用户名: 密码: 验证码:
模拟方法在贝氏体钢研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来模拟方法在材料的成分和工艺设计方面获得广泛应用,对大型工件更具优势。本论文采用数值模拟、人工神经网络和小试样物理模拟结合的方法,对贝氏体钢大型厚壁锻件、厚截面铸件和1500MPa级高强钢的成分和工艺设计进行指导,探索应用模拟方法研制高强韧贝氏体钢的途径,在此基础上对所研究贝氏体钢的强韧化机制和1500MPa级高强钢的超高周疲劳行为进行了研究。
     研究表明,采用NSHT热处理数值模拟程序计算热处理冷却过程的温度场分布,通过ANN模型预测或实测CCT图,结合小试样控制冷却的热处理工艺模拟,可以较好预测所研究贝氏体钢的组织和性能,有效指导成分和工艺设计。
     (1)对400mm*800mm*800mm反应堆压力容器(RPV)特厚大锻件在淬火过程中的温度场分布进行了计算,获得不同部位的冷却曲线;在微调SA508-3成分基础上通过W合金化进行初步成分设计,采用人工神经网络预测实验钢的CCT图;二者结合预测实验钢对应锻件不同位置的组织和性能。并通过小试样控制冷却模拟了大锻件不同位置的冷却过程,获取典型位置材料的组织和性能数据。在此基础上对RPV特厚大锻件的成分和工艺进行了优化设计。结果表明,对SA508-3进行适量微调和W合金化,经淬火+高温回火后可以获得良好的综合力学性能和截面内性能的均匀性,满足RPV锻件的技术条件要求。
     (2)对60mm厚的Mn-Si-Cr贝氏体钢板类铸件奥氏体化后的空冷进行了数值模拟,结合CCT图预测了不同成分铸件空冷后的组织,同时通过小试样热处理模拟预测了性能,二者结合预测了铸件典型位置的空冷淬透性。在此基础上合理设计成分与工艺,达到了淬透性要求。预测结果与实测结果一致。
     (3)采用小试样模拟不同尺寸钢棒空冷,建立了1500MPa级无碳化物贝氏体/马氏体(CFB/M)高强钢的改型CCT图;对不同形变温度的形变热处理进行了实验模拟。对其连续冷却转变规律进行了研究,探讨了冷却速度和形变温度对组织和性能的影响,为获得高强韧CFB/M组织提供了工艺指导。在根据实验结果获得CFB/M组织的基础上,研究了CFB/M高强钢的超高周疲劳行为。
Simulation methods are applied widely for composition and process design during recent years. In the present work, combination of simulation methods including numerical simulation, artificial neural network and small-sample physical simulation were applied to guide composition and process design of bainite forging and casting with large size and 1500MPa grade super high strength steel, aiming at investigating the application of simulation methods on developing bainite steels with good strength and toughness. In addition, the strengthening and toughening mechanism of studied materials and ultra high cycle fatigue behaviors were studied based on the experimental results.
     The experimental results show that the structure and properties of studied bainite steels can be predicted correctly based on temperature field distribution during heat treatment calculated by NSHT heat treatment numerical simulation program, CCT diagram predicted by artificial neural network and heat treatment process simulation results obtained by small sample control cooling. Then the design of composition and heat treatment procedure can be guided adequately on the basis of above prediction results.
     The temperature field distribution of 400mm*800mm*800mm heavy section steel forging for reactor pressure vessel was numerical simulated by NSHT program. Experimental materials were originally designed by tungsten alloying on the adjusted composition of SA508-3 and their CCT diagrams were predicted by artificial neural network. Combing above results the structure and properties corresponding to arbitrary sites of the forging were predicted. Small sample control cooling was applied to simulate quenching of the typical sites of the forging to obtain information of structure and properties. Composition and heat treatment process were optimized based on above results. Experimental results show that satisfactory properties and property homogeneity with the forging section were obtained by tungsten alloying on SA508-3 after quenching and high temperature tempering, satisfying standards for RPV large size forging.
     The air cooling procedure after austenizing was numerical simulated for Mn-Si-Cr bainite steel plate cast with 60mm thickness. The structure of studied steels with different composition was predicted based on combination of numerical simulation results and CCT diagram, and the properties of typical site of the cast were predicted by small sample simulating heat treatment. Combining above results the hardenability of experimental materials for 60mm-thick cast were analyzed. According to prediction results the composition and heat treatment procedure were designed and good hardenability was obtained for studied steels. The prediction results are in consistence with measurement ones.
     For 1500MPa grade high strength steel with duplex phase of carbide free bainite/martensite(CFB/M) microstructure, the modified CCT diagram was established by small samples to simulate the air cooling of steel rods with different size. Thermal-mechanical treatments under different deformation temperature then control cooling were carried out by small samples. Continuous cooling transformation mechanism of experimental steel was studied, and the influences of cooling rate and deformation temperature on structure and properties were discussed. The results provide guidance for heat treatment design to obtain CFB/M structure with high strength and toughness. The CFB/M microstructure was obtained according to experimental results and the ultra high cycle fatigue behavior was investigated.
引文
[1]刘庄,吴肇基,吴景之等.热处理过程的数值模拟.北京:科学出版社, 1996: 3
    [2] Yang Weiwen , Hon Minhsiung. In-situ Evaluation of Dimensional variations during water extraction from Alumina injection-moulding parts. Journal of the European Ceramic Society, 2000,20 :851
    [3]张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1998
    [4]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993
    [5]樊新民,孔见,金波.人工神经网络在金属热处理中的应用.金属热处理, 2000,(11): 25~27
    [6]王本一,石伟,刘庄.数值模拟技术在大型锻件生产中的应用.大型铸锻件, 1999(1): 15~20
    [7] Meekisho L L, Chen X. Computer modeling : an important tool in materials processing. The Proceedings of the 1st International Conference on Thermal Process Modeling and Computer Simulation. Shanghai Jiao Tong University, 2000, E-5(1): 26~34
    [8] Inoue T, Funatani K, Totten G. Processing modeling for heat treatment: current status and future developments. The Proceedings of the 1st International Conference on Thermal Process Modeling and Computer Simulation. Shanghai Jiao Tong Univ,2000,E-5(1): 16~25
    [9] Douling W, Pallok T, Ferguson B L, et al. Development of a carburizing and quenching simulation tool: program overview]. The 2nd International Conference on Quenching and the Control of Distortion. 1999. 349~357
    [10] T.Furukawa, H. Huang, O. Matsumura. Effects of Carbon Content on Mechanical Properties of 5%Mn Steels Exhibiting Transformation Induced Plasticity. Materials Science and Technology, 1994,10: 964~969
    [11]陈君若,王洪纲.厚壁管类工件水淬传热问题的计算机模拟.金属热处理学报, 1997, 18(1): 8~49
    [12]张立文,赵志国,范全利等. 35CrMo钢大锻件淬火过程组织分布的计算机预测.金属热处理学报, 1994,15(4):15~21
    [13] H.M. Tenis, A. Stick. Martensite Hardening of Steel-Prediction of Temperature Distribution and Surface Hardness. Material Science Forum. 1992,102-104:741~754
    [14] C.E. Bates, G.E. Totten. Quench Severity Effects on the As-quenched Hardness of Selected Alloy Steels. Heat Treatment of Metals, 1992,19(2): 45~48
    [15] C.E. Bates, G.E. Totten. Selecting Quenchants to Maximize Tensile Properties and Minimize Distortion Aluminum Parts. Heat Treating, 1987,5(1): 27~40
    [16]陈达,水晓平,李鹏兴.大件热处理的温度场、显微组织及性能预测.机械工程学报, 1990, 26(6): 8-13
    [17] F.S. Allen, A.J. Fletcher. Effects of Surface Conditions of Generation of Stress and Strain in Quenched Steel Plates. Materials Science and Technology, 1987,3: 291~297
    [18] Denis S, et al. Stress-phase transformation interaction of inter stresses. Material Science and Technology, 1985, 1 : 805~809
    [19]阮冬,潘健生,胡明娟.过冷奥氏体等温转变曲线数据库的建立.金属热处理,1997, 8: 4~9
    [20]张力文,赵志国,范全利等.用有限元法计算35CrMo钢大锻件淬火过程的瞬态温度场.金属热处理, 1994, 12: 18~22
    [21]潘健生,胡明娟,田东,顾剑锋.淬火过程计算机模拟研究的若干进展.金属热处理, 1998, 12: 30~31
    [22]潘健生,胡明娟.计算机模拟与热处理智能化.金属热处理, 1998, 7: 21-23
    [23]冯小丹.几种钢材淬火过程计算机数值模拟优化的研究[硕士学位论文].武汉:武汉大学材料科学与工程学院, 2005: 47
    [24] Ji Woong Jang, In-Wook Park, Kwang Kim. PE program development for predicting thermal deformation in heat treatment. Materials Processing Technology. 2002, 131-132: 546~550
    [25] Tamas Reti, Zoltan Fried, Imre Felde. Computer Simulation of Steel Quenching Process Using a Multi-phase Transformation Model. Computational Materials Science. 2001,22: 261~278
    [26] A Yanez, J.C.Alvarez, A.J.Lopez. Modeling of Temperature Evolution Metals during Laser Hardening Process. Applied Surface Science. 2002, 186: 611~616
    [27]刘庄,吴肇基,吴景之等.热处理过程的数值模拟.北京:科学出版社,1996:119~158.
    [28]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应.北京,科学出版社,1997,2
    [29] Pan Jiansheng, Li Yongjun, Li Dingqiang. The application of computer simulation in the heat-treatment process of a large-scale bearing roller. Journal of Materials Processing Technology, 2002, 122:241-248
    [30]潘健生,胡明娟,田东,顾剑峰.淬火过程计算机模拟研究的有关进展.金属热处理, 1998, 12: 26-31
    [31] Li Huiping, Zhao Guoqun, Niu Shanting et,al. FEM simulation of quenching process and experimental verification of simulation results, Materials Science and Engineering A, 2007, 452-453: 705–714
    [32] T Inoue, K Arimoto. Development and implementation of cae system“hearts”for heat treatment simulation based on metallo-thermo-mechanics. J. Mater. Eng. Performance,1997,6(1): 51-60
    [33]商福民,张永. ANSYS有限元分析系统在数值传热中的应用.长春工程学院学报(自然科学版). 2004,5(1): 18~20
    [34]博嘉科技.有限元分析软件-ANSYS融会与贯通.北京:中国水利水电出版社,2002.
    [35]许学军,陈国学,刘春成等.钢的淬火过程的数值模拟.大型铸锻件, 1997,(2): 6~10
    [36] Kirkaldy J S, Venugopalan D. Proceedings of an international conference on phase transformations in ferrous alloys. Ohio: AIME,1984: 125~148
    [37] Umemoto M, Hiramatsu A, Moriya A. Computer modeling of phase transformation from work-hardened austenite. ISIJ International, 1992,32(3): 306~315
    [38] Lee K J. Modeling ofγ/αtransformation in niobium-containing microalloyed steels. Scripta Materialia, 1999,40(7): 831~836
    [39]刘贵立,张国英,曾梅光.用人工神经网络模型研究微量元素对钢力学性能的影响.钢铁研究. 2000(1): 48~50
    [40] Keser M, Stupp S I. Genetic algorithms in computational materials science and engineering: simulation and design of self-assembling materials. Computer Methods in Applied Mechanics and Engineering, 2000, (186): 373
    [41] Qian Hancheng, Xia Bocai, Li Shangzheng et al. Fuzzy neural network modeling of material properties. Journal of Materials Processing Technology, 2002, (122): 196
    [42] Arafeh L ,Singh H , Putatunda S K. A Neuro Fuzzy Logic Approach to Material Processing. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 1999,29 (3): 362
    [43] D.H. Kima, Y. Leeb, B.M. Kim. Application of ANN for the dimensional accuracy ofworkpiece in hot rod rolling process, Journal of Materials Processing Technology, 2002,130–131: 214~218
    [44]贺昌政,俞海. BP人工神经网络主成分分析预测模型及应用.数量经济技术经济研究,2001,9: 104~106
    [45]左秀荣,薛向欣,姜茂发.用人工神经网络预测钢的临界点温度.特殊钢, 2001,22 (4) :49~50
    [46]左秀荣,姜茂发,薛向欣.人工神经网络在钢铁材料力学性能预测方面的应用.特殊钢, 2004,25(5): 26~29
    [47] Cybenko G. Approximation by superpositions of sigmoidal function. mathematics of control. Signals and Systems, 1980 ,2 :303-314
    [48] Hornik K,et al. Multilayer feedforward network are universal approximators. Neural Network ,1989 ,2 :359-366
    [49] Scorselli F, et al. Universal approximation using FNN: A survey of some existing methods and some new results .Neural Networks, 1998,11:15-37.
    [50] Pieter Van der Wolk. Modeling CCT-diagrams of Engineering Steels Using Neural Networks. Delft: Delft University Press, 2001
    [51] Vermeulen W. G., Morris P. F., S. van der Zwaag. Prediction of Continuous Cooling Transformation Diagram of some selected Steels using Artificial Neural Networks. Steel Research, 1997, 68: 72-79.
    [52] Wang Jiajun , Wolk Pieter J Van Der. Effects of Carbon Concentration and Cooling Rate on Continuous Cooling Transformations Predicted by Artificial Neural Network. ISIJ International, 1999, 39 (10): 1038-1046.
    [53]由伟.用人工神经网络预测新型空冷贝氏体钢的CCT图[博士学位论文].北京:清华大学材料科学与工程系, 2004
    [54]蒋敏,张建新,苏秀兰等.通过小试样的控制冷却模拟大截面模块淬火硬度的分布.东北大学学报(自然科学版), 2000,21(4): 416~419
    [55] Pickering F P. Physical Metallurgy and the Design of Steels. Applied Science Publishers Ltd. London, 1980: 36
    [56] Irvine K J, Pickering F B. The Physical Properties of Martensite and Bainite. Journal of Iron and Steel Institute. 1958, 188: 101~112
    [57]孟至和. Fe-C-Mn-B系贝氏体钢过冷奥氏体等温转变动力学及影响机制[硕士学位论文].北京:清华大学材料科学与工程系, 1986
    [58]杨柳,方鸿生,陈南平.锰-硼钢等温转变曲线河湾形状及其形成机制探讨.清华大学学报, 1988, 28(2): 93~99
    [59]方鸿生,郑燕康,陈秀云等.空冷贝氏体少热处理钢.金属热处理, 1985,(9): 51~55
    [60]方鸿生,杨业元,姜忠良,等.贝氏体钢磨球与我国磨球材料.兵器材料科学与工程, 1993,16(5): 1~10
    [61]方鸿生,郑燕康等. Mn-B系空冷贝氏体钢的新近进展.金属热处理, 1997, 4: 9~12
    [62]方鸿生,邓海金.低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性.机械工程材料,1981, 5(1): 5~14.
    [63]清华大学金属材料专业贝氏体钢组.新型热轧贝氏体钢─低碳錳硼系工程用钢12Mn-B及16Mn-B.金属材料研究, 1976, 4(12): 913~923
    [64] Sandvik B P J, Nevalainen H P. Structure-property relationship in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness. Metal Technology., 1981, 8(6): 213~220
    [65] Miihkinen V T T, Edmonds D V. Microstructural examination of two experimental high-strength bainitic low-alloy steels containing silicon. Materials Science and Technology, 1987, 3(6): 422~431
    [66] Miihkinen V T T, Edmonds D V. Tensile deformation of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Techn., 1987, 3(6): 432~440
    [67] Miihkinen V T T, Edmonds D V. Fracture toughness of two experimental high-strength bainitic low-alloy steels containing silicon. Mater. Sci. Techn., 1987, 3(6): 441~449
    [68] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: new composition-property approach, Part 1. Met. Sci., 1983, 17(9): 411~419
    [69] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: new composition-property approach, Part 2. Met. Sci., 1983, 17(9): 420~425
    [70]俞德刚.钢的组织强度学.上海:上海科学技术社,1983. 145
    [71]杨柳,朱德贵,张筠等. Fe-Mn与Fe-Mn-Si合金等温转变组织与动力学见:中国金属学会,材料科学学会编.第二届全国贝氏体相变讨论会论文集.四川峨眉, 1990: 39~41
    [72]刘世楷.钢中贝氏体相变动力学.见:中国金属学会,材料科学学会编.第二届全国贝氏体相变讨论会论文集.四川峨眉, 1990: 15~22
    [73]俞德刚.钢的组织强度学.上海:上海科学技术社, 1983: 338~349
    [74] Edmonds D V. Cochrane R C. Structure property relationship in bainitic steels. Metallurgical Transaction A, 1990,21A: 1527~1540
    [75] Pickering F B. Transformation and hardenability in steels. Climax Molybdenum Co.,Ann Arbor,MI, 1967,109~29
    [76] Brozzo P, Buzzichelli G, Mascanzoni A. Microstructure and cleavage resistance of low-carbon bainitic steels. Mettal Science, 1977,11(4): 123~129
    [77] Lonsdale D, Flewitt P E. Role of grain size on the ductile bainitic transformation of a 2.25%Cr-1%Mo steel. Metallurgical Transaction A, 1978, 9A(11): 1619~1623
    [78] Naylor J P, Blondeau. Respective roles of the packet size and the lath width of toughness. Metallurgical Transaction A, 1976,7A(6): 891~894
    [79] Naylor J P. Grain Boundaries. London: Institution of Metallurgists, 1976, 13~17
    [80] Tomita Y, Okabayashi K. Mechanical properties of 0.4%C-Ni-Cr-Mo high steel having a mixed structure of martensite and bainite. Metallurgical Transaction A,1985, 16A(1): 73~82
    [81] Tomita Y, Okabayashi K. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrohigh strength low alloy steels. Metallurgical Transaction A,1985,16A: 83~91
    [82] Tomita Y, Okabayashi K. Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels. Metallurgical Transaction A,1985, 16A(5): 1203~1208
    [83] Ohmori Y, Ohtani H, Kunitake, T. Tempering of the bainita and the bainite/martensite duplex structure in a low-carbon low-alloy steel. Metal Science Journal,1974,8(11): 357~366
    [84] Jun-ichi Tanaka, Saburo Tani, Chiaki Ouchi. Low temperature toughness of watet-cooledtempered low carbon Manganese steel. ISIJ, 1975, 15(1): 19~26
    [85] Naylor J P, Krahe P R. The effect of the bainite packet size on toughness. Metall. Trans. 1974, 5A(7): 1699~1701
    [86] Hehemann R F, Luhan V J, Troiano A R. The Influence of Bainite on Mechanical Properties. Trans. ASM, 1957, 49: 409~426
    [87] Tomita Y, Okabayashi K. Improvement in Lower Temperature Mechanical Properties of 0.40 Pct C-Ni-Cr-Mo Ultrahigh Strength Steel with the Second Phase Lower Bainite. Metall.Trans., 1983, 14A:485~492.
    [88] Tomita Y, Okabayashi K. Heat Treatment for Improvement in Lower Temperature Mechanical Properties of 0.40 Pct C-Cr-Mo Ultrahigh Strength Steel. Metall.Trans., 1983, 14A: 2387~2393.
    [89]方鸿生,郑燕康,周欣.中碳贝氏体/马氏体复相组织强韧性的研究.金属热处理学报,1986, 7(1): 10~18.
    [90]邦立武郎,大谷泰夫.鋼における混合組織と靭性.日本金属学會會报, 1975, 14(9): 689~697
    [91] Tomita Y, Okawa T. Effect of Modified Heat Treatment on Mechanical Properties of 300M Steel. Mater. Sci & Technol., 1995,11: 245~251.
    [92] Tomita Y. Mechanical Properties of Modified Heat treated Silicon Modified 4330steel, Mater .Sci .and Technol. 1995,11: 259~263
    [93] Bhadeshia H K D H, Edmonds D V. Bainite in silicon steels: new composition-property approach, Part 2. Met. Sci., 1983, 17(9): 420~425
    [94] Steele R K. Recent North American Experimence with shelling in railroad rails(Part 1: observation). Am. Railw. Eng. Assoc. Proc., 1989, 90:311~345
    [95] Tomita Y. Effect of microstructure on fracture toughness J1c of heat-treated 0.4-Cr-Mo-Ni structural low alloy steel. Materials Science and Technology, 1990, 6(4): 349~355
    [96] Tomita Y. Effect of martensite morphology on mechanical properties of low alloy steels having mixed structure of martensite and lower bainite. Materials Science and Technology, 1991,7(4): 299~306
    [97] Tomota Y. Effect of modified austemper on tesile properties of 0.52%C steel. Materials Science and Technology, 1995,11(10): 984~993
    [98] Irvine K J, Pickering F B. The Physical properties of Martensite and Bainite. Journal of Iron and Steel Institute, 1958, 188(1):101~122
    [99] Garcia C I., Lis A K., Pytel S M. etal. Ultra-Low Carbon Bainite Plate Steels: Processing Microstructure and Properties. Iron and steel maker. 1991,18(10):97~106
    [100] Bhadeshia H K D H, Edmonds D V. Mechanism of bainite in steels. Acta Metallurgica, 1980, 28(9): 1265~1273
    [101]陈书贵.核电站反应堆压力容器用钢和制造工艺.大型铸锻件, 1994, 2 :25~34
    [102]胡本芙,岩馆忠雄.核电站压力容器用锰铬钼镍低碳合金钢大截面锻件断裂韧性研究.钢铁, 1996,31(10): 35~39
    [103]陈红宇,杜军毅,邓林涛等.核反应堆压力容器锻件用SA508系列钢的比较和分析.大型铸锻件, 2008,(1): 1~3
    [104] Fang H S, Zheng Y K, Chen X Y et al. A Series of New Type Air Cooling Bainitic Steels. SEAISI quarterly, 1991, 20(3):30
    [105]刘东雨,方鸿生,陈颜堂,等. 1500MPa级经济型贝氏体/马氏体复相钢的合金设计.金属热处理,2000, (10): 1~5
    [106]方鸿生,徐平光,白秉哲,等.一种新的复相组织-仿晶界型铁素体/粒状贝氏体.金属热处理,2000,11:1~5
    [107]黄进峰,方鸿生,徐平光,等.硅对中低碳贝氏体铸钢组织和性能的影响.金属热处理, 2000,6:2~6
    [108] Liu D Y, Bai B Z, Fang H S et al. Effect of Tempering Temperature on the Strength and Toughness of a Novel Carbide Free Bainite /Martensite Duplex Phase Steel. Journal of Iron and Steel Research International, 2002, (1): 46~49
    [109] Fang H S, Yang F B, Bai B Z et al. Recent Development of Mn Series Air-cooled Bainitic Steels. Journal of Iron and Steel Research International, 2005, (2):1~10
    [110]徐平光,白秉哲,方鸿生.高强度低合金中厚钢板的现状与发展.机械工程材料, 2000,25(2): 4~8
    [111]刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社, 1993: 194~220
    [112]黄维刚,徐蓉,郑燕康等.显微组织对中碳含硅贝氏体钢高应力冲击磨损性能的影响.机械工程材料, 1997, 21(1): 4~6
    [113]黄进峰,方鸿生,徐平光,郑燕康.硅对中低碳贝氏体铸钢组织和性能的影响.金属热处理, 2000 (6): 2~5
    [114]黄进峰,方鸿生,徐平光,郑燕康.稀土、钛变质对贝氏体铸钢成分偏析及强韧性的影响.金属热处理学报, 2000, 21(1): 32~39
    [115]黄进峰,方鸿生,徐平光,郑燕康.稀土/钛变质贝氏体铸钢的高应力冲击磨损研究.金属热处理, 2000 (1): 21~24
    [116]方鸿生,刘东雨,常开地,等. 1500MPa经济型贝氏体/马氏体复相钢的组织与性能.钢铁研究学报, 2001, 13(3): 31~36
    [117]常开地,顾家琳,方鸿生等.新型1500MPa级高强钢的氢脆敏感性研究.金属热处理,2002, 3(1): 8~11
    [118] Yu M T, Topper T H, Wang L. The Effect of Microstructure on the Mechanical Behaviour of a Low Carbon, Low Alloy Steel[J]. Int. J Fatigue. 1988, 10(4): 249~255
    [119] Li Yongjun Fatigue Fracture Behavior of Low Carbon Martensite and Martensite/bainite Duplex Structure in Steel 20CrMnMo[J]. Acta Metall. Sinica, 1992, 5(3):212~217
    [120]于光,黎永钧.低碳马氏体/贝氏体复合组织的疲劳裂纹萌生行为[J].材料工程,1995,(3): 30~32,41
    [121]谭若兵,陈大明,康沫狂.超高强度钢中准贝氏体组织的缺口疲劳强度,西北工业大学学报, 1990,增刊: 182~187
    [122]陈大明,康沫狂,谭若兵. 40CrMnSiMoVA钢的疲劳性能.金属学报, 1991, 27(6): A458~A463
    [123] Liu Wenyan, Qu Jingxin, Shao Hesheng. Fatigue Crack Growth Behaviour of a Si-Mn Steel with Carbide-free Lathy Bainite. Journal of Materials Science. 1997,32: 427~430
    [124]黑岛义人,池田隆,原田三德,等.高強度鋼の高サイクル疲労域における内部き裂進挙動.日本机械学会論文集(A). 1998, 64: 102~107
    [125] Naito T, Ueda H, Kikuchi M. Observation of fatigue fracture surface of carburized steel. J. Soc. Mater. Sci. Japan, 1983, 32 (361):1162-1166
    [126] Masuda C, Isii A, Nishijiama S, et al. Heat-to-heat variation in fatigue strength of SCr420 carburized steels. Trans. JSME. Part A, 1985,51 (464):847-852
    [127] Masuda C, Nishijiama S, Tanaka Y. Relationship between fatigue strength and hardness for high strength steels. Trans. JSME. Part A, 1986,52(476): 847-852
    [128] Kuroshima Y, Ikeda T, Harada M, et al. Subsurface crack growth behavior on high cycle fatigue of high strength steel. Trans. JSME. Part A, 1998, 64(626):2536-2541.
    [129] Nakamura T, Kaneko M, Tanabe T, et al. Cause of the second drop of the S-N diagram of ADI after leveling off. Trans. JSME. Part A, 1995, 61(582):441-446.
    [130] Sakai T, Sato Y, Oguma N. Characteristics S-N properties of high Carbon chromium bearing steel under axial loading in long-life fatigue. Fatigue Fract. Eng. Mater. Struct. 2002,25:765-773.
    [131] Shiozawa K, LU L T, Ishihara S. S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high Carbon chromium bearing steel. Fatigue Fract. Eng. Mater. Struct. 2001,2 : 781~790.
    [132] Murakami Y, Nomoto T, Ueda T. Factors influencing the mechanism of super-long fatigue failure in steels. Fatigue Fract. Eng. Mater. Struct.1999, 22:581-590.
    [133] Murakami Y, Yokoyama N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Eng. Mater. Struct., 2002,25:735-746.
    [134] Shiozawa K, LU L T, Ishihara S. S-N curve characteristics and subsurface crack initiation behavior in ultra-long life fatigue of a high Carbon chromium bearing steel. Fatigue Fract. Eng. Mater. Struct. 2001,2:781~790.
    [135] Miller K J, O’Donnell W J, The fatigue limit and its elimination. Fatigue Fract. Engng. Mater. Struct., 1999,22: 545~557
    [136] Mughrabi H, On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime. Fatigue Fract. Engng. Mater. Struct., 1999,22: 633~641
    [137] Wang Q Y, Benard J Y, Dubarre A, et al, Gigacycle fatigue of ferrous alloys. Fatigue Fract. Engng. Mater. Struct., 1999,22: 667~672
    [138] Bathias C, There is no infinite fatigue life in metallic materials. Fatigue Fract. Engng. Mater. Struct., 1999,22:559~565
    [139] Nishijima S,Kanazawa K,Stepwise S—N curve and fish-eye failure in gigacycle fatigue. Fatigue Fract. Engng. Mater. Struct., 1999,22: 601~607
    [140] Murakami Y, Takada T, Ueda T, Factors influencing the mechanisms of superlong fatigue failure in steels. Fatigue Fract. Engng. Mater. Struct., 1999,22: 581~590
    [141] Mayer H, Laird C, Influence of cyclic frequency on strain localization and cyclic deformation in fatigue. Mater. Sci. Eng., 1994,A187: 23~25
    [142] Mughrabi H, Herz K, Stark X, Cyclic deformation and fatigue behavior of alpha-iron mono- and polycrystals. International Journal of Fracture. 1981, 17(2): 193~220
    [143] Meininger J M, Gibeling J C, Low-cycle fatigue of niobium-1 pct zirconium alloys. Metall, Trans., 1992, 23A: 3077~3084
    [144] Sakai T, Takeda M, Shiozawa K, et al. Experimental evidence of duplex S-N characteristics in wide life region for high strength steels. Fatigue’99, Proceeding of the Seventh International Fatigue Congress, Beijing, 1999.Ι: 573-578.
    [145] Bathias C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 1999,22: 559~566
    [146] Wang Q Y, Benard J Y, Dubarre A, et al, Gigacycle fatigue of ferrous alloys. Fatigue Fract. Engng. Mater. Struct., 1999,22: 667~672
    [147] Stanzl S E, Tschgg E K, Fatigue crack growth and threshold behavior at ultrasonic frequencies. ASTM Special Technical Publication.,1983: 3~18
    [148] Murakami Y, Nomoto T, Ueda T. On the mechanisms of fatigue failure in the super-long life regime (N>107cycles). Fatigue Fract. Eng. Mater. Struct. 2000, 23:893~910
    [149] Ochi Y, Masumura T, Masaki K, et al, High-cycle rotating bending fatigue property in very long-life regime of high-strength steels. Fatigue Fract. Engng. Mater. Struct., 2002,25: 823~830
    [150] Murakami Y, Nomoto T, Ueda T. On the mechanisms of fatigue failure in the super-long life regime (N>107cycles). Fatigue Fract. Eng. Mater. Struct. 2000, 23:893~910
    [151]翁宇庆.钢铁结构材料的组织细化.钢铁, 2003,28(5): 1~11
    [152] Wen Y Q. Physical Metallurgy for Ultra-fine Grain Steels. Proceedings on HIPERS221, PO SCO , Korea, 2000: 9
    [153]翁宇庆.超细晶钢—钢的组织细化理论和控制技术,北京:冶金工业出版社,2003: 7
    [154]牧正志.日本西山纪念技术讲座161,162回1996: 11
    [155]尚成嘉. RPC工艺技术参数对800MPa级低合金高强度钢组织和性能的影响.新一代钢铁材料研讨会文集,中国金属学会, 2001,11 : 333~336
    [156]惠卫军,董翰,翁宇庆.耐延迟断裂性能优良的高强度螺栓钢.机械工程材料, 2001, 25 (3) : 28~31
    [157]方鸿生,刘东雨,白秉哲等.无碳化物贝氏体/马氏体复相钢的新进展.金属热处理, 2001, 26(10): 4~6
    [158]何健宏,唐祥云,陈南平.氢在(γ+α)双相不锈钢中的扩散.金属学报, 1989,25(1): A42~A47
    [159]马飞良.国外核反应堆压力容器用A508-3钢及其制造.大型铸锻件, 1990(4): 35~46
    [160]马飞良.核电站压力容器锻件性能与工艺参数.大型铸锻件, 1993(3): 10~18
    [161]康大韬,叶国斌.大型锻件材料及热处理.北京:龙门书局, 1998: 620
    [162]方鸿生,邓海金.低碳Fe-Mn-B钢粒状贝氏体的组织及其强韧性.机械工程材料, 1981, 5(1):5~14
    [163]盛中琦,肖洪,彭峰. A508-3钢回火时显微组织的变化.核动力工程, 1990,11(4): 24~28
    [164]刘东雨. 1500MPa级低碳无碳化物贝氏体/马氏体复相钢的研究[博士学位论文].北京:清华大学材料科学与工程系, 2002: 42
    [165]褚幼义,贺信莱,余宗森等.低合金铸钢中硼的分布.金属学报, 1980,16(4): 380~ 385
    [166]魏鳆铭,黄峥,朱雅年,等. 4Cr5MoSiV1钢的热疲劳性能研究.上海大学学报, 1997,Vol.3, No.4: 400~408
    [167]陈红桔,刘清友,韩力,等.控轧控冷工艺对铌钛微合金钢组织和性能的影响.钢铁研究学报. 1999,Vol.11, No.3: 38~43
    [168]蒋业华,周容,周容锋等.控制贝氏体/马氏体铸钢组织和性能的研究.铸造,1995,(5): 13~16
    [169]康大韬,郭成熊编译.工程用钢的组织转变与性能图册.北京,机械工业出版社, 1992: 1~3, 8~19
    [170]黄维刚,徐蓉,方鸿生等.中低碳含硅空冷贝氏体钢的冲击韧性.钢铁研究学报,1997, 9(2): 31~34
    [171]黄维刚,方鸿生,郑燕康. Si对Mn-B系空冷贝氏体钢组织与性能的影响.金属热处理学报, 1997, 18(1): 8~13
    [172]杨才福,张永权,刘天军. 10Ni5CrMoV钢低温冲击断裂行为研究.材料开发与应用,1997, 12(6): 2~10
    [173]孙树文,雷廷权,唐之秀等.示波冲击试验评价正火12Cr1MoV钢回火脆化敏感性.材料科学与工艺, 1997,5(2):33~39
    [174]邹鸿承,戴蜀娟,甘翠华等.材料冲击性能的分形研究.机械工程材料, 1994,18(6): 31~33
    [175]王学敏.临界裂纹形成功和扩展功的测定方法.理化检验—物理分册,1994, 30(5): 46 ~48
    [176]周惠久,黄明志.金属材料强度学.北京,科学出版社, 1989: 215~217
    [177] Zhen L, Sun S W, Cui Y X et al. Influence of aging on the impact fracture of a RSP Al-Ti alloy. Scripta Metall. ,1994, 30: 529~533
    [178]王凯,王立军,任海鹏等.低碳钢形变诱导相变组织在冷却过程中的晶粒长大.东北大学学报(自然科学版), 2005,26(7): 640~643
    [179]张栋钟,培道,陶春虎等.失效分析.国防工业出版社, 2004, 113: 161~162
    [180]徐平光,方鸿生,白秉哲,杨志刚.仿晶界型铁素体/粒状贝氏体复相组织的韧性.金属学报, 2002, 38(3): 882
    [181]潘大刚,杜林秀,王国栋.形变热处理工艺对马氏体和贝氏体金相组织的影响.钢铁研究, 2004, (3): 25~29.
    [182]周承恩,洪友士.GCr15钢超高周疲劳行为的实验研究[机械强度,2004,26(s):157~160
    [183]韦东远.新型B/M复相高强钢疲劳及腐蚀疲劳特性研究[博士论文].北京:清华大学材料科学与工程系, 2003: 51
    [184] Murakami Y, Yokoyama N, Nagata J. Mechanism of fatigue failure in ultralong life regime. Fatigue Fract. Eng. Mater. Struct., 2002,25:735-746.
    [185] Murakami Y, Matsunaga H. Effect of hydrogen on high cycle fatigue properties of stainless steels and other steels used for fuel cell system. Proceedings of the Third International Conference on Very High Cycle Fatigue, Kyoto, Japan, 2004.322-333.
    [186] Furuya Y, Matsuoka S, Abe T, et al. Gigacycle fatigue properties for high strength low-alloy steel at 100 Hz, 600Hz and 20 kHz. Scripta Mater., 2002 46(2): 157-162
    [187] Cummings H N,Stulen F B, Schulte W C. Tentative Fatigue Strength Reduction Factors for Silicate-Type Inclusion in High Strength Steel. Proceedings of the American Society for Testing and Materials. 1958, 58: 505-512
    [188] Johnson R. F. Effects of the inclusion in the steel on fatigue life. J. Iron and Steel Inst. 1960,Vol.196: 414-417
    [189] Wang Q Y, Benard J Y, Dubarre A, et al, Gigacycle fatigue of ferrous alloys. Fatigue Fract. Engng. Mater. Struct., 1999,22: 667~672
    [190]方鸿生,刘东雨,徐平光等.贝氏体钢的强韧化途径.机械工程材料.2001,25(6): 1~5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700