用户名: 密码: 验证码:
SrBi_4Ti_4O_(15)及Sr_2Bi_4Ti_5O_(18)A位掺杂改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究镧系元素镨掺杂层状钙钛矿结构铁电材料SrBi_4Ti_4O_(15) (SBTi)和Sr_2Bi_4Ti_5O_(18)(SBT)的性能。研究A位掺杂对材料的晶体结构、铁电和介电性能的影响,分析了掺杂对材料的剩余极化的可能影响机制。
     本论文首先报道了用sol-gel技术在Si /SiO_2 /Ti /Pt基片上制备了性能优良的Pr掺杂SrBi_4Ti_4O_(15)(SBTi)铁电薄膜材料。X射线衍射、扫描电子环境和原子力显微镜分析表明了所沉积的薄膜具有良好的表面形貌,没有第二相的存在。适量的Pr掺杂可以提高SBTi薄膜的铁电性能,随掺杂量的增加,样品的剩余极化2Pr呈现先增大、后减小的变化规律,当掺杂量为0.2时,样品的剩余极化最大(2Pr)达到46.0μC/cm~2,比不掺杂的薄膜样品增加了近一倍。掺杂导致的先增后减的变化规律,是掺杂导致材料中氧空位浓度逐渐降低所产生的积极因素和掺杂导致的晶格畸变程度逐渐减小以及掺杂离子进入(Bi2O_2)2+层所带来的消极因素相互妥协的结果。样品的疲劳测试显示4.4×1010次翻转后,极化几乎没有变化,显示良好的抗疲劳性能。
     本文还采用固相烧结工艺,制备了不同Pr, Sm掺杂量的SBTi铁电陶瓷样品。用X射线衍射发现掺杂基本未改变材料原来的晶体结构。适当的掺杂量使SrBi_4Ti_4O_(15)剩余极化大幅度提高,样品的剩余极化2Pr同样呈现先增大、后减小的变化规律,当掺杂量分别为0.25和0.3时,SBPTi-0.25和SBSTi-0.3的2Pr分别达到最大值24.55μC/cm~2和26.5μC/cm~2,与SBTi相比增幅达到60%以上。
     最后报道了镧系元素Pr掺杂另一种层状钙钛矿材料Sr_2Bi_4Ti_5O_(18)(SBT),掺杂未改变材料的晶体结构。掺杂后,剩余极化2Pr随x的增加,先增大,后减小,在x=0.01时,2Pr达到最大值,为23.35μC·cm~(-2),这时Ec =49.19 kV·cm~(-1)。Pr掺杂使Sr_2Bi_4Ti_5O_(18)的铁电性能显著改善。与Pr掺杂相似结构的SBTi相比,较小的Pr掺杂量就使2Pr达到最大值,这可能是因为SBT的类钙钛矿层中多一个金属性极强的Sr2+的原因。SBPT-x的居里温度Tc随掺杂量x的增加逐渐降低,x = 0.01时,Tc = 296°C。
The main interest of this thesis lies in what is responsible for the change of the ferroelectric properties of Pr doped BLSFs SrBi_4Ti_4O_(15) (SBTi) and Sr_2Bi_4Ti_5O_(18) (SBT). By means of A-site doping, we explored their effects on the crystal structure, ferroelectric and dielectric properties and analysed the possible mechanism that determined the variation dependence of the remanent polarization(2Pr) .
     The Pr doped SBTi precusor solutions were prepared and the ferroelectric thin films were synthesized on Si /SiO_2 /Ti /Pt substrates. The analysis of XRD, SEM and AFM indicated that the films have good crystal tropism and surface morphology, and no any second phase appeares. as the Pr content increases from x = 0.00 to 0.20, the 2Pr increases steadily and reaches the maximum value of 46.0μC·cm?2, which is roughly 100% higher than that of the undoped SBTi, then decreases with further substitution. Pr ions tend to substitute the Bi sites in Bi2O_2 layers, which deteriorate the original functions of the electrical insulation and space charge compensation. The function of structural changes competing with that of restraint of the oxygen vacancies, brings about the variation of remnant polarization in Pr-doped SBPTi-x. The thin films exhibit excellent fatigue characteristics and the Pnv show little change even after 4.4×1010 read/write cycles.
     The ferroelectric ceramics of SBTi doped by Pr and Sm irons have been prepared by the conventional solid-state reaction method. The structure was analyzed by X-ray diffraction (XRD), X-ray diffraction patterns (XRD) of all our samples show that the basic crystal structures of these samples were not changed .The ferroelectric test indicated that doping with proper content can improve the ferroelectric property remarkably. After doping, the remanent polarization (2P_r) of all the samples increases at first, then decreases with the increase of doping content. when Pr3+ and Sm3+ content is 0.25 and 0.30, the 2Pr reaches the maximum value of 24.55μC/cm~2 and 26.5μC/cm~2, increased over 60% compared with that of SBTi.
     As for Pr -doped Sr_2Bi_4Ti_5O_(18)(SBT)case, the structure has not been changed by doping. The 2Pr of the samples increases initially and reaches its maximum value of 23.35μC·cm~(-2) when Pr content is 0.01, then decreases with the increase of doping content. Compared to Pr doped SBTi ,with a smaller content , it make a larger 2P_r, It may due to that an extra Sr~(2+) exist in the peroviskite ferroelectric blocks of SBT .The curie temperature decreased when the Pr content increase.the curie temperature is 296°C when x = 0.01.
引文
[1]钟维烈,《铁电物理学》,科学出版社(1998)
    [2] J. F. Scott and C. A. Araujo, Ferroelectric Memories, Science 246, 1400-1405
    [3] V. L. Ginzburg, Sov. Phys. Solid State, 2, 1824 (1960).
    [4] E. Ascher, J. Phys. C: Solid State Phys.,10, 1365 (1977).
    [5] A.D. Rae, J. G. Thompson and R. L. Withers, Structure refinement of commensurately modulated bismuth strontium tantalite SrBi2Ta2O9, Acta Crystallogr. Sect. B: Struct. Sci. 48, 418–428 (1992)
    [6]许煜寰,《铁电物理学》,科学出版社(1978).
    [7] M. De Kejiser and G. J. M. Dormans, Chemical Vapor Deposition of Electroceramic Thin Films, MRS Bull. 21, 37-43 (1996).
    [8] O. Auciello and R. Ramesh, Laser-ablation deposition and characterization of ferroelectric capacitors for nonvolatile memories, MRS Bull. 21, 31-36 (1996).
    [9]Y. Shimakawa, Y. Kubo, Y. Nakagawa, T. Kamiyama, H. Asano and F. Izumi, Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9, Appl. Phys. Lett. 74, 1904-1906 (1999).
    [10]Yuji. Noguchi, Masaru Miyayama and Tetsuichi Kudo, Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties, Phys. Rev. B 63, 214102-214107 (2001).
    [11]R. E. Melgarejo, M. S. Tomar, S. Bhaskar, P. S. Dobal, and R. S. Katiyar, Large ferroelectric response in Bi4–xNdxTi3O12 films prepared by sol–gel process, Appl. Phys. Lett. 81, 2611-2613 (2002).
    [12]陈实,刘梅冬,薄膜型热释电红外探测器的发展,压电与声光21, 370-375 (1999)
    [13]刘益民,朱建国,肖定全,铁电薄膜的制备、表征和应用,物理21, 671-678 (1992).
    [14]肖定全,当前铁电学和铁电材料研究的几个问题,压电与声光18, 45-50 (1996)
    [15] O. Auciello, J. F. Scott and R. Ramesh, The physics of ferroelectric memories, Physics Today 51, 22-27 (1998)
    [16]Peter Zurcher, Robert E. Jones, Peir Y. Chu and Deborah J. Taylor, IEEE Transactions On Components, Packaging and Manufacturing Technology-Part A 20, 1 (1997)
    [17] Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano, and F. Izumi, Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, and Ba), Phys. Rev. B 61, 6559-6564 (2000).
    [18] Y. Shimakawa, Y. Kubo, Y. Tauchi, T. Kamiyama, H. Asano, and F. Izumi, Structural distortion and ferroelectric properties of SrBi2(Ta1–xNbx)2O9, Appl. Phys. Lett. 77, 2749-2571 (2000).
    [19] Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, Crystal and electronic structures of Bi4–xLaxTi3O12 ferroelectric materials, Appl. Phys. Lett. 79, 2791-2793 (2001)
    [20] Yuji Noguchi, Ichiro Miwa, Yu Goshima and Masaru Miyayama, Defect Control for Large Remanent Polarization in Bismuth Titanate Ferroelectrics -Doping Effect of Higher-Valent Cations-, Jpn. J. Appl. Phys. 39, L1259- L1262 (2000).
    [21] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Vacancy formation in (Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset, Appl. Phys. Lett. 77, 127-129 (2000).
    [22] L. Baudry. Theoretical investigation of the influence of space charges on ferroelectric properties of PbZrTiO3 thin film capacitor, J. Appl. Phys. 86, 1096-1105 (1999)
    [23] Hiroshi Irie, Masaru Miyayama and Tetsuichi Kudo, Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals, J. Appl. Phys. 90, 4089-4094 (2001).
    [24] I. S. Yi and M. Miyayama, Effects of Niobium Substitution for Titanium on Electrical Properties in Single Crystals of Lead Bismuth Titanate, Jpn. J. Appl. Phys. Part 1 36, L1321-L1324 (1997).
    [25] Kazumi Kato, kazuyuki Suzuki, kaori Nishizawa and Takeshi Miki, Phase transition, ferroelectric, and dielectric properties of layer-structured perovskite CaBi3Ti3O12– t?hin films, Appl. Phys. Lett. 79, 397-399 (2000).
    [26] H. N. Al-Shareef, D. Dimos, T. J. Boyle, W. L. Warren and B. A. Tuttle, Qualitative model for the fatigue-free behavior of SrBi2Ta2O9, Appl. Phys. Lett. 68, 690-692 (1996).
    [27] Feng Yan, Yening Wang, Jianshe Liu, Zhigang Zhang and Xiaobin Chen, Mechanical relaxation in SrBi2Ta2O9 ceramics, Appl. Phys. Lett. 74, 2794-2796 (1999).
    [28] E. L. Colla, D. V. Taylor, A. K. Tagatsev, and N. Setter, Discrimination between bulk and interface scenarios for the suppression of the switchable polarization (fatigue) in Pb(Zr,Ti)O3 thin films capacitors with Pt electrodes, Appl. Phys. Lett. 72, 2478-2480 (1998)
    [29]吴迪,博士毕业论文(南京大学,2001).
    [30] A. Laha and S. B. Krupanidhi, Leakage current conduction of pulsed excimer laser ablated BaBi2Nb2O9 thin films, J. Appl. Phys. 92, 415-420 (2002).
    [31] M. Takahashi, Y. Noguchi, and M. Miyayama, Electrical Conduction Mechanism in Bi4Ti3O12 Single Crystal, Jpn. J. Appl. Phys. 41, 7053-7056 (2002).
    [32] H. Yang, K. Tao, B. Chen, X. G. Qiu, B. Xu, and B. R. Zhao, Leakage mechanism of (Ba0.7Sr0.3)TiO3 thin films in the low-temperature range, Appl. Phys. Lett. 81, 4817-4819 (2002).
    [33] X. B. Chen, F. Yan, C. H. Li, Z. G. Zhang, J. S. Zhu, and Y. N. Wang, Switching properties of SrBi2Ta2O9 thin films produced by metalorganic decomposition, Appl. Phys. Lett. 76, 369-371 (2000).
    [34] X. M. Lu, J. S. Zhu, X. S. Zhang, Z. G. Liu, Y. N. Wang, and X. B. Chen, Effects of poling on the switching properties of SrBi2Ta2O9 films, Appl. Phys. Lett. 80, 2961-2963 (2002).
    [35] Y. N. Huang, Y. N. Wang and H. M. Shen, Internal friction and dielectric loss related to domain walls, Phys. Rev. B, 46, 3290-3295 (1992).
    [36] Y. N. Wang, Y. N. Huang, and H. M. Shen, Ferroelectrics, 197, 75 (1997).
    [37] G. Arlt, and N. A. Pertsev, Force constant and effective mass of 90°domain walls in ferroelectric ceramics, J. Appl. Phys. 70, 2283-2289 (1991).
    [38] J. F. Araujo, J. M. Filho, F. E. A. Melo, F. V. Letelier, and A. S. Chaves, Low-frequency dielectric dispersion in ferroelectric crystals, Phys. Rev. B, 57, 783-788 (1998).
    [39] T. Mihara, H. Watanabe, and C. A. Paz de Araujo, Jpn. Polarization Fatigue Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin-Film Capacitors, J. Appl. Phys., part 1 33, 3996 -4002(1994).
    [40] B. Yang, S. Aggarwal, A. M. Dhote, T. K. Song, R. Ramesh, and J. S. Lee, La0.5Sr0.5CoO3/Pb(Nb0.04Zr0.28Ti0.68)O3/La0.5Sr0.5CoO3 thin film heterostructures on Si using TiN/Pt conducting barrier, Appl. Phys. Lett., 71, 356-358 (1997)
    [41] J. Yin, Z. G. Liu, and Z. C. Wu, Completely <111>-textured growth and enhanced ferroelectric properties of Pb(Ta0.05Zr0.48Ti0.47)O3 films on Pt/TiO2/SiO2/Si(001) using SrRuO3 buffer layer, Appl. Phys. Lett., 75, 3396-3398 (1999)
    [42] R. Ramesh, A. Inam, B. Wilkens, W. K. Chan, D. L. Hart, K. Luther and J. M. Trascon, Epitaxial Cuprate Superconductor/Ferroelectric Heterostructures, Science, 252, 944-946 (1991)
    [43] B. H. PARK, B. S. KANG, S. D. BU, T. W. Noh, J. Lee and W. Jo, Lanthanum-substituted bismuthtitanate for use in non-volatile memories, Nature(London) 401, 682-684 (1999)
    [44] C. A-Paz de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes, Nature(London), 374, 627-629 (1995).
    [45] G. D. Hu, I. H. Wilson, J. B. Xu, W. Y. Cheung, S. P. Wong, and H. K. Wong, Structure control and characterization of SrBi2Ta2O9 thin films by a modified annealing method, Appl. Phys. Lett. 74, 1221-1223 (1999)
    [46] Hiroshi Uchida, Hiroki Yoshikawa,and Hiroshi Funakubo et al, Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth Titanate Thin Films [M=lanthanoid] by Chemical Solution Deposition Technique, Jpn J Appl Phys, 41, 6820-6824 (2002).
    [47] Uong Chon, Gyu-Chul Yi, and Hyun M. Jang, Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si(100) by metalorganic solution decomposition, Appl. Phys. Lett. 78, 658-660 (2001).
    [48] Takayuki Watanabe, Hiroshi Funakubo, Manabu Mizuhira, and Minoru Osada, Site definition and characterization of La-substituted Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition, J. Appl. Phys. 90, 6533-6535 (2001).
    [49] Di Wu, Aidong Li, Tao Zhu, Zhiguo Liu and Naiben Ming, Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition, J. Appl. Phys. 88, 5941-5945 (2000).
    [50] Uong Chon, Hyun M. Jang, M. G. Kim and C. H. Chang, Layered Perovskites with Giant Spontaneous Polarizations for Nonvolatile Memories, Phys. Rev. Lett. 89, 87601-87605 (2002).
    [51] Uong Chon, Ki-Bum Kim, Hyun M. Jang, and Gyu-Chul Yi, Fatigue-free samarium-modified bismuth titanate (Bi4–xSmxTi3O12) film capacitors having large spontaneous polarizations, Appl. Phys. Lett. 79, 3137-3139 (2001).
    [52] Ho Nyung Lee, Dietrich Hesse, Nikolai Zakharov and Ulrich Gosele, Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on Silicon Substrates, Science 296, 2006-2009 (2002).
    [53] Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi Iijima, Takayuki Watanabe, Takashi Kojima, and Hiroshi Funakubo, Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution, Appl. Phys. Lett. 81, 2229-2231 (2002).
    [54] Takashi Kojima, Tomohiro Sakai, Takayuki Watanabe, Hiroshi Funakubo, Keisuke Saito, and Minoru Osada, Large remanent polarization of (Bi, Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 80, 2746-2748 (2002).
    [55] R. Ramesh, J. Lee, T. Sands, V. G. Keramidas and O. Auciello, Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O hetero-structures on [001] Pt/SiO2/Si substrates using a bismuth titanate template layer, Appl. Phys. Lett. 64, 2511-2513 (1994)
    [56] J. S. Zhu, H. X. Qin, Z. H. Bao, Y. N. Wang, W. Y. Cai, P. P. Chen, W. Lu, H. L. W. Chan, and C. L. Choy, X-ray diffraction and Raman scattering study of SrBi2Ta2O9 ceramicsand thin films with Bi3TiNbO9 addition, Appl. Phys. Lett. 79, 3827-3829 (2001).
    [57] R. Maalal, M. Manier and J. P. mercurio, Dielectric properties of the mixed aurivillius phases MIIBi8Ti7O27 (MII = Ca, Sr, Ba and Pb), Journal of the European Ceramic Society. 15, 1135-1140 (1995).
    [58] S. B. Desu, P. C. Joshi, X. Zhang, and S. O. Ryu, Thin films of layered-structure (1–x)SrBi2Ta2O9–xBi3Ti(Ta1– yNby)O9 solid solution for ferroelectric random access memory devices, Appl. Phys. Lett. 71, 1041-1043 (1997).
    [59] S. O. Ryu, P. C. Joshi and S. B. Desu, Low temperature processed 0.7SrBi2Ta2O9–0.3Bi3TaTiO9 thin films fabricated on multilayer electrode-barrierstructure for high-density ferroelectric memories, Appl. Phys. Lett. 75, 2126-2128 (1999).
    [60] H. M. Duiker and P. D. Beal, Grain-size effects in ferroelectric switching, Phys. Rev. B 41, 490-495 (1990)
    [61] Ming-Wen Chu, Marcel Ganne, Maria Teresa Caldes and Luc Brohan, X-ray photoelectron spectroscopy and high resolution electron microscopy studies of Aurivillius compounds: Bi4-xLaxTi3O12(x=0, 0.5, 0.75, 1.0, 1.5, and 2.0), J. Appl. Phys. 91, 3178 (2002)
    [62] B. H. Park, S. J. Hyun, S. D. Bu, T. W. Noh, J. Lee, H.-D. Kim, T. H. Kim and W. Jo, Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12, Appl. Phys. Lett. 74, 1907-1909 (1999)
    [63] R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschning, D. L. Hart, and J. M. Tarascon, Science, 252, 944 (1991).
    [64] C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, Appl. Phys. Lett. 72, 2817 (2003).
    [65] H. N. Lee, D. Hesse, N. Zakharov, and U. Gosele, Science, 296, 2006 (2002).
    [66] H. N. Lee, D. Hesse, N. Zakharov, S. K. Lee, and U. Gosele, J. Appl. Phys. 93, 5592 (2003).
    [67] T. Y. Chiou, D. H. Kuo, Appl. Phys. Lett. 85, 3196 (2004).
    [1] L. Wang, A. Pignolet, F. Lavy, Properties of Pb(ZrxTi1-x)O3 Thin Films Prepared by R.F. Magnetron Sputtering and Heat Treatment, Mat.Res.Bu11. 25, 1495 -1501 (1990).
    [2] Z. Surowiak, M. Loposzko, Thin ferroelectric films of the lead zirconate-titanate type obtained by r.f. sputtering, Thin Solid Films 205, 76-84 (1991)
    [3] N. Ichinose, T. Ogiwara, Preparation and Properties of (Ba, Sr)TiO3 Thin Films by RF Magnetron Sputtering, Jpn. J. Appl. Phys. 32, 4115-4117 (1993)
    [4] G. R. Bai, H. L. M. Chang, D. J. Lam et al., Preparation and structure of PbZrO3 epitaxial films by metalorganic chemical vapor deposition. Appl.Phys.Lett., 62 (15), 1754-1756 (1993)
    [5] Takayuki Watanabe, Hiroshi Funakubo, Manabu Mizuhira, and Minoru Osada, Site definition and characterization of La-substituted Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition, J. Appl. Phys. 90, 6533-6535(2001)
    [6] H. S. Gu, Ch. Dong, P. Zh. Chen et al., Growth of layered perovskite Bi4Ti3O12 thin films by sol–gel process, Journal of Crystal Growth 186, 403-408 (1998)
    [7] L.B. Kong, J. Ma, Randomly oriented Bi4Ti3O12 thin films derived from a hybrid sol–gel process, Thin Solid Films 379, 89-93 (2000)
    [8] Masahiro T., Yukio H., Kunisaburo T. et al, Ferroelectric Properties and Fatigue Characteristics of Bi4Ti3O12 Thin Films by Sol-Gel Processing, Jpn. J. Appl. Phys. 33(9B), 5543-5548 (1994)
    [9] Takashi H., Takuya H., Hiroshi T. Preparation and Dielectric Properties of SrBi2Ta2O9 Thin Films by Sol-Gel Method, Jpn. J. Appl. Phys. 36(9B), 5900-5903(1997)
    [10] Soichiro O., Yukie Y, Atsushi K et al., Crystallization of Precursor Micropatterns of Ferroelectric Bi 4Ti 3O 12 F Jpn. J. Appl. Phys. 35(9B), 5224-5228(1996) abricated by Electron Beam Scanning,
    [11] X. S. Wang, Y. J. Zhang, L. Y. Zhang, and X. Yao, Structural and dielectric properties of Bi4Ti3O12 thin films prepared by metalorganic solution deposition Appl.Phys. A 68, 547 -552 (1990)
    [12] R. Ramesh, A. Inam, WK. Chan, Ferroelectric PbZr0.2Ti0.8O3 thin films on epitaxial Y-Ba-Cu-O, Appl. Phys. Lett., 59 (27), 3542-3544 (1991)
    [13] H. Buhay, S. Sinharoy, W.H. Kasoner et al., Pulsed laser deposition and ferroelectric characterization of bismuth titanate films, Appl. Phys. Lett., 58 (14), 1470 -1472(1991)
    [14] H. Tabate, Preparation of PbTiO3 thin films at low temperature by an excimer laser ablation technique, Appl. Phys. Lett. 59 (19), 2354-2356 (1991)
    [15] S. G. Ghonge, E. Goo, R. Ramesh, Microstructure of c-axis oriented lead titanate thin films by pulsed laser ablation, Appl. Phys. Lett., 62(15), 1742 -1744(1993)
    [16] M. Shinji, U. Takumi, K. Hiroshi et al., Growth Style of Bi4Ti3O12 Thin Films on CeO2/Ce0.12Zr0.88O2 Buffered Si Substrates, Jpn. J. Appl. Phys., 38(9B), 5411-5416(1999)
    [17] B. H. Park, T. W. Noh, J. Lee, C. Y. Kim, and W. Jo, Effects of interface charges on imprint of epitaxial Bi4Ti3O12 thin films, Appl. Phys. Lett., 70, 1101-1103 (1997)
    [18]赵新伟,裴志斌,田长生,用溶胶—凝胶法制备铁电薄膜,材料工程,7, 24-26(1994)
    [19]杨邦朝王文生,《薄膜物理与技术》,电子科技大学出版社
    [20]卢旭晨,徐廷献,溶胶-凝胶法及其应用,陶瓷学报,19(1), 53-55(1998).
    [21]周幼华,顾豪爽,田虎永,赵敏,邝安祥,Bi4Ti3O12铁电薄膜溶胶凝胶法制备过程中Bi-Ti溶胶的匀胶规律研究湖北大学学报(自然科学版),20(1), 46-51(1998).
    [22]顾豪爽,赵敏,张云霞,前驱体溶液pH值对溶胶凝胶制备钛酸铋薄膜的影响,湖北大学学报(自然科学版), 20(3), 241-245(1998).
    [23]顾豪爽,熵及其物理意义,湖北大学学报(自然科学版),21(1), 63-67(1999).
    [24] Takayuki Watanade, Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition, Appl. Phys. Lett., 80, 100-102(2002).
    [1] C. A. Paz de Araujo, J. D. Cuchlaro, L. D. McMillan, M. C. Scott, and J. F. Scott,Fatigue-free ferroelectric capacitors with platinum electrodes, Nature (London) 374 627-629(1995)
    [2] H. Irie, M. Miyayama, T. Kudo, Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals, J. Appl. Phys., 90 4089- 4094(2001)
    [3] P. X. Yang, H. M. Deng, J. H. Zhu, Acta Phys. Sin., 47 1222-1228(1998) (in Chinese) [杨平雄,邓红梅,褚君浩,层状钙钛矿结构铁电薄膜SrBi2Ta2O9的掺杂改性研究物理学报47 1222-1228(1998)
    [4] J. Robertson, C. W. Chen, W. L. Warren and C. D. Gutleben, Electronic structure of the ferroelectric layered perovskite SrBi2Ta2O9, Appl. Phys. Lett., 69 1704-1706(1996)
    [5] S. K. Kim, M. Miyayama and H. Yanagida, Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal, Mater. Res. Bull., 31, 121-131(1996)
    [6] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee and W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature(London) 401 682-684(1999)
    [7] M. Hirose, T. Suzuki, H. Oka, K. Itakura, Y. Miyauchi and T. Tsukada, Piezoelectric Properties of SrBi4Ti4O15-Based Ceramics, Jpn. J. Appl. Phys., 38 5561-5563(1999)
    [8] Takayuki Watanabe and Hiroshi Funakubo, Site definition and characterization of La-substituted Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition, J. Appl. Phys., 90 6533-6535 (2001)
    [9] M. S. Tomar, R. E. Melgarejo and A. Hidalgo, Structural and ferroelectric studies of Bi3.44La0.56Ti3O12 films, Appl. Phys. Lett., 83 341-343(2003)
    [10] S. T. Zhang, B. Sun, B. Yang, Y. F. Chen, Z. G.. Liu, and N. B. Ming, Matter. Lett. 47, 334 (2001).
    [11] S. T. Zhang, B. Yang, Y. F. Chen, Z. G.. Liu, X. B. Yin, Y. Wang, M. Wang, and N. B. Ming, SrBi4Ti4O15 thin films and their ferroelectric fatigue behaviors under varying switching pulse widths and frequenciesJ. Appl. Phys. 91,3160-3164 (2002).
    [12] H. Watanabe, T. Mihara, H. Yoshimori, and C. A. Paz. de.Araujo, Preparation of Ferroelectric Thin ilms of Bismuth Layer structured Compounds Jpn. J. Appl. Phys. 34, 5240-5244 (1995).
    [13] Y. Noguchi, I.Miwa, Y. Goshima and M. Miyayama, Defect control for Large Remanent Polarization in Bismuth Titanate Ferroelecteics-Doping Effect of Higher-Valent Cations. Jpn. J. Appl. Phys. 39, 1259-1262 (2000).
    [14] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Vacancy formation in(Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset Appl. Phys. Lett., 77, 127-129 (2000).
    [15] M. Osada, M. Tada, M. Kakihana, T. Watanabe and H. Funakubo, Cation Distribution and Structural Instability in Bi4-xLaxTi3O12 J. Appl. Phys., 40, 5572 -5575(2002).
    [1] Takayuki Watanabe, Hiroshi Funakubo, Manabu Mizuhira and Minoru Osada.Site definition and characterization of La-substituted Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition J. Appl. Phys. 90(12), 6533-6535 (2001).
    [2] Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi Iijima, Takayuki Watanabe and Hiroshi Funakubo. Fabrication of M3+-Substituted and M3+/V5+-Cosubstituted Bismuth TitanateThin Films [M = lanthanoid] by Chemical Solution Deposition Technique Jpn. J. Appl. Phys., 41(11B), 6820 -6824(2002).
    [3] Tadashi Takenaka and Koichiro Sakata. Ferroelectrics, 38, 769 (1981).
    [4] Y. Noguchi, I.Miwa, Y. Goshima and M. Miyayama, Defect control for Large Remanent Polarization in Bismuth Titanate Ferroelecteics-Doping Effect of Higher-Valent Cations 1259-1262. Jpn. J. Appl. Phys., 39, L1259 (2000).
    [5] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Vacancy formation in(Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset Appl. Phys. Lett., 77, 127-129 (2000).
    [6] M. Osada, M. Tada, M. Kakihana, T. Watanabe and H. Funakubo, Cation Distribution and Structural Instability in Bi4-xLaxTi3O12 J. Appl. Phys., 40, 5572 -5575(2002).
    [7] Y.P. Chen, Y.Y. Yao, Z.H. Bao, J.S. Zhu , Y.N. Wang, Study on ferroelectric and dielectric properties of La-doped SrBi4Ti4O15 ceramics Mater. Lett., 57, 3623. (2003).
    [8] W. P. Lu, X. Y. Mao, and X. B. Chen, 2004, J. Appl. Phys. 95, 1973.
    [1] S. T. Zhang, C. S. Xiao, A. A. Fang, B. Yang, B. Sun, Y. F. Chen, Z. G. Liu, and N. B. Ming, Ferroelectric properties of Sr2Bi4Ti5O18 thin films, Appl. Phys. Lett., 76 3112-3114(2000)
    [2] Y. Noguchi, I.Miwa, Y. Goshima and M. Miyayama, Defect control for Large Remanent Polarization in Bismuth Titanate Ferroelecteics-Doping Effect of Higher-Valent Cations. Jpn. J. Appl. Phys. 39, 1259-1262 (2000).
    [3] T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E. H. Poindexter and D. J. Keeble, Vacancy formation in(Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset Appl. Phys. Lett., 77, 127-129 (2000).
    [4] M. Osada, M. Tada, M. Kakihana, T. Watanabe and H. Funakubo, Cation Distribution and Structural Instability in Bi4-xLaxTi3O12 J. Appl. Phys., 40, 5572 -5575(2002).
    [5] W. P. Lu, X. Y. Mao, and X. B. Chen, 2004, J. Appl. Phys. 95, 1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700