用户名: 密码: 验证码:
黑龙江省金厂金矿床成矿时代及其地球动力学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑龙江省金厂金矿床是武警黄金一总队正在勘查的大型金矿床。该矿床位于黑龙江省东南部兴凯地块内,地处张广才岭-太平岭边缘隆起带中太平岭隆起与老黑山断陷结合部位。矿区大面积分布中酸性侵入岩,岩石类型包括闪长岩、花岗闪长岩、粗粒文象花岗岩、闪长玢岩等,其中花岗斑岩、闪长玢岩与成矿关系密切。
     本文在矿床的成矿地质背景与控矿地质条件分析基础上,系统研究了矿床地质、地球化学特征,分析成矿流体特征及成矿岩体的锆石年龄。结果表明,金厂金矿的高丽沟矿区与穷棒子沟矿区存在不同的成矿特征,并且是不同成矿期成矿作用的产物。其中穷棒子沟Ⅰ号矿体的地质地球化学特征及成矿时代与区域其他金矿床,如乌拉嘎、东安、砂宝斯等基本一致;而高丽沟0号矿体则以金铜多金属矿化为特征,成矿时代与小兴安岭-张广才岭成矿带中的翠宏山、鹿鸣、霍吉河、前进东山等多金属矿床相近。金厂金矿床的地质、地球化学特征研究结果表明,本区具有多期成矿特征,高丽沟0号矿体的形成与燕山期太平洋板块的俯冲作用关系密切;而穷棒子沟Ⅰ号矿体的形成可能与小兴安岭-张广才岭形成过程中的伸展-走滑的构造环境有关。
The gold deposit of Heilongjiang Province was discovered in the 1990s, which is one of the typical epicontinental super-large hydrothermal ore deposits in Chinese northeastern part. Jinchang gold deposit is located in the edge of embossed belt between Zhang guangcai ridge and Taiping ridge. Quite a few scholars have done a great deal of research about this deposit since 1960s. Until the end of 2009, they have discovered altogether 17 ore bodies and obtained the grand total volume of explored resources amounting to 63406 kg on this area which has tremendous ore-prospecting potential.
     There are exposing basal rock-series of Huangsong group of neo-proterozoic, medium light Metamorphic Rock, volcanic sedimentary rocks of mesozoic and terrigenous clastic rock of quaternary as well as the intrusive rocks including quartz-diorite, granodiorite, coarse grain bunshox granite, granite and so on, in addition to hypabyssal rocks such as granite-porphyry, dioritic porphyrite,etc in this deposit. Northeasterward Suiyang big fault controls the skeleton of the fault structure which is relatively developed. According to the trend, the fracture can be divided into four groups:①NE-NNE trending compression and scissor fracture and compressive fracture;②NW trending tensional and scissor fracture and tensional fracture;③SN trending compressive fracture and compression and scissor fracture;④EW trending tensional fracture and tensional and scissor fracture. The fold of this area is developed Taiping ridge anticlinorium which is NE trending and stretches throughout the whole area for hundreds of kilometers. The fold has been divided into three parts because of being affected by the fracture of SN and NW trending fracture.
     There are mainly three mineralization types in Jinchang deposit orebody: hydrothermal breccia type, annular radial fracture filling type and magmatic fornix type. Six oredbodies of hydrothermal breccia type account for 41% of the total resources, about 26 orebodies of relatively large-scale fractrure filling type account for 39%, and 20 orebodies of magmatic fornix account for 20%. The law of space distribution of these orebodies is obvious.
     According to occurrence of gold orebody, mineralized altered combination and intercalating relationship between each other, the metallogenesis of Jinchang deposit is divided into earlier Yanshanian period, mid-advanced Yanshanian period and surface oxidation period. It is supposed that gold deposit mineralization in earlier Yanshanian period is related to granite-porphyry, and gold mineralization in mid-advanced Yanshanian period is mainly controlled by intrusive activity of dioritic porphyrite. Late mineralization period is composed of surface oxidation and showering and filtering.
     The research result of major elements, trace elements and rare earth elements in this deposit indicate that the type of granite is S type of granite, and the rock mass belongs to peraluminous, high potassium calcium alkaline and even shoshonite series. The S type of granite has main petrological characteristics of post-orogenic magatism, and is closely related to effect of postorogenic extension.
     The result of LA-ICP-MS zircon U-Pb dating shows that Qiongbangzi Ditch No.Ⅰore body formed in the Cretaceous period ((109.0±2.4) Ma), and that Gaoli Ditch No.0 ore body formed in the Jurassic period ((192.8±5.8) Ma). It manifests that the emplacement age of quartz is 191.4±6.7Ma in conduit ore-bearing wall rocks of Gaoli Ditch No.0 ore body which belongs to the products of magmatic activity in the earlier Yanshanian period. The granophyre of Qiongbangzi Ditch which belongs to the products of magmatic activity in the mid-advanced Yanshanian period formed in 109.0±2.4Ma. It reflects the multi-phase and multi-stage metallogenic characteristics in Jinchang deposit.
     According to the summarization of previous studies and the conclusion of this research, the primary understanding on Jinchang metallogenic epoch has been made: there are at least two important metallogenesises in the mining area. The gold metallogenic epoch of Qiongbangzi Ditch No.Ⅰore body is consistent with that of Wulaga, Dongan,Shabaosi gold deposit in the right bank of Heilongjiang Province. The gold metallogenic epoch of Gaoli Ditch No.0 ore body is approximately consistent with that of polymetallic deposit such as Cuihong Hill, Luming, Huoji River, Qianjin East Hill, etc in Xiaoxing'an mountains-Zhangguangcai mountains metallogenic belt. The formation of Qiongbangzi Ditch No.0 ore body is closely relevant to the effect of the Pacific plate subduction. The formation of Qiongbangzi Ditch No.Ⅰore body is possibly related to the tectonic setting characterized by the extension and strike-slip fault in Xiaoxing'an mountains-Zhangguangcai mountains area.
引文
[1]. Jin B Y. The Character of Volcanic Structure and Its Ore-Control Features in Jinchang Area, Heilongjiang [J].2002.
    [2]. Dziggel, A; Wulff, K; Kolb, J, et al. Processes of High-T Fluid-Rock Interaction During Gold Mineralization in Carbonate-Bearing Metasediments: The Navachab Gold Deposit, Namibia[J]. Mineralium Deposita,2009,44(6):665-687.
    [3]. Wu F Y, Sun D Y, Li H M, et al. A-type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis[J]. Chem Geol,2002,187:143-173.
    [4]. Vos IMA, Bierlein FP,et al. The Geology and Mineralisation at the Golden Pride Gold Deposit, Nzega Greenstone Belt, Tanzania[J]. Mineralium Deposita,2009,44(7):751-764.
    [5]. Chen W, Zhang Y,et al. The Ar-Ar Geochronological Study of the Shear Zone-Type Gold Deposit of East Tianshan, Xinjiang, NW China [J].Geochimica et Cosmochimica Acta,2009,73(13):214.
    [6]. Anderson M R.Fluid Mixing in the Generation of Mesothermal Gold Mineralization in the Transval Sequence[M]. Transval, Souh Africa. Eur J. Mineral. 1992,(4):993-948.
    [7]. Simeone R, Dilles J H, Padalino G, etal. Mineralogical and Stable Isotope Studies of Kaolin Deposits:Shallow Epithermal Systems of Western Sardinia, Italy. Economic Geology.2005.100(1):115-130.
    [8]. Zhang Zuoheng,Wang Zhiliang.Metallogenic Epoch and Ore-Forming Environment of the Lamasu Skarn-Porphyritic Cu-Zn Deposit,Western Tianshan, Xinjiang, NW China. Acta Geologica Sinica.Aug.2008.
    [9]. Wang YJ, Fan WM, Guo F.K-Ar Dating of Late Mesozoic Volcanism and Geochemistry of Volcanic Gravels in The North Huaiyang Belt, Dabie Orogen:Constrains on the Stratigraphic Framework and Exhumation of the Northern Dabie Orthogneiss Comple. Chinese Science Bulletin.October 2002.
    [10]. Walsh J F,Kesler S E.Fluid Inclusion Geochemistry of High Grage, Vein Hosted Gold Ore at the Pamore Mine, Poreupine Camp, Ontario[J]. Econ.Geol.1988,83:1347-1367.
    [11]. Robb L.Introduction to Ore-Forming Processes[M]. Malden: Black-Well Science Ltd,2005:373.
    [12]. Roberts M P, Clements J D .1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology, 21:825-825.
    [13]. Robert F, Kelly W C. Ore-Forming Fluids in Archean Gold-Bearing Quarz Veins at the Sigma Mine, Abitibi Greenstone Belt, Quebec, Canda[J]. Econ.Geol,1987,82:1464-1482.
    [14]. Roedder E,Bodnar R J.Geologic Pressure Determinations from Flu-id Inclusion Studies[J].Annual Rev.Earth Planet.Sci,1980,8:263-301.
    [15]. RUSHP M, SEEGERS HJ. Ok Tedi Copper-Gold Deposits[A].HUGHES F E.Geology of the Mineral Deposits of Australia and Papua New Guinea[C]. Australia: Australian Institute of Mining and Metallurgy,1990.1747-1754.
    [16]. Rapp R P,Xiao L,Shinizu N. Experimental Constraints on the Origin of Potassium-Rich Adakites in Eastern China[J]. Acta Petrologica Sinica,2002,18(3):293-302.
    [17]. Perello J, Cox D, Garamjav D, et al. Oyu Tolgoi, Mongolia: Siluro-Devonian Porphyry Cu-Au-(Mo) and High-Sul-Fidation Cu Mineralization with a Cretaceous Chalcocite Blanket[J].Econ Geol,2001,96:1407-1428.
    [18]. Perello J. Geology, Porphyry Cu-Au, and Epithermal Cu-Au-Ag Mineralization of the Tombuliato District, North Sulawe-si, Indonesia[J].Jour Geochem Explor,1994,50:221-256.
    [19]. Pierce J A, MEI H. Volcanic Rocks of the 1985 Tibet Geotra-Verse. Lhasa to Golmud[J].Phil Trans Roy Soc Lond, 1988, A327:203-213.
    [20]. Deng Jun,Sun Zhongshi,Wang Qingfei, et al. Crust Mantle Structure and GoldEnrichment Mechanismof Mantle Fluid System[J].Chinese Journal of Geochemistry, 2003,22(3):263-270.
    [21]. Han Chunming. Geological Characteristics and Genesis of the Tuwu Porphyry Copper Deposit, Hami, Xinjiang, Central Asia[J]. Ore Geology Reviews.v.2006,29(1) :77-94.
    [22]. Gebauer D, Lappin M A, Grunenfelder M. The Age and Origin of Some Norwegian Eclogites: A U-Pb Zircon and REE Study. Chemi-cal Geology, 1985,52:227~248.
    [23]. Vavra G, Gebauer D, Schmid R, et al. Multiple Zircon Growth and Recrystallization During Ployphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps): An Ion Microproble (SHRIMP) Study. Contrib Mineral Petrol,1996, 122: 337~358.
    [24]. Nasdala L, Gotze J, Pidgeon R T, et al. Constraining a SHRIMP U-Pb Age: Micro-Scale Characterization of Zircons From Saxonian Rotliegend Rhyolites. Contrib Mineral Petrol,1998,132:300~306.
    [25]. Wilde S, Zhang X Z,Wu F Y. Extension of a Newly Identified 500Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of Mashan Complex, Heilongjiang Province, China[J].Tectonophysics,2000,328:115-130.
    [26].陈俊,王鹤年.地球化学[M].北京:科学出版社,2004,331-360.
    [27].金宝义,陈锦荣等.黑龙江金厂金矿区火山构造及其控矿特征[J].黄金地质,2002,8(1):26-32.
    [28].贾国志,陈锦荣等.金厂特大型金矿床的地质特征与成因研究[J].地质学报,2005,79:(5)661-670.
    [29].张德会,王永等.黑龙江金厂岩浆穹窿内金矿体成矿流体地球化学及其矿床成因探讨[J].矿床地质,2006,25卷(增刊):155-158.
    [30].朱成伟,陈锦荣等.黑龙江金厂金矿床地质特征及成因研究[J].矿床地质2003,22(1):56-64.
    [31].程小久.变质地体中脉金矿床的现状和进展[J].地质科技情报,1996,15(2):71-76.
    [32].陈锦荣,李汗光等.黑龙江金厂J-1号金矿体地质特征及深部预测[J].黄金地质,2002,8(4):8-12.
    [33].代军治,毛景文等.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,2006,25(5):598-612.
    [34].秦克章,李惠民等.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评,1999,45(2):181-185.
    [35].李永峰,毛景文等.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J].矿床地质,2005,24(3):292-304.
    [36].毛景文,谢桂青等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [37].谢桂青,毛景文等.鄂东南地区Cu-Au-Mo-(W)矿床的成矿时代及其成矿地球动力学背景探讨:辉钼矿Re-Os同位素年龄[J].矿床地质,2006,25(1):43-52.
    [38].马家骏,王英杰.黑龙江东部岩金成矿作用探讨[J].黑龙江地质,1990,1(1):29-56.
    [39].马家骏,方大赫.黑龙江省中生代火山岩初步研究[J].黑龙江地质,1991,2(2):1-16.
    [40].程裕淇.中国区域地质概论[M].北京:地质出版社. 1994. 419.
    [41].李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质评论,1998,44(4):339-347.
    [42].林强,葛文春等.东北地区中生代火山岩的大地构造意义[J].地质科学,1998,33(2):129-139.
    [43].卢焕章,范宏瑞等.流体包裹体[M].科学出版社,2004.
    [44]. Paterno R.Castillo.埃达克岩成因回顾[J].科学通报,2006,51(6):617-627.
    [45].邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991.131
    [46].王科强,董建乐等.中国金矿床的成矿时代及其特征[J].黄金地质,2000,6(1):74-78.
    [47].裴荣富,吴良士.金属成矿省演化与成矿[J].地学前缘,1994,1(3-4):95-99
    [48].李俊健.初论中国金矿床的成矿时代[J].前寒武纪研究进展,1997,20(1):17-24.
    [49].芮宗瑶,张洪涛等.斑岩铜矿研究中若干问题探讨[J].矿床地质.2006,25(4):491-500.
    [50].李俊健.初论中国金矿床的成矿时代[J].前寒武纪研究进展,1997,20(1):17-24.
    [51].李惠民,李怀坤等.用矿脉中热液锆石的U-Pb定年确定东坪金矿的成矿时代[J].地球学报,1998,19(增刊):57-60.
    [52].涂绍雄,高艳君.中国金矿大全[M].1989,(4):35-41.
    [53].范永香.论金矿床的形成演化特点及预测意义[J].地质科技情报,1992,11(3):67-70.
    [54].葛文春,隋振民等.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报,2007,23(2):423-440.
    [55].葛文春,吴福元等.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007,52(20):2409-2417.
    [56].毛景文,张作衡,余金杰等.华北中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J].中国科学D辑:地球科学,2003,33(4):289-300.
    [57].代军治,毛景文等.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景[J].矿床地质,2006,25(5):598-612.
    [58].吴福元,李献华等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238.
    [59]. P.哼德森.微量元素地球化学[M].地质出版社,1988
    [60].张炯飞,李之彤等.中国东北部地区埃达克岩及其成矿意义[J].岩石学报,2004,20(02):361-368.
    [61].张旗等.花岗岩构造环境问题:关于花岗岩研究的思考之三[J].岩石学报,2007,23(11):2683-2698.
    [62].张显.黑龙江省东部早中生代火成岩构造组合及其大地构造演化[D].中国地质大学(北京)博士学位论文.2008.
    [63].赵国龙,杨杜林等.大兴安岭中南部中生代火山岩[M].北京:北京科学技术出版社,1989,1-75.
    [64].郑亚东等.燕山带中生代主要构造事件与板块构造背景问题[J].地质学报,2000,74:289-302.
    [65].赵海玲,邓晋福等.黑龙江完达山地区中侏罗世火山岩特征及其构造背景[J].地球科学,1996,21(4):428-432.
    [66].张文淮,陈紫英.流体包裹体地质学[M].武汉:中国地质大学出版社,1993,107-156.
    [67].张泓翔,徐志方,黄智龙等.地幔流体基本特征及成因[J].地质地球化学,2000,28(2):1-7.
    [68].裴荣富.中国矿床模式.[M]地质出版社.1995.
    [69].黑龙江省地质矿产局.黑龙江省区域地质志[M].地质出版社,1993.
    [70]. Hugh R.Rollison.岩石地球化学[M].北京:中国科学技术大学出版社,2004,40-165.
    [71].艾霞.2002.隐爆角砾岩型金矿成矿地质条件、构造类型及找矿标志[J].矿床地质,21(增刊):569-572.
    [72].宋得冒,张宝林等.2002.隐爆角砾岩型金矿的成矿机理探讨[J].矿床地质21(增刊):662-665.
    [73].吴元保,陈道公等.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学,D辑,2003,33:20-28.
    [74].陈道公,李彬贤等.变质岩中锆石U-Pb计时问题评述-兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.
    [75].周建波,张兴洲等.中国东北地区的构造格局与盆地演化[J].石油与天然气地质,2009,30(5):530-538.
    [76].赵一鸣等,中国主要金属矿床成矿规律[M].北京:地质出版社,2004:374-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700