan-African orogenic episodes. The resemblance of these age spectra and zircon typology suggest that the most likely source for the Lower Devonian quartz arenites of the South China block was the East African Orogen and Kuunga Orogen for their early Grenvillian and Pan-African populations, whereas the Hannan-Panxi arc, Jiangnan orogen, and the Yangtze block basements might have contributed to the detrital zircon grains of the Neoproterozoic and Pre-Grenvillian ages. Hf isotopic data indicate that the crustal evolution of the drainage area matches well with the episodic crust generation of Gondwana [Kemp et al.,2006]. These results imply that the previously suggested position of the SCB in Gondwana should be re-valuated, and the South China block should be linked with North India and West Australia as a part of East Gondwana during the assembly of Gondwana, rather than a discrete continent block in the paleo-Pacific.
     Collectively, the dominant detrital zircon age populations within Siluro-Devonian sandstones in South Qinling are Caledonian age (ca.400-500 Ma), ca.750-900 Ma and ca. 900-1000 Ma, with peak value of 450 Ma,820 Ma and 970 Ma, respectively. MostεHf(t)of detrital zircons from Silurian lie below the line of chondritic uniform reservoir (CHUR), indicating they are the products of reworking preexistent crust. The Hf isotopic character of Devonian resemble Silurian's besides the presence of positiveεHf(t) value in the majority of Devonian detrial zircons with Caledonian age. Most zircons with Caledonian and 750-900 Ma age in Siluro-Devonian are angular or sub-angular, showing the provenance was near. After precluding the possibility of North Qinling behaved as the provenance,the Paleozoic orogenic belt and Jiangnan orogen are inferred as the provenance of providing the detrital zircons with Caledonian and 750-900 Ma age. The presence of Silurian fossils in Devonian strata and positiveεHf(t) value of Caledonian zircons reveal the Devonian's source is the combination of underlying Silurian and igneous rocks formed in the process of rifting between South Qinling and SCB. Of importance, these facts solve the question Where and When South Qinling rifted from SCB, indicating the South Qinling are close to Cathaysian block before splitting.
引文
[1]Allen P.A., From landscapes into geological history [J], Nature,2008a,451:274-276
    [2]Allen P.A., Time scales of tectonic landscapes and their sediment routing systems, In:Landscape Evolution:Denudation, Climate and Tectonics over Different Time and Space Scales [M], Editor(s): Gallagher, Jones, Wainwright, Geological Society of London,2008b, Pages:7-28
    [3]Allen,P.A., Allen,John R., Basin analysis:principles and applications [M], Oxford Blackwell Pub, 2005, ISBN:9780632052073.
    [4]Allen,P.A., Earth surface processes [M], Blackwell Science,1997, ISBN:9780632035076
    [5]Ames, L., Zhou, G., Xiong, B.,1996. Geochronology and isotopic character of ultrahigh pressure metamorphism with implication for collision of the Sino-Korean and Yangtse cratons, central China [J].Tectonics 15,472-489.
    [6]Andersen, T.,2002. Correction of common lead in U-Pb analyses that do not report 204Pb [J]. Chemical Geology 192,59-79.
    [7]Avigad, D., Sandler, A., Kolodner, K., Stern, R.J., McWilliams, M., Miller, N., Beyth, M.,2005. Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes:Environmental implications [J]. Earth and Planetary Science Letters 240:818-826
    [8]Bassett, K. and Busby, C.,2005, Structure and tectonic setting of an intra-arc strike-slip basin (Bisbee Basin, Southern Arizona:in, T.H. Anderson, J.A. Nourse, J.W. McKee and M.B. Steiner, (eds), The Mojave-Sonora megashear hypothesis:Development, assessment, and alternatives [M]:Geological Society of America Special Paper 393, p.359-376.
    [9]Bayly B. Geometry of sbuducted plates and island arcs viewed as a buckling problem [J]. Geology, 1982,10:629-632.
    [10]Bichert-Toft, J., Albarede, F.,1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system [J]. Earth and Planetary Science Letters 148,243-258.
    [11]Blair,T.C; Bilodeau,W.L.1988. Development of tectonic cyclothems in rift, pull apart, and foreland basins:sedimentary response to episodic tectonism [J]. Geology,16,517-520.
    [12]Blank L P, Kamo S L, Williams I S, et al. The application of SHE1MP to Phanerozoic geochronology: A critical appraisal of four zircon standards [J]. Chem Geol,2003,200:171-188
    [13]Boger, S.D., Wilson, C.J.L., Fanning, C.M.,2001. Early Paleozoic tectonism within the East Antarctic craton:The final suture between east and west Gondwana? [J]. Geology 29,463-466.
    [14]Burchfiel, B.C., Chen, Z., Liu, Y., Royden, L.H.,1995, Tectonics of Longmen Shan and adjacent regions, central Chin [J]a. International Geology Review 37.661-735.
    [15]Burrett, C.,1973. Ordovician biogeography and continental drift [J]. Palaeogeography, Palaeoclimatology, Palaeoecology 13,161-201.
    [16]Burrett, C., Long, J., Stait, B.,1990. Early-Middle Palaeozoic biogeography of Asian terranes derived from Gondwana, in:McKerrow, W.S., Scotese, C.R. (Eds.), Palaeozoic Paleogeography and Biogeography [M], Geological Society, London, Memoirs 12,163-174.
    [17]Burrett, C., Stait, B.,1985. South-east Asia as part of an Ordovician Gondwanaland [J]. Earth and Planetary Science Letters 75,184-190.
    [18]Cawood, P.A. Nemchin, A.A.,2000. Provenance record of a rift basin:U/Pb ages of detrital zircons from the Perth Basin, Western Australia [J]. Sedimentary Geology 134,209-234
    [19]Cawood, P.A., Buchan C.,2007. Linking accretionary orogenesis with supercontinent assembly [J]. Earth Science Reviews 82,217-256
    [20]Cawood, P.A., Nemchin, A.A., Strachan, R., Prave, T., Krabendam, M.,2007. Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia [J]. Journal of the Geological Society 164,257-275.
    [21]Chen, A.,1999. Mirror thrusting in the south China Orogenic belt:tectonic evidence from western Fujian, southeastern China [J]. Tectonophysics 305,497-519.
    [22]Chen, J.F., Foland, K.A., Xing, F.M., Xu, X., Zhou, T.X.,1991. Magmatism along the southeast margin of the Yangtze block:Precambrian collision of the Yangtze and Cathaysia Blocks of China [J]. Geology 19,815-818.
    [23]Chu, N.C., Taylor R.N., Chavagnac V., Nesbitt R.W., Boella R.M., Milton J.A., German C.R., Bayon G., Burton K.,2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections [J]. Journal of Analytical Atomic Spectrometry 17,1567-1574.
    [24]Cloetingh,S., Fernandez,M., Munoz,J.A.,Sassi, W.,Horvath,F.,(eds) 1997. Structural controls on sedimentary basin evolution [J]. Tectonophysics,282,1-442.
    [25]Cocks, L.R.M., Torsvik, T.H.,2002. Earth geography from 500 to 400 million years ago:a faunal and palaeomagnetic review [J]. Journal of the Geological Society 159,631-644.
    [26]Collins, A.S., Pisarevsky, S.A.,2005. Amalgamating eastern Gondwana:The evolutionof the Circum-Indian Orogens [J]. Earth Science Reviews 71,229-270.
    [27]Condie, K.C.,1998. Episodic continental growth and supercontinents:a mantle avalanche connection? [J]. Earth and Planetary Science Letters 163,97-108.
    [28]Condie. K. C., Belousova. E., Griffin. W.L., et al.,2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra [J]. Gondwana Research.15:228-242.
    [29]Dalziel, I.W.D.,1997. Neoproterozoic-Palaeozoic geography and tectonics:review, hypothesis, environmental speculation [J]. Geological Society of America Bulletin 109,16-42.
    [30]DeCelles, P.G., Carrapa, B., Gehrels, G.E.,2007. Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina [J]. Geology 35,323-326.
    [31]DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A., Garzanti, E.,2004. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal:implications for timing and diachroneity of initial Himalayan orogenesis [J]. Earth and Planetary Science Letters 227,
    313-330.
    [32]DeCelles, P.G., Gehrels, G.E., Quade, J., LaReau, B., Spurlin, M..2000. Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal [J]. Science 288,497-499.
    [33]DeGraaff-Surpless, K., Graham, S.A., Wooden, J.L., McWilliams, M.O.,2002. Detrital zircon provenance analysis of the Great Valley Group, California:Evolution of an arc-forearc system [J]. Geological Society of America Bulletin 114,1564-1580.
    [34]Dickinson, W.R., Gehrels, GE.,2009. U-Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau:Evidence for transcontinental dispersal and intraregional recycling of sediment. Geological Society of America Bulletin 121,408-433.
    [35]Einsele, G.2000. Sedimentary Basins. Evolution, Facies, and Sediment Budget [M],2nd ed. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong:Springer-Verlag. ISBN 3 540 66193 X. 792 pp.
    [36]Fedo, C.M., Sircombe, K.N., Rainbird, R.H.,2005. Detrital Zircon Analysis of the Sedimentary Record [J]. Reviews in Mineralogy and Geochemistry 58,277-303.
    [37]Fergusson, C.L., Henderson, R.A., Fanning, C.M., Withnall, I.W.,2007. Detrital zircon ages in Neoproterozoic to Ordovician siliciclastic rocks, northeastern Australia:implications for the tectonic history of the East Gondwana continental margin [J]. Journal of the Geological Society 164,215-225.
    [38]Fisher, R.V., Smith, G.A.,(eds) 1991. Sedimentation in volcanic settings. Society of Economic Paleonotologists and Mineralogists [M], Special Publication,45, pp257.
    [39]Fitzsimons, I.C.W.,2000. Grenville-age basement provinces in East Antarctica:evidence for three separate collisional orogens [J]. Geology 28,879-882.
    [40]Gao, S., Zhang, B.-R., Gu, X.-M., Xie, X.-l., Gao, C.-l., and Guo, X.-M.,1995, Silurian-Devonian provenance changes of South Qinling basins:Implications for accretion of the Yangtze (South China) to the North China cratons [J]:Tectonophysics, v.250, p.183-197.
    [41]Gao, S., Zhang, B.-R., Gu, X.-M., Xie, X.-L., Gao, C.-L., Guo, X.-M.,1995. Silurian-Devonian provenance changes of South Qinling basins:implications for accretion of the Yangtze (South China) to the North China Cratons [J]. Tectonophysics 250,183-197.
    [42]Gehrels, G.E., Stewart, J.H., Ketner, K.B.,2002. Cordilleran-margin quartzites in Baja California-implications for tectonic transport [J]. Earth and Planetary Science Letters 199,201-210.
    [43]Gehrels, G.E., Yin, A., Wang, X.,2003. Detrital zircon geochronology of the northeastern Tibetan plateau [J]. Geological Society of America Bulletin 115,881-896.
    [44]Greentree, M.R., Li, Z.X., Li, X.H.,Wu, H.,2006. LateMesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia [J]. Precambrian Research 151,79-100.
    [45]Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Achterbergh, E.V., O'Reilly, S.Y., Shee, S.R.,2000. The Hf isotope composition of cratonic mantle:LAM-MC-1CPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica and Cosmochimica Acta 64,133-147.
    [46]Hanchar, J.M., Hoskin, P.W.O. (Eds.),2003. Zircon. Reviews in Mineralogy and Geochemistry [M] 53, 500 p.
    [47]Hawkesworth, C.J., Kemp, A.I.S.,2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution [J]. Chemical Geology 226,144-162.
    [48]Hawkesworth. C, Cawood. P, Kemp. T, et al.,2009. A Matter of Preservation [J]. Nature,323:49-50.
    [49]Haynes, S.J.,1988. Structural reconnaissance of the Jiangnan geoanticline:a suspect terrane of compressional tectonic characteristics [M]. In:Wiley, HowellD.G. (Ed.), Proc.4th Int. Tectonostratigraphic Terrane Conf. U.S. Geo. Survey, Menlo Park, California, pp.31-33.
    [50]Heller, P.I., Angevine, C.L., Winslow,N.S., Paola,C.,1988. Two-phase stratigraphic model of foreland-basin sequences [J]. Geology,16,501-504.
    [51]Hoffman, P.F.,1991. Did the breakout of Laurentia turn Gondwanaland inside out? [J]. Science 252, 1409-1412.
    [52]Hsu, K. J., Wang, Q., Li, J., Zhou, D., and Sun, S.,1987, Tectonic evolution of Qinling Mountains, China:Eclogae Geologicae Helvetiae, v.80, p.735-752.
    [53]Huang, B., Zhou, Y., Zhu R.,2008. Discussions on Phanerozoic evolution and formation of continental China, based on paleomagnetic studies [J]. Earth Science Frontiers 15,348-359.
    [54]Huang, B.C., Zhu, R.X., Otofuji, Y., Yang, Z.Y.,2000a. The Early Paleozoic paleogeography of North China block and other major blocks of China [J]. Chinese Science Bulletin 45,1057-1065.
    [55]Huang, G.C., Wang, Q.W., Yang, S.Y.,2000. Zircon U-Pb ages and their geologic implication of porphyroid in the western Guangdong Province [J]. Geol.-Geochem.28 (4),48-52 (in Chinese with English abstract).
    [56]Huang, K., Opdyke, N.D., Zhu R.,2000b. Further paleomagnetic results from the Silurian of the Yangtze block and their implications. [J] Earth and Planetary Science Letters 175,191-202.
    [57]Iizuka, T., Hirata, T.,2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique [J]. Chemical Geology 220, 121-137.
    [58]Ingersoll, RV and Busby, CJ,1995, Tectonics of sedimentary basins:In, CJ Busby and RV Ingersoll (Eds.), Tectonics of Sedimentary Basins [M], Blackwell Science, p.1-52.
    [59]Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A.,2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology [J]. Chemical Geology 211,47-69.
    [60]Ji, S.C., Wang, Q., Salisbury, M.H.,2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio [J]. Tectonophysics.463,15-30
    [61]Jiang, G., Sohl, L.E., Christie-Blick, N.,2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (South China) [J]. Paleogeographic implications. Geology 31, 917-920.
    [62]Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D.,2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon [J]. Nature 439,580-583.
    [63]Komar, P.D.,2007. The entrainment, transport, and sorting of heavy minerals by waves and currents,
    in:Mange, M.A., Wright, D.T. (Eds.), Heavy Minerals in Use [M]. Elsevier, Amsterdam, Developments in Sedimentology 58. pp.3-48.
    [64]Kroner, A., Zhang, G.-W., Zhou, D.-W., and Sun,Y.,1993, Granulites in the Tongbai area, Qinling belt, China:Geochemistry, petrology, single zircon geochronology and implications for the tectonic evolution of eastern Asia [J]. Tectonics, v.12, p.245-255.
    [65]Leier, A.L., Kapp, P., Gehrels. G.E., DeCelles, P.G.,2007. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet [J]. Basin Research 19,361-378.
    [66]Lerch M F, Xue F, Kroner A, et al. A middle Silurian-Early Devonian magmatic arc in the Qinling Mountains of central China [J]. J Geol,1995,103:437-449
    [67]Li et al. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks [J]. Precambrian Research,2009,174:117-128.
    [68]Li X H, Li Z X, Li W X, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China:a major igneous event in respond to foundering of a subducted flat-slab? [J]. Lithos,2007,96:186-204
    [69]Li X H, Liang X R, Sun M, et al. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation [J]. Chem Geol,2001,175:225-235
    [70]Li, S.G., Chen, Y.Z., Cong, B.L., Zhang, Z., Zhang, R., Liou, D., Hart,S.R., Ge, N.,1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites:timing and processes [J].Chemical Geology 109,70-89.
    [71]Li, W.X., Li, X.H., Li, Z.X.,2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance [J]. Precambrian Research 136,51-66.
    [72]Li, W.X., Li, X.H., Li, Z.X., Lou, F.S.,2008c. Obduction-type granites within the NE Jiangxi Ophiolite:implications for the final amalgamation between the Yangtze and Cathaysia Blocks [J]. Gondwana Research 13,288-301.
    [73]Li, X.H.,1999. U-Pb zircon ages of granites from the southern margin of the Yangtze margin:timing of Neoproterozoic Jinning Orogen in SE China and implication for Rodinia assembly [J]. Precambrian Research 97,43-57.
    [74]Li. X.H., Li, W.X., Li, Z.X., Liu, Y.,2008b.850-790Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China:A major episode of continental rift magmatism during the breakup of Rodinia [J]. Lithos 102,341-357.
    [75]Li, X.H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y., Wingate, M.T.D.,2003a. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca.825Ma? [J]. Precambrian Research 122,45-83.
    [76]Li, X.H., Li, Z.X., Zhou, H., Liu, Y., Liang, X., Li, W.,2002a. SHRIMP zircon U-Pb age, geochemistry and Nd isotope of the Guandaoshan granite in western Sichuan:petrogenesis and tectonic implications [J]. Science in China (Series D) 32,60-68.
    [77]Li, X.H., Zhao, J.X., Mculloch, M.T., Zhou, G.Q., Xing, F.M.,1997. Geochemical and Sm-Nd isotopic study of Neoproterozoic Ophiolites from southeastern China:Petrogenesis and tectonic implication [J]. Precambrian Research,81,129-144.
    [78]Li, Z.M.,1994. Ordovician, in:Yin H.F. (Eds.), The Paleobiogeography of China [M]. Clarendon Press, Oxford, pp.64-87.
    [79]Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., DeWaele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S.N., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V.,2008a. Assembly, configuration, and breakup history of Rodinia:a synthesis [J]. Precambrian Research 160,179-210.
    [80]Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H.W.,2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents:evidence for a mantle superplume that broke up Rodinia [J]. Precambrian Research 122, 85-109.
    [81]Li, Z.X., Li, X.H., Zhou, H., Kinny, P.D.,2002b, Grenvillian continental collision in south China:New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia [J]. Geology,30, 163-166.
    [82]Li, Z.X., Powell, C.M.,2001. An outline of the paleogeographic evolution of the Australasian region since the beginning of the Neoproterozoic [J]. Earth Science Reviews 53,237-277.
    [83]Li, Z.X., Zhang, L., Powell, C.M.,1995. South China in Rodinia:part of the missing link between Australia-East Antarctica and Laurentia? [J]. Geology 23,407-410.
    [84]Lin, J.L., Fuller, M., Zhang, W.Y.,1985. Preliminary Phanerozoic polar wander paths for the North and South China blocks [J]. Nature 313,444-449.
    [85]Liu X.M., Gao S., Diwu C.R., and Ling W.L.,2008. Precambrian crustal growth of Yangtze Craton as revealed by detrital zircon studies [J]. American Journal of Science 308,421-468.
    [86]Liu, X.M., Gao, S., Ling, W.L., Yuan, H.L., and Hu, Z.C.,2006. Identification of 3.5Ga detrital zircons from Yangtze craton in south China and the implication for Archean crust evolution [J]. Progress in Natural Science 16,663-666.
    [87]Ludwig, K.R.,2003. ISOPLOT 3:a geochronological toolkit for Microsoft excel [M]. Berkeley Geochronology Centre Special Publication 4,74 p.
    [88]MacDonald,D.I.M.,(eds) 1991.Sedimentation, Tectonics and Eustasy. Sea Level Changes at Active Margins [M]. International Association of Sediemntologists, Special Publication,12.
    [89]Mccann, T.& Saintot, A. (eds).2003. Tracing Tectonic Deformation Using the Sedimentary Record [M]. Geological Society Special Publication no.208. vii+356 pp. London, Bath:Geological Society of London. ISBN 1 86239 129 7
    [90]Meert, J.G.,2003. A synopsis of events related to the assembly of eastern Gondwana [J]. Tectonophysics 362,1-40.
    [91]Meert, J.G.,2003.Growing Gondwana and Rethinking Rodinia:A Paleomagnetic Perspective [J]. Gondwana Research 4,279-288
    [92]Meert. J.G., Lieberman, B.S.,2008. The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran-Cambrian radiation [J]. Gondwana Research 14,5-21
    [93]Meert, J.G., Torsvik, T.H.,2003. The making and unmaking of a supercontinent:Rodinia revisited [J]. Tectonophysics 375,261-288.
    [94]Meng, Q., Zhang, G.,2000. Geologic framework and tectonic evolution of the Qinling Orogen, central China [J]. Tectonophysics 323 (3-4),183-196.
    [95]Meng, Q.R., Wang, E., Hu, J.M.,2005. Mesozoic sedimentary evolution of the northwest Sichuan basin:Implication for continued clockwise rotation of the South China block [J]. Geological Society of America Bulletin 117,396-410.
    [96]Meng, Q.-R., Zhang, G.-W.,1999. Timing of collision of the North and South China blocks: controversy and reconciliation [J]. Geology 27,123-126.
    [97]Metcalfe, I.,1988. Origin and assembly of Southeast Asian continental terranes, in:Audley-Charles, M.G., Hallam, A. (Eds.), Gondwana and Tethys [M]. Geological Society, London, Special Publications 37,101-118.
    [98]Metcalfe, I.,1996a. Pre-Cretaceous evolution of SE Asian terranes, in:Hall, R., Blundell, D. (Eds.), Tectonic Evolution of Southeast Asia [M]. Geological Society, London, Special Publications 106, pp. 97-122.
    [99]Metcalfe, I.,1996b. Gondwanaland dispersion, Asian accretion and evolution of Eastern Tethys [J]. Australian Journal of Earth Sciences 43,605-623.
    [100]Metcalfe, I.,2006. Palaeozoic and Mesozoic tectonic evolution and paleogeography of East Asian crustal fragments:The Korean Peninsula in context [J]. Gondwana Research 9,24-46.
    [101]Mezger, K., Cosca M.A.,1999. The thermal history of the Eastern Ghats belt (India) as revealed by U-Pb and 40Ar/39Ar dating of metamorphic and magmatic minerals:implications for the SWEAT correlation [J]. Precambrian Research 251-271.
    [102]Powell, C.M., Pisarevsky, S.A.,2002. Late Neoproterozoic assembly of East Gondwana [J]. Geology 30,3-6.
    [103]Prothero, D.R., Schwab, F.,2004. Sedimentary geology:an introduction to sedimentary rocks and stratigraphy [M]. W.H.Freeman, New York.
    [104]Qiu. Y.M., Gao, S., McNaughton, N.J., Groves, D.I., and Ling, W.L.,2000. First evidence of>3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics [J]. Geology 28,11-14.
    [105]Ratschbacher, L., Hacker, B.R., Calvert, A.T., Webb, L.E., Grimmer, J.C., Mc Williams, M.O., Ireland, T., Dong, S., Hu, J.,2003. Tectonics of the Qinling (central China):tectonostratigraphy, geochronology, and deformation history [J]. Tectonophysics 366,1-53.
    [106]Ren, J.S.,1991. On the geotectonics of southern China [J]. Acta Geol. Sin.4 (2),111-136
    [107]Ren, J.S., Zhang, Z.K., Niu, B.G., Liu, Z.G.,1991. On the Qinling orogenic belt:integration of the Sino-Korean and Yangtze blocks. In:Ye, L.J., Qian, X.L., Zhang, G.W. (Eds.), A selection of papers presented at the conference on the Qinling orogenic belt [M]. Northwest University Press,
    Xi'an, pp.99-110
    [108]Rino, S., Kon, Y., Sato,W., Maruyama, S., Santosh, M., Zhao, D.,2008. The Grenvillian and Pan-African orogens:world's largest orogenies through geologic time, and their implications on the origin of superplume [J]. Gondwana Research 14,51-72.
    [109]Santosh, M., Maruyama, S., Sato, K.,2009b. Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? [J]. Gondwana Research 16,321-341
    [110]Santosh, M., Maruyama, S., Yamamoto, S.,2009a. The making and breaking of supercontinents: Some speculations based on superplumes, super downwelling and the role of tectosphere [J]. Gondwana Research 15,324-341
    [111]Scherer, E.E., Whitehouse, M.J., Miinker, C.,2007. Zircon as a monitor of crustal growth [J]. Elements 3,19-24.
    [112]Sengor, A.M.C.,1985. East Asia Tectonic Collage [J]. Nature 318,16-17.
    [113]Shu, L.S., Charvet, J., Shi, Y.S., Faure, M., Cluzel, D., Guo, L.Z.,1991. Structural analysis of the Nanchang-Wanzai sinistral ductile shear zone (Jiangnan region, South China) [J]. J. SE Asian Earth Sci.6 (1),13-23.
    [114]Sircombe, K.N.,2004. AGEDISPLAY:an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions [J]. Computers & geosciences 30,21-31.
    [115]Sircombe, K.N., Bleeker, W., Stern, R.A.,2001. Detrital zircon geochronology and grain-size analysis of a~2800 Ma Mesoarchean proto-cratonic cover succession, Slave Province, Canada [J]. Earth and Planetary Science Letters 189,207-220.
    [116]Soderlund, U., Patchett, P.J., Vervoort, J.D., Isachsen, C.E.,2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions [J]. Earth and Planetary Science Letters 219,311-324.
    [117]Stern, R.J.,2008. Neoproterozoic crustal growth:the solid Earth system during a critical episode of the Earth history [J]. Gondwana Research 14,33-50.
    [118]Sun, W.H., Zhou, M.F.,2008. The~860-Ma Cordilleran-type Guandaoshan dioritic pluton in the Yangtze block SW China:implications for the origin of Neoproterozoic magmatism [J]. The Journal of Geology 116,238-253.
    [119]Sun, W.H., Zhou, M.F., Gao J.F., Yang, Y.H., Zhao, X.Fu., Zhao, J.H.,2009. Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze block, SW China. [J] Precambrian Research 172,99-126.
    [120]Turcotte, D. L.& Schubert, G.2002. Geodynamics [M],2nd ed. Cambridge, New York, Melbourne:Cambridge University Press.456 pp.
    [121]Wang T, Wang X X, Tian W, et al. North Qinling Paleozoic granite associations and their variation in space and time:Implications for orogenic processes in the orogens of central China [J]. Sci China Ser D-Earth Sci,2009,52, doi:10.1007/s 11430-009-0129-5
    [122]Wang, Q.C., Sun, S., Li, J.L., Zhou, D., Hsu, J.K., Zhang, G.W.,1989. The tectonic evolution of
    the Qinling mountain belt [J]. Scientia Geologica Sinica 24,129-142 (in Chinese with English Abstract).
    [123]Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu. J.S., O'Reilly S.Y.. Xu, X.S., Liu, X.M., Zhang, G.L.,2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen:Dating the assembly of the Yangtze and Cathaysia Blocks [J]. Precambrian Research 159, 117-131.
    [124]Wang, X.L., Zhou, J.C., Qiu, J.S., Jiang, S.Y., Shi, Y.R.,2008. Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China:implications for petrogenesis and post-orogenic extension [J]. Geological Magazine 145,215-233.
    [125]Wang, X.L., Zhou, J.C., Qiu, J.S., Zhang, W.L., Liu, X.M., Zhang, G.L.,2006. LA-ICP-MS zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution [J]. Precambrian Research 145,111-130.
    [126]Wang, Y.J., Zhang, Y.H., Fan, W.M., Peng, T.P.,2005. Structural signatures and 40Ar/39Ar geochronology of the Indosinian Xuefeng transpressive belt, South China Interior [J]. J. Struct. Geol. 27,985-998.
    [127]Wang, Y.J., Zhang, Y.H., Fan, W.M., Xi, X.W., Guo, F., Lin, G.,2002. Numerical modeling for generation of Indo-Sinian peraluminous granitoids Hunan Province:basaltic underplating vs tectonic thickening [J]. Sci. China, Ser. D 45 (11),1042-1056.
    [128]Woodhead J., Hergt J., Shelley M., Eggins S., Kemp R.,2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation [J]. Chemical Geology 209,121-135.
    [129]Worley, B.A., Wilson, C.J.L.,1996, Deformation partitioning and foliation reactivation during transpressional orogenesis, and example from the central Longmen Shan, China [J]. Journal of Structural Geology 395-411.
    [130]Wu, R.X., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Zhang, S.B., Liu, X.M., Wu, F.Y.,2006. Reworking of juvenile crust:element and isotope evidence from Neoproterozoic granodiorite in South China [J]. Precambrian Research 146,179-212.
    [131]Wu, Y.B., Zheng, Y.F., Tang, J., Gong, B., Zhao, Z.F., Liu, X.M.,2007. Zircon U-Pb dating of water-rock interaction during Neoproterozoic rift magmatism in South China [J]. Chemical Geology 246,65-86.
    [132]Xu, S.J., Liu, W.Z., Wang, R.C., Yu, H.B., Li, D.M., Wan, J.L., Fang, Z.,2004. The history of crustal uplift and metamorphic evolution of Panzhihua-Xichang micro-palaeoland, SW China [J]. Science in China (Series D) 47,689-703.
    [133]Xu, Z.-Q., Lu, Y.-L., Tang, Y.-Q., and Zhang, Z.-T.,1988, Formation of composite mountain chains of the East Qinling-Deformation, evolution, and plate dynamics[M]:Beijing, China Environmental Science Press,193 p.
    [134]Xue F, Kroner A, Reischmann T, et al. Palaeozoic pre-and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid [J]. J Geol Soc London,1996,153:409-417。
    [135]Yan Z, Wang ZQ, Wang T, Yan QR, Xiao WJ and Li JL.2006. Provenance analysis and tectonic setting of the clastic deposits of the Xi-Cheng Basin in the Qinling orogen, central China [J]. Journal of Sedimentary Research,76:557-574
    [136]Yan, Q.R., Hanson, A.D., Wang, Z.Q., Druschke, P.A., Yan, Z., Wang, T., Liu, D.Y., Song, B., Pan, P., Zhou, H., Jiang, C.F.,2004. Late Proterozoic subduction and rifting on the northern margin of the Yangtze Plate China:implications for Rodinia reconstruction [J]. International Geology Review 46, 817-832.
    [137]Yang, J.H., Wu, F.Y., Chung, S.L., Wilde, S.A., Chu, M.F.,2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China [J]. Earth and Planetary Science Letters 246, 336-352.
    [138]Yang, J.L.,1994. Cambrian, in:Yin, H.F. (Eds.), The Palaeobiogeography of China [M]. Clarendon Press, Oxford, pp.35-63.
    [139]Yang, Z., Sun, Z., Yang, T., Pei, J.,2004. A long conection (750-380 Ma) between South China and Australia:paleomagnetic constraints [J]. Earth and Planetary Science Letters 220,423-434.
    [140]Ye, M.F., Li, X.H., Li, W.X., Liu, Y, Li, Z.X.,2007. SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block [J]. Gondwana Research 12,144-156.
    [141]Yu, J.H., O'Reilly, S.Y., Wang, L.J., Griffin, W.L., Zhang, M., Wang, R.C., Jiang, S.Y, Shu, L.S., 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb geochronology and Hf isotopes of detrital zircons [J]. Precambrian Research 164,1-15.
    [142]Yuan, H.L., Gao, S., Dai, M. N., Zong, C. L., Gunther, D., Fontaine, G. H., Liu, X.M., Diwu, C. R.,2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser ablation quadrupole and multiple collector ICP-MS [J]. Chemical Geology 247,100-118.
    [143]Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther, D., Wu, F.Y.,2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry [J]. Geoanalytical and Geostandard Research 28,353-370.
    [144]Zhai, X., Day, H.W., Hacker, B.R., You, Z.,1998. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central [J]. China.Geology 26,371-374.
    [145]Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y,2006a. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters 252,56-71.
    [146]Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y.,2006b, Zircon isotope evidence for≥3.5 Ga continental crust in the Yangtze craton of China[J]:Precambrian Research 146,16-34.
    [147]Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y.,2006c. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]:Precambrian Research 151,265-288.
    [148]Zhao, G.C., Cawood, P.A.,1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block:implications for Neoproterozoic collision-related assembly of the South China craton[J]. American Journal of Science 299,309-339.
    [149]Zhao, G.C., Cawood, P.A.,1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia Block:implications for Neoproterozoic collision-related assembly of the South China craton[J]. American Journal of Science 299,309-339.
    [150]Zhao, J.H., Zhou, M.F.,2007. Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province SW China):implications for subduction-related metasomatism in the upper mantle [J]. Precambrian Research 152, 27-47.
    [151]Zhao, X.X., Coe, R.S.,1987, Paleomagnetic constraints on the collision and rotation of north and south China [J]. Nature 327,141-144.
    [152]Zhao, X.X., Coe, R.S., Gilder, S.A., Frost, G.M.,1996. Paleomagnetic constraints on the paleogeography of China:implications for Gondwanaland [J]. Australian Journal of Earth Sciences 43, 643-672.
    [153]Zhao, Z.C., Coe, R.S.,1987. Paleomagnetic constraints on the collision and rotation of North and South China [J]. Nature 327,141-144.
    [154]Zheng, J. P., Griffin, W. L., O'Reilly, S. Y., Zhang, M., Pearson, N.,2006. Widespread Archean basement beneath the Yangtze Craton [J]. Geology 34,417-420.
    [155]Zheng, R.C., Liu, W.J., Li. X.H., Weng, H.F, Chen, Y.R.,1997. Depositional Systems and Cyclic Sequences of Pingyipu Formation Longmenshan Area [J]. Acta Sedimentologica Sinica 15,1-7.
    [156]Zheng, Y.F., Wu, Y.B., Chen, F.K., Gong, B., Li, L., Zhao, Z.F.,2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic [J]. Geochimica and Cosmochimica Acta 68,4145-4165.
    [157]Zheng, Y.F., Zhang, S.B., Zhao, Z.F.,Wu, Y.B., Li, X.H., Li, Z.X.,Wu, F.Y.,2007. Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust [J]. Lithos 96,127-150.
    [158]Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Zhang, S.B., Liu, X.M., Wu, F.Y.,2006a. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen [J]. Chemical Geology 231,135-138.
    [159]Zhou J.C., Wang, X.L., Qiu, J.S.,2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China:Coeval arc magmatism and sedimentation [J]. Precambrian Research 170,27-42.
    [160]Zhou X M, Sun T, Shen W, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution [J]. Episodes,2006,29:26-33
    [161]Zhou, J.B., Li, X.H., Ge, W.C., Li, Z.X.,2007. Age and origin of middle Neoproterozoic mafic magmatism in southern Yangtze block and relevance to the break-up of Rodinia [J]. Gondwana Research 12,184-197.
    [162]Zhou, M.F., Kennedy, A.K., Sun, M., Malpas, J., Lesher, C.M.,2002a. Late Proterozoic arc-related mafic intrusions along the northern margin of South China:implications for the accretion of Rodinia [J]. The Journal of Geology 110,611-618.
    [163]Zhou, M.F., Ma, Y.X., Yan, D.P., Xia, X.P., Zhao, J.H., Sun, M.,2006a. The Yanbian terrane (Southern Sichuan Province, SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze block [J]. Precambrian Research 144,19-38.
    [164]Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y.Q., Ding, J.,2002b. SHRIMP U-Pb zircon geochronological and geochemical evidence for Late Proterozoic arc magmatism along the western margin of the Yangtze block, South China [J]. Earth and Planetary Science Letters 196,51-67.
    [165]Zhou, M.F., Yan, D.P., Wang, C.L., Qi, L., Kennedy, A.,2006b. Subduction related origin of the 750Ma Xuelongbao adakitic complex (Sichuan Province, China):implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China [J]. Earth and Planetary Science Letters 248,286-300.
    [166]Zhu, R.X., Yang, Z.Y., Wu, H.N., Ma, X.H., Huang, B.C., Meng, Z.F., Fang D.J.,1998. Paleomagnetic constraints on the tectonic history of the major blocks of China duing the Phanerozoic [J]. Science in China (Series D) 28,44-55 (Supplement).
    [167]Zhu, W.G., Zhong, H., Deng, H.L., Wilson, A.H., Liu, B.G., Li, C.Y., Qin, Y.,2006. SHRIMP zircon U-Pb age, geochemistry, and Nd-Sr isotopes of the Gaojiacun mafic-ultramafic intrusive complex, Southwest China [J]. International Geology Review 48,650-668.
    [168]Zimmermann, U., Spalletti, L.A.,2009. Provenance of the Lower Paleozoic Balcarce Formation (Tandilia System, Buenos Aires Province, Argentina):Implications for Paleogeographic reconstructions of SW Gondwana [J]. Sedimentary Geology 219,7-23.
    [169]陈隽璐,何世平,王洪亮,等.秦岭祁连造山带接合部位基性岩墙的LA-ICPMS锆石U-Pb年龄及地质意义[J].岩石矿物学杂志,2006,25(6):455-462
    [170]陈隽璐,李好斌,王洪亮,等.秦祁结合部位王家岔石英闪长岩体锆石LA-ICPMS定年及地质意义[J].吉林大学学报(地球科学版),2007,37(3):423-431
    [171]陈隽璐,徐学义,王洪亮,等.北秦岭西段唐藏石英闪长岩岩体的形成时代及其地质意义[J].现代地质,2008,22(1):63-70
    [172]杜汉定.陕西秦巴地区泥盆系研究[M].西安交通大学出版社,1986,1-230
    [173]付建民,马昌前,谢才富,等.湖南九嶷山复式花岗岩体SHRIMP锆石定年及其地质意义[J].大地构造与成矿学,2004,28(4):262-378
    [174]黄标,徐克勤,孙明治.武夷山中段加里东中期交代改造型花岗岩类的特征及形成的碰撞造山环境[J].岩石学报,1993,9(4):388-400
    [175]黄月华,任有祥,夏林圻,等.北大巴山早古生代双模式火成岩套—以高滩辉绿岩和嵩坪粗面岩为例[J].岩石学报,1992,3:243-256
    [176]黄月华,杨建业.北大巴山笔架山-铜洞湾碱性镁铁质熔岩的岩石学研究.中国地质科学院西安地质矿产研究所所刊[J],1990,28:15-24
    [177]黄月华.岚皋碱性镁铁-超镁铁质潜火山杂岩中金云角闪辉石岩类地幔捕虏体矿物学特征[J].岩石学报,1993,4:367-378
    [178]李惠民,陈志宏,相振群.秦岭造山带商南-西峡地区富水杂岩的变辉长岩中斜锆石与锆石同位素年龄的差异[J].地质通报,2006,25(6):653-659
    [179]李伍平,王涛,王晓霞,等.北秦岭灰池子复式岩体单颗粒锆石年龄[J].中国区域地质,2000,19(2):172-174
    [180]刘宝裙,许效松,潘杏南等中国南方古大陆沉积地壳演化与成矿[M].北京:科学出版社,1993
    [181]刘军锋,孙勇.东秦岭松树沟超基性岩体“热”侵位时代新知[J].地质论评,2005,51(2):189-192
    [182]楼法生,沈渭洲,王德滋,等.江西武功山穹隆复式花岗岩的锆石U-Pb年代学研究[J].地质学报,2005,79(5):636-644
    [183]陆松年,李怀坤,陈志宏,等.秦岭造山带中-新元古代地质演化及对Rodinia超级大陆事件的响应[M].北京:地质出版社,2003
    [184]孟庆任,梅志超,于在平等.秦岭板块北缘一个消失了的泥盆纪古陆[J].科学通报,1995,40(3):254-256.
    [185]孟庆任,梅志超,于在平等.南秦岭北缘镇安盆地晚泥盆世浊积岩系及盆地发展[J].沉积学报,1996,14(增刊):25-32.
    [186]牛宝贵,和政军,任纪舜等.秦岭地区陡岭-小茅岭隆起带西段几个岩体的SHRIMP锆石U-Pb测年及其地质意义[J].地质论评,2006,52(6):826-835.
    [187]欧阳建平,张本仁.秦岭造山带沉积物源地球化学研究及其构造意义[J],地球科学-中国地质大学学报,1996,21(5):464-468
    [188]裴先治,丁仁平,张国伟,等.西秦岭天水地区百花基性岩浆杂岩的LA-ICP-MS锆石U-Pb年龄及地球化学特征[J].中国科学D辑:地球科学,2007,37(增刊):224-234
    []89] 彭松柏,金振民,刘云华,等.云开造山带强过铝深熔花岗岩地球化学、年代学及构造背景[J].地球科学-中国地质大学学报,2006,31:588-597
    [190]丘元禧,马文璞,范小林,等. “雪峰古陆”加里东期的构造性质和构造演化[J].中国区域地质[J],1996,2:150-160.
    [191]任纪舜,姜春发,张正坤等.中国大地构造及其演化[M].北京:科学出版社.1980,1-124.
    [192]任纪舜,张正坤,牛宝贵等.1991.论秦岭造山带.见:叶连俊,钱祥麟,张国伟主编.秦岭造山带学术讨论会论文选集.西安:西北大学出版社.99-110.
    [193]水涛,徐步台,梁如华,等.中国闽浙变质基底地质[M].北京:科学出版社,1988.
    [194]孙明志,徐克勤.华南加里东花岗岩及其形成地质环境浅析[J].南京大学学报:地球科学版,1990,2(4):10-22.
    [195]孙涛.新编华南花岗岩分布图及其说明[J].地质通报,2006,25:332-335
    [196]孙涛.新编华南花岗岩分布图及其说明[J].地质通报,2006,25(3):332-335.
    [197]孙延贵,张国伟,王瑾.秦昆结合区两期基性岩墙群的定年及其构造意义[J].地质学报,2004,78(1):66-71
    [198]田伟.东秦岭加里东期花岗岩的区域岩石成因和大地构造环境[D].博士学位论文.北京:北京大学,2003.12-20
    [199]王鸿祯,徐成彦,周正国.东秦岭古海域两侧大陆边缘区的构造发展[J]。地质学报,1982,3:270-279
    [200]王涛,张宗清,王彦斌,等.秦岭造山带新元古代同碰撞花岗岩变形及其时代限定-强变形岩体与弱变形脉体的锆石SHRIMP年龄证据[J].地质学报,2005,79(2):220-231
    [201]吴富江,张芳荣.华南板块北缘东段武功山加里东期花岗岩特征及成因探讨[J].中国地质,2003,30(2):166-172
    [202]夏林圻,夏祖春,张诚,等.北大巴山碱质基性—超基性潜火山杂岩岩石地球化学.北京:地质出版社[M],1994.62-75
    [203]夏祖春,夏林圻,张诚.北大巴山碱质基性-超基性潜火山杂岩的辉石矿物研究.西北地质科学[J],1992,13(2):32-30
    [204]徐学义,何世平,王洪亮,等.早古生代北秦岭-北祁连结合部构造格局的地层及构造岩浆事件约束[J].西北地质,2008,41(1):1-21
    [205]许德如,陈广浩,夏斌,等.湘东地区板杉铺加里东期埃达克质花岗闪长岩的成因及地质意义[J].高校地质学报,2006,12(4):507-521
    [206]闫全人,陈隽璐,王宗起,等.北秦岭小王涧枕状熔岩中淡色侵入岩的地球化学特征、SHRIMP年龄及地质意义[J].中国科学D辑:地球科学,2007,37(10):1301-1313
    [207]闫臻,王宗起,王涛等.秦岭造山带泥盆系形成构造环境;来自碎屑岩组成和地球化学方面的约束[J].岩石学报,2007,023(05):1023-1042
    [208]杨树峰,陈汉林,武光海,等.闽北早古生代岛弧火山岩的发现及其大地构造意义[J]地质科学,1995,30(2):105-116
    [209]袁正新,钟国芳,谢岩豹,等.华南地区加里东期造山运动时空分布的新认识[J].华南地质与矿产,1997,4:19-25
    [210]曾雯,张利,周汉文等,华夏地块古元古代基底的加里东期再造:锆石U-Pb年龄、Hf同位素和微量元素制约[J].科学通报,2008,53:335-344
    [211]曾勇,廖群安.西武夷地区加里东期花岗岩与造山过程[J].中国区域地质,2000,19:344-349
    [212]张成立,高山,张国伟,等.秦岭早古生代碱性岩墙群的地球化学及其意义[J].中国科学D辑:地球科学,2002,32(10):819-829
    [213]张芳荣,舒良树,王德滋,等.华南东段加里东期花岗岩类形成构造背景探讨.地学前缘[J], 2009,16:248-260.
    [214]张国伟,张本仁,袁学诚等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,566-574.
    [215]张国伟,梅志超,李桃红.秦岭造山带的南部被动大陆边缘.见;张国伟等著.秦岭造山带的形成及其演化[M].西安:西北大学出版社,1988,86-98
    [216]张宗清,张国伟,刘敦一,等.秦岭造山带蛇绿岩、花岗岩和碎屑沉积岩同位素年代学和地球化学[M].北京:地质出版社,2006
    [217]周新民.对华南花岗岩研究的思考[J].高校地质学报,2003,9(4):556-565.
    [218]周正国,李翔,王成述等.东秦岭北带泥盆纪刘岭群陆棚碎屑沉积特征。见:刘本培,肖劲东,周正国等编。古大陆边缘沉积论文集[M]。武汉:中国地质大学出版社,1992,11-24.
    [219]朱金初,张佩华,谢才富,等.南岭西段花山-姑婆山侵入岩带锆石U-Pb年龄格架及其地质意义[J].岩石学报,2006,22:2270-2278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700