用户名: 密码: 验证码:
桦甸盆地古近系桦甸组沉积特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在资料收集、岩心观察及测试分析基础上,开展桦甸盆地沉积特征研究。依据单井岩心组合、层理、镜下、测井曲线以及粒度特征,识别出本区发育冲积扇、扇三角洲、湖泊、水下扇四种沉积相,并进一步划分为11种沉积亚相和18种沉积微相。各种沉积相的水动力机制分析,表明湖泊滩坝为典型的牵引流沉积,扇三角洲主要为牵引流沉积、少量重力流沉积,冲积扇和水下扇主体为重力流沉积,但是也呈现出重力流向牵引流沉积过渡。
     依据本区的单井沉积相组合特征、孢粉垂向分布特征、微量元素和含油率垂向分布特征以井间标志层,识别出本区主要发育一个2级层序和4个三级层序,其中含油页岩段发育在一个完整的三级层序中,发育低水位、水进、高水位和水退体系域。油页岩主要沉积在水进和高水位体系域。
     根据本区的地层厚度、砂岩厚度、砂地比分布特征并结合本区的构造特征,盆地的构造沉积演化可分为三个阶段:盆地初始沉降阶段(黄铁矿段)时期主要发育滨浅湖、扇三角洲和冲积扇沉积,最大沉降阶段(油页岩段)时期以半深湖-深湖沉积为主,湖盆萎缩阶段(碳质页岩段)时期以扇三角洲、湖沼和滨浅湖沉积为主。
With energy demand growing, oil shale, as a kind of significant non-conventional resource, is acting as an important amount of supplementary oil resource in the furture. Exploration and development of oil shale have been in national energy strategies with highly importance. The oil shale resource in Jilin Province is the richest in China. However, because of less exploration and the expansion of oil shale exploiting areas, the identifying amount of resources can not meet the current needs. Searching large-scale and high-quality oil shale deposits become the primary target for exploration. Presently, only a small amount of drillings and outcrop have been used to explore oil shale. It is lacking for detailed description of oil-shale bearing sedimentary layers and for the study on horizental and vertical distribution of oil shale-which all are hindering further exploration for oil shale. To meet those chanllenge, the author takes the Huadian Basin, which is small but rich in oil shale, as a example. A comprehensive study with a large number of cores and testing data will be taken to ilustrate the sedimentary characteristics of oil shale-bearing strata in Huadian basin. This research will help reveal the major sedimentary facies and tectonic-sedimentary evolution in this area, which also can determine the sedimentary environment when oil shale forming. By establishing sequence stratigraphic framework in Huadian basin, we can indentify the location of oil shale in this framework. Thus, this study will provide hypothesis in sedimentary geology about oil shale forming mechanism.
     Located on the Dunhua-Mishan fault zone, Huadian basin belongs to the northern branch of Tanlu fault. The primary strata is Paleogene Huadian formation, which can be divided into three members-the lower (pyrite-bearing), the middle(oil shale-bearing) and the upper (carbon-mudstone-bearing).
     Cores are the first-hand materials to study the sedimentary characteristics of Huadian basin. Core observation shows that there are mudstone, oil shale, sandstone and thin marl and coal deposited in this area while some glutenite appear at the bottom of Huadian Formation. The sandstone of Huadian basin is feldspathic lithic sandstone while tuff lithics and rhyolite lithics are the major lithics. Calcium nodules are widely appearing around sandy particles. The filling-ups in the spaces between particles can be divided into two groups-one is matrix filling and the other is calcareous cement (some of cement is intercalary crystallized calcite, which represents the strong hydrodynamics and the supplying lack of terrigenous clastic. The sandstones of Huadian Formation are classified into net sandstone and graywacke. The former is supported by the particles and shows better sorted, and the latter is supported by the matrix and shows poorly sorted.
     SEM and X-ray are used to analyze the mineral composition of oil shale. The major clay minerals are montmorillonites, then are the kaolinites and illites. Illite-smectite mixing layers are also occasionally identified in the oil shale. The average content of montmorillonite is 30.7%, and its shapes are tablet-like, flocculent and connecting under SEM. The average content of kaolinite is 16.1%, which appears like sheet. The average content of illite is 12.6%. They are like wire-lea and scals. Pyrites and Epidotes are also identified in oil shale and sandstones.
     Strata in different sedimentary facies presents various rock combinations, beddings, logging data, grain size characteristics and bioturbation. Based on data got from Huadian basin, sedimentary facies models in single wells are constructed.There are four sedimentary facies in Huadian basin-alluvial fan, Fan-delta, lacustrine and subaqueous fan. They are divided into eleven sub-facies and eighteen micro-facies. Fan-delta and lacustrine facies are the most common. Alluvial fan facies appears at the bottom of Huadian Formation in the western part of Hudian basin. Grain size analysis, thin section and cores observations are used to study hydrodynamics in different sedimentary facies, the beach dam at the lake shore appears the features of tractive current-deposition and shows the characters of bidirectional flow. In semi-deep and deep lake, there were suspended particles deposited. Rhythmic deposition is commonly seen in lacustrine mudstone. They are the interbeds of clay and terrigenous clastic or calcareous thin layer, which are generated in different sedimentary enviroments. Fan delta is mainly traction-flow regim, while in the fan delta plain there develop some gravity flow deposits and in the Fan delta there are liquefied slumped deformation. Alluvial fan and subaqueous fan are mainly built by gravity flow deposits. However, in the middle fan tracting flow deposits can be found. Through thin section observation, semi-deep and deep lake deposition, especifically oil shale, contain lots of carbonized plant and flocculus deposits, which have been mostly bituminizated.
     The types of sedimentary facies and their scals are controlled by the base level. The sequence characteristics of single well, key bed among wells, the vertical changes of oil yield and sporo-pollen assemblages, vertical changes of trace elements are used to establish sequence stratigraphic framework of Huadian basin, which is beneficial to reveal the sedimentary facies. There is one second-order sequence and four third-order sequence in this area.Oil shale layers occur in one third-order sequence,which is divided into four system tracts-low stand system tract(LST), transgressive system tract(TST), high stand system tract(HST) and regressive system tract(RST). Oil shale was deposited in TST and HST. In the LST and RST there deposited dark mudstone and coal. Based on the vertical changes of oil yeild and types of organic matter and the ones in TST are lean ore and in HST are rich ore. The relationship between tectonic subsidence rates and deposition supplying ratse determines the changing of accommodation space, which may reflect oil shale location in the sequence stratigraphic framework and its features on horizental distributions. The horizental distributing areas of oil shale become larger and larger in the TST which indicates retrograding deposition. In the highstand system tarct, covering area of oil shale reaches to its largest which distributs stable and shows aggradation deposition.
     The thickness of strata and that of sandstone layers, the percentage of sandstone thickness in total strata are the basis for identifying the centre of deposition and the direction of sediment source. Based on these information of each mumber of Huadian Formation, the sedimentary centre of lower pyrite member is the northeast part of Huadian basin and the dirction of major sediment source is northeast. And the northwest and west part of Huadian basin was not covered by lake water and exsited two secondary sediment sources. In the middle of Huadian Formation (oil shale bearing), the deposition centre was also in the northeast part of Huadain basin, and the sediment sources which were in west and northwest were disappeared. The one from northeast remained. In this mumber, the influence of sediment source was negligeable. In the upper carbonaceous mudstone member, the northeast sediment source becomes smaller and smaller. The deposition centre and sediment source was changing to the side of major fault The thickness and the area of sandstone layers became larger and lager.
     On the basis of sedimentary source and sedimentary facies analysis, three evolution stages in Huadian basin have been identified. The initial subsiding stage started at the lower pyrite member when the area of Huadian Lake was small, and in the northeast part of Huadian basin was developing delta deposits. In the middle was shore-shallow lacustrine, and in the side of basin-controlling fault there was sub-deep lake deposits. The western part of this basin wasn't covered by lake water, and there were mainly depositing alluvial fan and flood plain. The maximum settlement stage was at oil shale member. In that period, the fan-delta were depositing in the northeast part of this basin and the eastern side of basin was developing samll areas of subaqueous fan. In the gentle slope of this basin there was shore-shallow lacustrine In the middle of Huadian basin and in the side of basin-controlling fault was sub-deep and deep lake. That was the period when oli shale deposited. The atrophic stage of Huadian basin can be identified in upper carbonaceous mudstone member In the eastern and western basin-controlling fault there was developing fan delta, and in the northeastern part of this basin was beach bar In the western part there were depositing small scal of fan delta. In the gentle slope area there was developing lacustrine bog. Towards to the basin-controlling fault there was shore-shallow lacustrine. And in the middle of this basin there was sub-deep and deep lake.
引文
[1]Axelsson.V.1967.The Laitaure Delta,a study of Deltatic Morphology and Process.Geogy Annaler, No,49, PP,1-27.
    [2]Aplin A C.1993. The composition of authigenic clay minerals in recent sediments:links to the supply of unstable reactants[C]//Cmanning D A, Hall P L, Hughes C R. Geochemistry of clay-pore fluid interactions. London:Chapman & Hall,81-106.
    [3]Ariztegui D., Farrimond P., Mckenzie J. A.1996. Compositional variations in sedimentary lacustrine organic matter and their implications for high Alpine Holocene environmental changes:Lake st. Moritz, Switzerland[J]. OrgGeochem,24:453-461.
    [4]Arthur M A and Sageman B B.1994. Marine black shales:depositional mechanism and environments of ancient deposits[J]. Annual Review of Earth and Planetary Science,22:499-551.
    [5]Arthur M A., Dean W E., Stow D A V.1984. Models for the deposition of Mesozoic-Cenozoic fine-grained organic-carbon-rich sediment in the deep sea[C]. In D.A.V. Stow and D.J.W. Piper, Fine grained sediments: deep-water processes and facies, Geological Societry (London) Special Publication 14. Oxford:Black-well Scientific, 527-560.
    [6]Bohacs K M, et al.2000. Lake-basin type,source potential amd hydrocarbon character:an intergrated sequence straigraphic-geochemical framework[A] Gierlowski E H, Kordesch, Kelts K R. Lake basins Through space and Time[C]. AAPG Studies in Geology 46:3-34.
    [7]Boyer B W.1982.Green river laminites:Does the playa-lake model really invalidate the statratified-lake model? [J]. Geology,10:321-324.
    [8]Bralower T.J., Thierstein H.R.1987. Low productivity and slow deep-water circulation in mid-Cretaceous oceans[J]. Geology,12:614-618.
    [9]Brooks J.D. Gould K., Smith J. W.1969. Isoprenoid hydrocarbons in coal and petroleum[J]. Nature 222(5):90.
    [10]Brown L F Jr, Bemspm J M, Brink G J, e al.1995. Sequence stratigraphy in Offshore South African divergent basin[J]. AAPG Studies in Geology,41:1-184.
    [11]Carrol A.R., Brassell S.C. and Graham S.A.1992. Upper Permian Lacustrine oil shales, Southern Junggar Basin, Northwest China[J]. AAPG Bulletin,76(12):1874-1902.
    [12]Cross T A.1994. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation. In:Proceedings of Northwestern European Sequence Stratigraphy Congress,105-123
    [13]Dickinson W R, Suczek C C.1979.Platetectctonics and sandstone compositions.AAPG,Bulletin,63:2164-2182.
    [14]Deconinck J F, Blanc-Valleron M M, Rouchy J M, et al.2000. Palaeoenvironmental and diagenetic control of the mineralogy of Upper Cretaceous-Lower Tertiary deposits of the Central Palaeo-Andean basin of Bolivia(Potosi area) [J]. Sediment. Geol,132(3-4):263-278.
    [15]Dunoyer de Segonzac G. 1970. The transformation of clay minerals during diagenesis and low grade metamorphism: areview[J]. Sedimentology,15:281-346.
    [16]Eglinton G., Murphy M. T. J. 1969. Organic Geochemistry-Methods and Results[M]. Springer-Verlag. Germany: 800-830.
    [17]Shanley K W.1994,. Alluvial architecture in a sequence stratigraphic framework. Journal of Geology.102 (2): 105-109.
    [18]Ganeshram R.S., Pedersen T.F., Calvert S.E., et al.1995. Large changes in oceanic nutrient inventories from glacial to interglacial periods[J]. Nature,376:755-758.
    [19]Greaney S, Passey Q R.1993. Recurring patterns of total organic carbon and source rock quality within a sequence framework[J]. AAPG Buttetin,77(3):386-401
    [20]Greenland D J.Interaction between clays and organic compounds in soils, Part I machanism of interaction between clays and defind compound [J]. Soil & Ferls,28:415-425.
    [21]Hakanson L., Jansson M.1983. Principles of lake sedimentology[J]. Springer-Verlag,310-320.
    [22]Homels.1965.A principles of physical geology[M]. London:Thomas Nelson and Sons L td.288. [21] Huc A Y. 1995. Paleogeography, paleoclimatology and source rocks AAPG studies in geology no.40[C]. Tulsa:AAPG,347.
    [23]Horton B K, Schmitt J G 1996. Sedimentology of a lacustrine fan delta system, Miocene Horse Camp Formation, Nevad, USA [J]. Sedimentology,43:133-155.
    [24]J.E. McCallum, A.H.F. Robertson.1995.Sedimentology of two fan-delta systems in the Pliocene-Pleistocene of the Mesaoria Basin, Cyprus[J]. Sedimentary Geology,98:215-244.
    [25]Jones R.W.1984. Comparision of carbonate and shale source rocks[A]. In:Palaces J.G. ed. Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks[C]. AAPG Studies in Geology,18:163-180.
    [26]Keller W D.1970. Environmental aspects of clay minerals[J]. J. Sediment. Petrol.,40:788-859.
    [27]Kelts K.1988. Environment of deposition of lacustrine petroleum source rock:an introduction[C]. In:Fleet A.J., Kelts K., Talbot M.R., et al. Lacustrine Petroleum Source Rocks. Geological Socitey Special Publication,40:3-29.
    [28]Ketzer J.M., Holz M., Morad S., et al.2003b. Sequence stratigraphic dsitribution of diagenetic alterations in coal-bearing, paralic sandstones:evidence from the Rio Bonito Formation (early Permian), southern Brazil[J]. Seimentology,50:855-877.
    [29]Lopez-Blanco M, Marzo M, Pina J.2000.Transgressive-regressive sequence hierarchy of foreland, fan-delta clastic wedges (Montserrat and Sant Llorenc del Munt,Middle Eocene, Ebro Basin, NE Spain)[J]. Sedimen-tary Geology,138: 41-69.
    [30]Miall A D.1992. Principles of Sedimentary Basin analysis. New York:Springer-verlag.
    [31]Mail A D.1996.The geology of straigraphic sequence. Herblin heideberg:Springer-Verlag.
    [32]M. Lopez-Blanco*, M. Marzo, J. Pina.2000.Transgressive-regressive sequence hierarchy of foreland, fan-delta clastic wedges (Montserrat and Sant Llorenc del Munt,Middle Eocene, Ebro Basin, NE Spain)[J].Sedimentary Geology,138:41-69.
    [33]Moldowan J. M., Seifert W. K., Gallegos E. J.1985. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. American Association of Petroleum Geologists Bulletin, Vol.69: 1255-1268.
    [34]Octavian Catuneanu.2006.Principles of Sequence stratigraphy[M]. Beijing:Petroleum Industry ress,60-180.
    [35]Peter D F, Rebecca J D.1998. Rapid development of gravelly high density currents in marine Gilbert-type fan deltas, Loreto Basin, baja California Sur, Mexica [J]. Sedimentology,45(2):331-349
    [36]Peters K E,et al.2000. A new geochemical-sequence straigraphic model for Mahakam Delta and Makassar Slope, Kalimantam, Indonesis[J].AAPG Bulletin,84(1):12-44.
    [37]Posamentier H W and Vail P R. (?)Ⅱ--Sequence and systems tract models. In:Wilgus C K, et al. (eds), Sea-level changes:an integrated approach. SEPM Special Publication,42: 125~154.
    [38]Roehler H.W.1993. Eocene climates, depositional environments, and geography, greater Green River basin, Wyoming, Utah, and Colorado[M]. U. S. Geol,1506:1-74.
    [39]Shanley K W.1994. Alluvial architecture in a sequence stratigraphic framework. Journal of Geology,102 (2):105~ 109.
    [40]Stephen R.Schutter.1998. Characheristics of shale deposition in relation to stratigraphy sequence system tracts[A]. In:Shale and Mudstones I[C].Stuttgart:E.Schweizerberbart sche Verlagsbuchhandlung:79-108.
    [41]Stow D.A.V., Hue A.Y. and Bertrand P.2001. Depositional processes of black shales in deep water[J]. Marine and Petroleum Geology,18:491-498.
    [42]Vail P.R., Audemard F., Bowman S.A., et al.1991. The stratigraphic signatures of tectonics, eustasy and sedimentation-an overview[C]. In:Einsele G., et al. (eds), Cycles and events in stratigrahpy. Berlin, Heidelberg, New York:Springer-Verlag,617-659.
    [43]Van Wagoner J C, et al.1990.Siliciclastic sequence stratigraphy in well logs, cores and outcrops:concepts for High-Resolution Correlation of Time and Facies. Published by The American Association of Petroleum Geologists, Oklahoma, USA.
    [44]Van Hinte J E.1978. Geohistory analysis-application of micorpaleontology in explortion geology. AAPG,62:201-222.
    [45]曾允孚,夏文杰.1986.沉积岩石学[M].北京,石油工业出版社.
    [46]《沉积构造与环境解释》编著组编著.1991.沉积构造与环境解释[M].北京,科学出版社.
    [47]陈亮,刘春莲,庄畅,等.2009.三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[JJ.沉积学报,27(6):1155-1162.
    [48]陈丽华,缪昕,于众.1986.扫描电镜在地质上的应用[M].北京:科学出版社,53-89.
    [49]陈荣度.1995.从辽宁东、西部地质对比论郯庐断裂的平移运动[J].辽宁地质.9:184-193
    [50]成都地质学院陕北队.1976.沉积岩(物)粒度分析及其应用[M].北京,地质出版社.
    [51]程立华,陈世悦,吴胜和,等.2005.断陷湖盆陡坡带扇三角洲模拟及沉积动力学分析[J].海洋地质与第四纪地质, 25(4):29-34.
    [52]邓宏文,王洪亮,李熙喆.1996.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,17(3):177-184
    [53]邓宏文,钱凯.1993.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1-150.
    [54]邓宏文,钱凯.19.90.深湖相泥岩的成因类型和组合演化[J].沉积学报,8:(3):1-20.
    [551董清水,刘招君,方石.2003.论陆相层序地层学四分方案的可行性[J].沉积学报,21(2):324-327.
    [56]董清水等.1997.陆相层序地层划分及岩心、测井高分辨率层序地层界面判识[J].石油实验地质,19(2):121-126
    [57]杜江峰,刘招君,董清水等.2005.松辽盆地南部西部斜坡区晚白垩世坳陷盆地坡折带研究[J].吉林大学学报(地球科学版),35(2):170-176
    [58]冯有良,李思田.2001.东营凹陷沙河街组三段层序低位域砂体特征[J].地质论评,47(3):279~286
    [59]冯有良,李思田,解习农等.2000.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,7(3):119-132
    [60]冯增昭,王英华,沙庆安等.1994.中国沉积学[M].北京:石油工业出版社.
    [61]顾家裕.1984.中国东部古代扇-三角洲沉积[J].石油与天然气地质,5(3):236-245
    [62]顾家裕.1995.陆相层序地层学格架概念与模式[J].石油勘探与开发,22(4):6-10
    [63]顾家裕等.1997.层序地层学及其在油气勘探开发中的应用[M].北京:石油工业出版社.
    [64]古永红,王振宇,谭秀城.2003.国内外扇三角洲研究综述[J],新疆石油地质,24(6):87~96
    [65]郭巍,刘招君等.1997.松辽盆地西部斜坡区坳陷期层序地层发育控制因素研究[J].长春地质学院学报,27(3):327-332
    [66]何华春,丁海燕等.2005.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义[J].地理科学,25(5):10.72~81.
    [67]何镜宇、孟详化.1987.沉积岩和沉积相模式及建造[M].北京,地质出版社.
    [68]何起祥等.1978.沉积岩和沉积矿床[M].北京:地质出版社,45-120.
    [69]贺振建,蒋光秀,贾凤华,等.2007.济阳坳陷古近纪孢粉与层序地层[J].地层学杂志,31(4):407-414.
    [70]黄清华,孔惠,金玉东.2002.依兰—伊通地堑方正断陷孢粉组合及其地层层序[J].微体古生物学报,19(2):193-1983
    [71]候祥麟.1984.中国页岩油工业[M].北京:石油工业出版社,1-300.
    [72]胡受权,颜其彬,张永贵.1999.陆相层序界面识别的岩石地球化学标志—以泌阳断陷双河-赵凹地区下第三系核三上段为例[J].石油学报,20(1):24-29.
    [73]吉林省地质矿产局.1988.吉林省区域地质志[M].北京:地质出版社.
    [74]加东辉,吴小红.2005.勃中25-1南油田浅水三角洲各微相粒度特征分析[J].沉积与特提斯,25(4):12.80~89
    [75]姜在兴.2003.沉积学[M].北京,石油工业出版社.
    [76]咎淑芹,高嘉瑞.1994.敦化—密山断裂带的特征、演化及与郯—庐断裂的关系.中国满洲里—绥芬河地学断 面域内岩石圈结构及其演化的地质研究[C].52-57.
    [77]纪友亮,张世奇等.1996.陆相断陷湖盆层序地层学[M].北京:石油工业出版社.
    [78]纪友亮,胡光明,张善文,等.2004.沉积层序界面研究中的矿物及地球化学方法[J].同济大学学报,32(4):455-460.
    [79]科林森J D,汤普森D B.1988.沉积构造[M].付泽明,李惠生译.北京:地质出版社,1-91.
    [80]李美俊,周东升.2003.层序层地球化学-地球化学研究的新进展[J].石油试验地质,25(5):487-491.
    [81]李思田.1993.含煤盆地层序地层分析的几个问题[J].煤田地质与勘探,21(4):18-25.
    [82]李维峰,高振中,彭德堂,等.1995.库车坳陷早三叠世三角洲相及伴生沉积[J].石油与天然气地质,16(3):216-221.
    [83]李维锋,高振中,彭德堂,等.1999.库车坳陷中生界三种类型三角洲的比较研究[J].沉积学报,17(3):430-434.
    [84]梁桂香.1995.沉积岩石学实习教材[M].吉林科学技术出版社.
    [85]刘宝珺,余光明,陈成生.1990.西藏日喀则地区第三系大竹卡组砾质扇三角洲—片状颗粒流沉积[J].岩相古地理,10(1):1-11.
    [86]刘春莲,杨建林,R6hl H J,等.2001.影响湖相沉积岩中有机碳分布的主要因素[J].沉积学报,19(1):113-116.
    [87]鲁洪波,姜在兴,唐大海,等.1998.孢粉古生态分析在层序地层学研究中的应用[J].石油大学学报(自然科学版),22(4):18-22.
    [88]刘惠民,李守军,郑德顺,等.2003.东营凹陷沙三段沉积期湖泊古生产力研究[J].石油勘探与开发,30(65):65-67.
    [89]刘立,王东坡.1996.湖相油页岩的沉积环境及其层序地层学意义[J].石油实验地质,18(3):311-316.
    [90]#12
    [91]刘牧灵.1990.黑龙江省依兰煤田始新世达连河组孢粉组合[J].中国地质科学院沈阳地质矿产研究所所刊,20:111-137.
    [92]蓝先洪.1990.粘土矿物作为古气候指标矿物的探讨[J].地质科技情报,9(4):31-35.
    [93]刘招君,孙平昌,杜江峰等.2010.汤原断陷古今系扇三角洲沉积特征[J].40(1):1-8.
    [94]刘招君,杨虎林,董清水,等.2009.中国油页岩[M].北京石油工业出版社,14-168.
    [95]刘招君,王东坡,何起祥.1985.攀西地区上三叠统湖泊浊积岩和沉积特征及其地质意义[A].见张云湘:中国攀西裂谷文集[C].北京:地质出版社,298~306.
    [96]刘招君,程日辉,易海永.1994.层序地层学的概念、进展与争论[J].世界地质,13(3):56-68
    [97]刘招君,程日辉,王璞珺.1995.陆相层序地层学进展[A].见当代地质科学技术进展[C].武汉:中国地质大学出版社,191-197
    [98]刘招君,董清水,郭巍等.1998.断陷湖盆层序地层特征及模式—以松辽盆地梨树断陷为例[J].长春科技大学学报,28(增刊):54-58
    [99]刘招君,郭巍等.1997.湖盆层序地层学术语体系及模式—以松辽盆地西部斜坡为例[J].长春地质学院学报,27(增刊):54-60
    [100]刘招君.2003.湖泊水下扇沉积特征及影响因素—以伊通盆地莫里青断陷双阳组为例[J].沉积学报,21(1):148-154
    [101]刘招君,董清水,王嗣敏,等.2002.陆相层序地层学导论与应用[M].石油工业出版社.
    [102]刘招君,杨虎林,董清水,等.2009.中国油页岩[M].北京:石油工业出版社.
    [103]刘招君,孟庆涛,柳蓉.2009.中国陆相油页岩特征及成因类型[J].古地理学报,11(1):105-114.
    [104]路凤香、桑隆康.2002.岩石学[M].北京,地质出版社.
    [105]罗传秀,潘安定等.2005.珠江三角洲江村ZK2钻井沉积物粒度的环境意义[J].地层学杂志,29(11):90~95
    [106]南京大学地质系.1979.地球化学[M].北京:科学出版社,99-153.
    [107]潘钟祥,高纪清,陈荣书.1986.石油地质学[M].北京:地质出版社.
    [108]盛和宜.1993.粒度分析在扇三角洲分类中的应用[J].石油实验地质,15(20):65~76
    [109]宋子齐,杨金林.2005.利用粒度分析资料研究砾岩储层有利沉积相带[J].油气地质与采收率,14(5):11.64-73
    [110]孙晓猛,刘永江,孙庆春,等.2008.敦密断裂带走滑运动的40Ar/39Ar年代学证据[J].吉林大学学报(地球科学版),38(6):965-972.
    [111]孙晓猛,王书琴,王英德,等.2010.郯庐断裂带北段构造特征及构造演化序列[J].岩石学报,26(1):165-176.
    [112]田景春,陈高武,张翔,等.2006.沉积地球化学在层序地层分析中的应用[J].成都理工大学学报(自然科学版),33(1):30-35.
    [113]薛良清,Gallowa W. E.1991.扇三角洲、辫状河三角洲与三角洲体系的分类[J].地质学报,65(2):141-153.
    [114]王伴月,李春田.1990.我国东北地区第一个老第三纪哺乳动物群的研究[J].古脊椎动物学报,28(3):165-205.
    [115]王成善,李祥辉.2003.沉积盆地分析原理与方法[Ml.高等教育出版社.
    [116]王东坡,刘立.1994.大陆裂谷盆地层序地层学研究[J].岩相古地理,14(3):1-9.
    [117]王东坡,刘立,张立平,等.1995.松辽盆地的古气候、沉积旋回与层序地层[M].长春:吉林大学出版社.
    [118]王慧中,梅洪明.1998.东营凹陷沙三下亚段油页岩中古湖泊学信息[J].同济大学学报,26(3):315-319.
    [119]魏魁生,徐怀大.1994.二连盆地白垩系非海相沉积层序地层特征[J].地球科学,19(2):139-149.
    [120]王凯红,纪春华,王秀萍.2004.敦密断裂带的地质特征及演化[J].吉林地质,23(4):23-27.
    [121]汪品先,刘传联.1993.含油盆地古湖泊学研究方法[M].北京:海洋出版社,36-192.
    [122]王璞君,王东坡.1992.松辽盆地白垩纪黑色页岩沉积与湖泊缺氧事件[C].长春地质学院建院40周年科学研究论文集(基础地质).长春:吉林科学技术出版社.[170]王启军,陈建渝.1988.油气地球化学[M].武汉:中国地质出版社,110-176.
    [123]王良忱、张金亮.1996.沉积环境和沉积相[M].北京,石油工业出版社.
    [124]王嗣敏,刘招君,董清水等.2000.陆相盆地层序地层形成机制—以松辽盆地为例[J].长春科技大学学报,30(2):139-144
    [125]王贵文、郭荣坤..2000.测井地质学[M].北京,石油工业出版社,
    [126]王小凤,李中坚,陈柏林.2000.郯庐断裂带[M].北京:地质出版社.
    [127]王正瑛,张锦泉等.1988.沉积岩结构构造图册[M].北京,地质出版社.
    [128]吴崇筠.1986.湖泊砂体类型[J].沉积学报,4(4):1-27.
    [129]杨玉峰,王占国,张维琴.2003.松辽盆地湖相泥岩地层有机碳分布特征及层序分析[J].沉积学报,21(2):340-344.
    [130]于兴河.2002.碎屑岩系油气储层沉积学[M].北京,石油工业出版社.
    [131]中国石油学会石油地质委员会编.1988.碎屑岩沉积相研究[M].北京,石油工业出版社,162-181.
    [1321朱光,王道轩,刘国生,等.2004b.郯庐断裂带的演化及其对西太平洋板块运动的响应[J].地质科学,39(1):36-49.
    [133]朱筱敏,信荃麟.1987.惠民凹陷西部沙三段三角洲和浊积扇砂体的粒度特征[J].华东石油学院学报,11(1):10-18.
    [134]张厚福,方朝亮,高先志,等.1999.石油地质学[M].北京:石油工业出版社,45-210.
    [135]张宏,王小凤.1995.郯庐断裂系北段地质特征及中生代演化[J].中国地质科学院—沈阳地质矿产研究所集刊,(4):50-778.
    [136]赵飞霞.1992.动力沉积学与陆相沉积[M].北京:科技出版社,228-261.
    [137]周家健,孙嘉儒.1985.吉林省桦甸早始新世晚期鱼群[J].古脊椎动物学报,23(2):170.
    [138]张庆龙,王良书,谢国爱,等.2005.郯庐断裂带北延及中新生代构造体制转换问题的探讨[J].高校地质学报,(40):577-584.
    [139]张怡侠,孙运生,张兴洲,等.1999.中国满洲里—绥芬河地学断面[M].北京:地质出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700