用户名: 密码: 验证码:
亚微米级氧化铝的表面改性及其水系流延成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于超细无机粉体颗粒的团聚严重及与极性高分子材料相容性较差等原因,给水系流延成型带来重重困难。本论文通过研究亚微米级氧化铝的表面改性,改善了以往工艺的分散效果,避免了亚微米级氧化铝颗粒间的团聚,提高其与高分子材料的相容性,并对其表面改性的规律及改性剂与颗粒间的作用方式进行了深入地探讨。
     本文利用溶胶—凝胶法在亚微米级氧化铝表面包裹氢氧化铝纳米涂层,使其能稳定地保持单个颗粒存在而不发生团聚,同时每个颗粒仍能保持很高的表面能与表面活性,使其在流延工艺中即可促进颗粒的分散稳定性,又能提高其烧结致密化。通过深入研究亚微米级氧化铝颗粒的特性、浆料pH值、粘结剂、分散剂、塑化剂的比例等因素对水基流延浆料流变学性能的影响,制备了分散稳定性良好,流动性适宜,适合流延成型的高固相体积分数的陶瓷浆料;结合流延工艺参数优化,得到了水基流延浆料的最佳配比范围。当pH值为9.0时,分散剂PAA含量为粉料的0.8wt%时,能获得稳定均匀分散、固含量为55vol%的氧化铝浆料。单纯PVA粘结剂制备的浆料粘度高、固含量低,流延片干燥速度慢,但强度高;单纯乳胶粘结剂制备的浆料粘度低、固含量高,流延片干燥速度快,但强度低。研究表明PVA与乳胶的化学相容性好,采用两种粘结剂复合,可以互补不足。当加入的粘结剂4.5wt%(乳胶:PVA=7:3),塑化剂PEG与PVA比例为1:1.3时,可制备出99氧化铝素坯片。
     本文系统研究了乳胶+PVA复合粘结剂体系的水基流延浆料的制备、流变学特性、浆料干燥及成膜机理,通过对浆料制备、流延过程及干燥控制等参数的优化,制备出表面光滑平整、结构均匀、强度和柔韧性较高、容易叠层和烧结的流延素片。该流延工艺制备的流延片,厚度可在50~1000um之间进行调控,素坯相对密度可以达到56%左右。制备的流延片在烧结温度1650℃、保温2小时的条件下获得了相对密度为98.5%、平整、半透明陶瓷基片。
Due to the aggregation of inorganic particles and poor compatibility between the inorganic particles and polymer materials, it posed a great threat on aqueous tape casting. The surface modification of submicron Al_2O_3 was studied in the paper, which can avoid the aggregation and improve the compatibility with polymer materials; it was further discussed that the rules on modification of particle surface and the type of interaction between modified agents and particle.
     Al_2O_3 nano coat was wrapped on the surface of submicron Al_2O_3 by sol-gel, which can retain stably single particle without aggregation, meanwhile every particle still kept high surface energy and surface activity in order to exhibited excellent properties in tape casting technology. Namely, this promoted not only the dispersion stability of particle, but also the sintering densification. The influences of the characteristics of sub-micron Al_2O_3, pH of slurries, latex binder, dispersants and plasticzer on water-based tape casting process were studied systematically. Aqueous ceramic slurry with good stability, suitable fluidity and high powder loading was prepared successfully. The best range of slurry composition was got from the experiments. Aqueous ceramic slurry with good stability, suitable fluidity, and high powder loading was prepared successfully. The research showing: the chemical compatibility was good between PVA and latex. The better effect can be accessed using co-binder of PVA and latex. The stable slurry with solid loading of 55vol.% was produced under the pH value of 9.0 and dispersant PAA content of 0.8 wt%. The green tpae can be obtained via adding 4.5 wt% co-binder (latex : PVA =7:3). The ratio of PEG and PVA was 1 : 1.3.
     In the paper, a co-binder, consisting of polyvinyl alcohol (PVA) and PAA latex, was used to prepare the 99 alumina substrate via aqueous tape casting. This paper focuses systematically on the relationship with the preparation of slurry, the forming of co-binder and the rheological behaviors of the suspensions. The aqueous tape casting process can produce green tapes with smooth surface, homogenous structure, high toughness and strength, easy lamination and sintering by improving technique parameters of tape casting process. The green tpae with 56% relative density and the thickness of 50-1000um can be obtained. The flat and translucent alumina substrate with above 98.5% relative density could be produced under the sintering temperature of 1650°C for 2 hours.
引文
[1]Howatt G N,Method of producing high-dielectric high-insulation ceramic plates.美国专利.2,582,993.1952.
    [2][日]铃木弘茂主编,工程陶瓷,北京:科学出版社,1989.
    [3]Rodrigo Moreno,The Role of Slip Additives in Tape-Casting Technology:Part Ⅰ-Solvents and Dispersants,American Ceramic Society Bulletin,Volume 71,No.10,October 1992.
    [4]Rodrigo Moreno,The Role of Slip Additives in Tape-Casting Technology:Part Ⅱ- Binders and Plasticizers,American Ceramic Society Bulletin,Volume 71,No.11,October 1992.
    [5]贺连星、温廷琏等,流延法制备陶瓷燃料电池电解质膜的研究进展[J],材料科学与工程,Vol.15,No.3,1997.
    [6]陈铭等,YSZ陶瓷膜流延等静压复合成型新工艺研究[J],无机材料学报,Vol.14,No.5,1999.10.
    [7]黄勇等,陶瓷材料流延成型现状[J].硅酸盐通报.Vol.5,2001.
    [8]向军辉等,薄片陶瓷材料凝胶流延成型.(Gel-Tape-Casting)工艺研究[J].材料导报,Vol.14,2000.10.
    [9]黄传勇等,燃料电池YSZ薄膜凝胶-流延成型的制备研究[J].材料工程.No.7,2000.
    [10][英]理查德J.布鲁克主编,材料科学与技术丛书(第17A卷).北京:科学出版社,1999.6.
    [11]梁广川等,流延法制备YSZ电解质薄膜研究[J].陶瓷学报.Vol.21,No.1,2000.3.
    [12]曾宇平等,定向排布层状SiC晶须补强Al_2O_3复相陶瓷的制备及其性能[J].硅酸盐学报.Vol.28,No.5,1998.10.
    [13]张景贤等,碳化钛水系流延膜的制备研究[J].陶瓷学报.Vol 22,No.3,2001.09.
    [14]T.Chartier等,UV curable systems for tape casting[J].Journal of European Ceramic Society.19(1999)
    [15]尹衍升.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001:93-105.
    [16]尹衍升.氧化铝陶瓷及其复合材料.北京:化学工业出版社.2001:48-49.
    [17]刘国祥.影响氧化铝陶瓷烧结的因素分析[J].江苏陶瓷,2000.3,Vol.33,No.1:19-21.
    [18]Coble R L.Sintering crystalline solids-Ⅱ Experimental test of diffusion models in porous compacts[J].J Applphys,1961,32(5):793-799.
    [19]Bennison S J,Harmer M P.Effect of magnesia solute in surface diffusion in sapphire and the role of magnesia in the sintering alumina[J],J Am Ceram Soc,1990,73(4):833-837.
    [20]Rodel J,Glaeser A M.Anisotropy of grain growth in alumina[J].J Am Cerm Soc,1990,73:3592-3301.
    [21]Rodel J,Glaeser A M.Pore drag and pore - boundary separation in alumina[J].J Am Cerm Soc,1990,73:3302-3312.
    [22]Baik S,Moon J H.Effect of magnesium oxide on grain - boundary segregation of calcium during sintering of alumina[J].J Am Cerm Soc,1991,74:819-822.
    [23]Handwerker C.A,Morris P A,Coble R L.Effects of chemical inhomogenities on grain growth and microstructure in Al_2O_3[J].J Am Ceram Soc,1989,72(1):130-136.
    [24]Berry K A,Harmer M P.Effect of MgO solute on microstructure development in Al_2O_3[J],J Am Ceram Soc.1986,69(2):143-149.
    [25]Manor E.Crain growth inhibition in nanocrystalline alumina doped with chromia[J].Nanostructured Materials,1997,8(3):359-366.
    [26]Tartaj J,Messing G L.Anisotropic grain growth in Fe_2O_3 - doped alumina[J].J Am Ceram Soc.1997,80:719-725.
    [27]吴振东等.添加剂对氧化铝陶瓷的烧结和显微结构的影响[J].兵器材料科学工程,2002.1,Vol.25,No.1:18-72.
    [28]彭晓峰.高性能细晶粒氧化铝陶瓷材料的制备与研究[J].无机材料学报.1998.6,Vol.13,No.3:327-332.
    [29]吴音等.流延法制备低温烧结的高热导率AIN基片[J].1996.12,Vol.11,No.4:606-610.
    [30]Richard E.Mistier.Tape Casting:the Bassic Process for Meeting the Needs of the Electronics Industry[J].Ceramic Bulletin.1990,Vol.69,No.6:1022-1026.
    [31]姚晓明.用流延法生产优质Al2O3陶瓷基板[J].电子材料与元件.1994.8,Vol.13,No.4:59-62.
    [32]Song H.Coble R L.Origin and growth kinetics of plate - like abnormal grains in liquid - phase - sintered alumina[J].J Am Ceram Soc,1990,73(7),2077-2085.
    [33]Song H.Coble R L.Morphology of platelike abnormal grains in liquid-phase-sintered alumina[J].J Am Ceram Soc.1990.73(7):2086-2090.
    [34]S.Park,J.M.Vohs,R.J.Gorte.Direct oxidation of hydrocarbons in a solid-oxide fuel cell[J].Nature,2000,404:265.
    [35]A.B.Stambouli,E.Traversa,Solid Oxide Fuel Cells(SOFCs):a Review of an Environmentally Clean and Efficient Source of Energy[J].Renewable and Sustainable Energy Reviews,2002,6:433-455.
    [36]N.Q.Minh,T.Takahashi.Science and Technology of Ceramic Fuel Cells.Elsevier[J],New York,1995.
    [37]N.Q.Minh.Ceramic Fuel Cells[J].J.Am.Ceram.Soc.1993,76:563.
    [38]G Y.Meng,W.Y.Liu,D.K.Peng.Proceedings of 97~(th) Xiangshan Science Conference on New Solid State Fuel Cells,Xiangshan,Beijing,June,1998.
    [39]R.Zheng,X.M.Zhou,S.R.Wang,T.L.Wen,C.X.Ding.A study of Ni +88YSZ/88YSZ/La_(0.6)Sr_(0.4)CoO_3 IT SOFC fabricated by atmospheric plasma spraying[J].Journal of Power Sources,2005,140:217-225.
    [40]J.Van herle,R.Ihringer,R.Vasquez Cavieres,L.Constanti.Anode supported solid oxide fuel cells with screen-printed cathodes[J].Journal of the European Ceramic Society,2001,21:1855-1859.
    [41]I.Riessa,M.Giidickemeierb,L.J.Gaucklerb.Characterization of solid oxide fuel cells based on solid electrolytes or mixed ionic electronic conductors[J].Solid State Ionics,1996,90:91-104.
    [42]B.Todd,J.B.Young.Thermodynamic and transport properties of gases for usein solid oxide fuel cell modeling[J].Journal of Power Sources,(2002,110:186-200.
    [43]D.Larrain,J.Van herle,F.Marechal,D.Favrat.Thermal modeling of a small anode supported solid oxide fuel cell[J].Journal of Power Sources,2003,118 367-374.
    [44]Hideto Koide,Yoshiyuki Someyaa,Toshihiko Yoshidaa,Toshio Maruyama.Properties of Ni/8YSZ cermet as anode for SOFC[J].Solid State Ionics 132(2000)253-260.
    [45]S.H.Chan,X.J.Chen,K.A.Khor.A simple bilayer electrolyte model for solid oxide fuel cells[J].Solid State Ionics,2003,158:29-43.
    [46]J.Will,A.Mitterdorfer,C.Kleinlogel,D.Perednis,L.J.Gauckler.Fabrication of thin electrolytes for second-generation solid oxide fuel cells[J].Solid State Ionics,2000(131):79-96.
    [47]孟广耀.化学气相沉积与无机新材料[M].北京:科学出版社,1984.
    [48]徐如人,庞文琴.无机材料合成与制备化学.北京:高等教育出版社,2001.
    [49]K.L.Choy.Chemical Vapour Deposition of Coatings.Prog[J].Mater.Sci.,2003,48:57.
    [50]H.Ruiz,H.Vesteghem.A.R.Di Giampaolo,J.Lira.J.Zirconia coatings by spray pyrolysis[J].Surface and Coationgs Technology,1997,89:77.
    [51]A.O.Isenberg.Energy Conversion Via Solid Oxide Electrolyte Electrochemical Cells at High Temperatures[J].Solid State Ionics,1981,3(4):431.
    [52]R.A.Gorge.Status of Tubular SOFC Field Unit Demonstrations[J].Power Sources, 2000,86:134-139.
    [53]K.Choy,W.Bai,S.Charojrochkul,B.C.H.Steele.The development of intermediate temperature solid oxide fuel cells for the next millennium[J].Power Sources,1998,71:361-369.
    [54]C.C.Lee,J.C.Hsu,D.H.Wong.The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering.Appl.Surface Science,2001,171:151-156
    [55]L.S.Wang,E.S.Thiele,S.A.Barnett[J],Solid State Ionics,52(1992) 261.
    [56]T.Tsai,S.A.Barnett.Effect of mixed-conducting interfacial layers on solid oxide fuel cell anode performance[J].Electrochem.Soc.,1998,145:1696-1701.
    [57]T.Tsai,S.A.Barnett.Increased Solid-Oxide Fuel Cell Power Density[J].using Interfacial Ceria Layers.Solid State Ionics,1997,98:191-196.
    [58]L.J.H.Kuo,S.D.Vora,S.C.Singhal.Plasma Spraying of Lanthanum Chromite Fills for Solid Oxide Fuel Cell Interconnection Application[J]Am.Ceram.Soc.,1997,80(3):589-593.
    [59]P.Charpentier,P.Fragnaud,D.M.Schleich,E.Gehain.Preparation of thin fill SOFCs working at reduced temperature[J].Solid State Ionics,2000,135:373-380.
    [60]N.Q.Minh,T.R.Armstrong,J.R.Esopa,J.V.Guiheen,C.R.Home,F.S.Liu,T.L.Stillwagon,J.J.Van Ackeren,in:F.Gross,P.Zegers,S.C.Singhal,O.Yamamoto (Eds.),Proc.2nd Int.Symp.on Solid Oxide Fuel Cells,Commission of the European Communities,1991,p.93.
    [61]N.Minh.High-performance reduced-temperature SOFC technology[J].Fuel Cells Bulletin,1999,6:9-11.
    [62]Global Thermoelectrics Inc,Fuel Cells Bulletin,26(2000) 8-11.
    [63]T.Hikita,M.Kawashima,I.Yasuda,T.Koyama,Y.Mat- suzaki,in:S.C.Singhal,H.Iwahara(Eds.),Proc.3rd Int.Symp.On Solid Oxide Fuel Cells,Electrochemical Society,Pennington,NJ,1993,714.
    [64]S.J.Visco,S.de.Souza,L.C.de Jonghe,IN:Proc.EPORI GRI Fuel Cell Workshop on Fuel Cell Technology Research and Development,April 4-5,1995.
    [65]S.de.Souza,S.J.Visco,L.C.de Jonghe.Reduced-temperature SOFC based on 8YSZ Thin-Film Electrolyte[J].J.Electrochem.Soc,1997,144(3):L35.
    [66]T.Ishihara,K.Sato,Y.Takita.Electrophoretic deposition of Y_2O_3-stabilized ZrO_2electrolyte films in solid oxide fuel cells[J].Am.Ceram.Soc.,1996,79:913.
    [67]Lutz Kindermann,Dasarathi Das,Dhirendra Bahadur,Reinhard Wei.Chemical Interactions between La-Sr-Mn-Fe-O-Based Perovskites and Yttria-Stabilized Zirconia.J.Am.Ceram.Sot.,1997,80(4):909-14.
    [68]F.P.F.van Berkel,G.M.Christie,F.H.van Heuvein,J.P.P.Huijsmans,in:M.Dokiya, O.Yamamoto,H.Tagawa,S.C.Singhal(Eds.),Proc.4th Int.Conf.Solid Oxide Fuel Cells,S.C.Singhal,1995,1062.
    [69]S.de Souza,S.J.Visco,L.C.Jonghe.Thin-film solid oxide fuel cell with high performance at low temperature[J].Solid State Ionics,1997,98:57.
    [70]陈大明,孟国文,张景.ZrO_2基纳米超微粉生产技术与粉体特性粉体技术[J].中国粉体技术,1996,2(2):7-12.
    [71]R..W.卡恩,P.哈森,E.J.克雷默.材料科学与技术丛书(陶瓷工艺)第17A卷[M],北京:科学出版社,1999,193-194.
    [72]夏正才,唐超群,潘小龙,等.固体氧化物燃料电池材料研究进展[J].功能材料,1997,28(5):455-459.
    [73]来俊华,丘泰,徐洁,等.用流延法制备优质陶瓷基片的研究[J].江苏陶瓷,2003,36(2):7-9.
    [74]谢淑红.中温固体氧化物燃料电池的制备工艺[D].武汉:华中科技大学,2004.
    [75]刘学建,黄莉萍,古宏晨等.陶瓷成型方法研究进展[J].陶瓷学报,1999,20(4):18-24
    [76]Jing Liu,Scott,A.Barnett.Thin Yttrium-Stabilized Zirconia Electrolyte Solid Oxide Fuel Cells by Centrifugal Casting[J].The American Ceramic Society,2002,12:3096-3098.
    [77]D.W.Fuerstenau,P.C.Kapur,P.C.Velamakanni.A multi torque model for the effects of dispersants and slurry viscosity on ball milling.international[J].Journal of Mineral Processing,1990,28:81-89.
    [78]Sammes N.M,Du Y,Bove R.Design and fabrication of a 100W anode supported micro-tubular SOFC stack[J].J Powder Sources,2005,145:428-434.
    [79]Navarro A,Alcock J R,Whatmore R W.Aqueous colloidal processing and green sheet properties of lead zirconate titanate(PZT) ceramics made by tape casting[J].J Eur Ceram Soc,2004,24:1073-1076.
    [80]Kiennemanna J,Chatiera T,Pagnouxa C,et al.Drying mechanisms and stress development in aqueous alumina tape casting[J].J Eur Ceramc Soc,2005,25:1551-1564.
    [81]Bitterlich Bemd,Lutz Hristiane,Roosen Reas.Rheological characterization of water-based slurries for the tape casting process[J].Ceram Int,2002,28:675-683.
    [82]J.Martinez Carlos,A.Lewis Jennifer,Rheological,structural,and stress evolution of aqueous Al_2O_3:latex tape-cast layers[J].J Am Cera Soc,2002,85(10):2409-2416.
    [83]Luo L H,Tok Ai y,Boeyf Y C.Aqueous tape casting of 10 mol%-Gd_2O_3-doped CeO_2 nano-particles[J]..Mater Sci Eng A,2006,429:266-271.
    [84]Isobe Toshihiro,Hotta YuJi,Watari Koji.Preparation of Al_2O_3 Sheets from Nanosized Particles by Aqueous Tape Casting[J].J Am Ceram Soc,2007,90(11): 3720--3724.
    [85]Auhland Scott,K Holmano,Richard.Strength of Green Ceramics with Low Binder Content[J].J Am Ceram Soc,2001,84(12):2809-2818.
    [86]Basu Rajendran,Arandall Clive.Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition[J].J Am Ceram Soc,2001,84(1):33-40.
    [87]Maria P Albano,Liliana Bgarrido.Aqueous tape casting of yttria stabilized zirconia [J].Mater Sci Eng A,2006,420:171-178.
    [88](英)理查德.J.布鲁克.陶瓷工程[M].清华大学新型陶瓷与精细工艺国家重点实验室译.北京:科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700