用户名: 密码: 验证码:
钙蛋白酶在高眼压诱导的视网膜缺血再灌注损伤发生机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Role of Calpains in the Mechanism of Ischemia/Reperfusion Injury in Rat Retina
  • 作者:陈芝清
  • 论文级别:博士
  • 学科专业名称:眼科学
  • 学位年度:2008
  • 导师:姚克
  • 学科代码:100212
  • 学位授予单位:浙江大学
  • 论文提交日期:2008-04-01
摘要
视网膜缺血再灌注损伤是眼科常见的病理过程以及致盲的主要原因。已有众多研究证实视网膜缺血再灌注损伤导致细胞凋亡且伴有视网膜细胞内Ca~(2+)浓度的升高。钙蛋白酶(calpains)是一种全身广泛存在的中性限制性钙蛋白水解酶。在病理状态下,异常增高的Ca~(2+)浓度可激活calpains,引起疾病的发生。E-64d是一种具有细胞膜高通透性的、与calpains的Ca~(2+)结合位点高度选择性结合的calpains抑制剂,已被证实对神经系统有较好的抗蛋白水解作用。
     本研究从形态学水平、细胞学水平、蛋白质水平和分子水平四个层次研究了急性高眼压诱导的视网膜缺血再灌注后视网膜神经上皮水肿和坏死程度、细胞凋亡、calpains的蛋白表达和mRNA的改变,以及calpains抑制剂E-64d对上述改变的抑制作用,探讨了以急性高眼压动物模型研究视网膜缺血再灌注发病机制的可行性,calpains在其发生机制中的作用及机理,以及E-64d对视网膜缺血再灌注的预防作用。
     第一部分急性高眼压性视网膜缺血再灌注损伤模型的建立
     目的:
     本研究将急性高眼压诱发大鼠视网膜缺血再灌注损伤作为实验模型,来研究急性高眼压对视网膜的水肿、细胞形态学改变以及视网膜神经元细胞凋亡的影响,探讨将急性高眼压诱发的缺血再灌注损伤作为动物模型研究其发病机制的可行性。
     方法:
     采用清洁级200~300g SD大鼠。将连接生理盐水输液管的20号留置针刺入大鼠前房,然后升高升高输液瓶形成109.7 mmHg的眼压,持续1h后降低输液瓶高度至动物水平,拔出前房灌注针头,可见眼结膜充血,恢复血液供应,缺血再灌注后1、3、6、24、72h处死动物,摘除眼球。标本常规10%中性多聚甲醛固定,石蜡包埋,切片,HE染色后置光镜下观察。Bax和m-calpain蛋白表达测定采用免疫组化方法。
     结果:
     SD大鼠视网膜缺血再灌注后1~24h,光镜可见视网膜明显水肿,神经元细胞胞体及线粒体肿胀,细胞膜崩解,核染色体不规则分布,细胞坏死。细胞坏死最早见于再灌注1h后,72小时视网膜变薄。在细胞坏死的同时可见凋亡,凋亡相关蛋白Bax在急性高眼压导致缺血的视网膜各层细胞的表达上调,呈强阳性反应。随着再灌注作用时间的延长,钙蛋白酶m-calpain阳性细胞百分比逐渐增多。
     结论:本研究证实了急性急性高眼压确可诱发视网膜神经元细胞坏死、凋亡,视网膜萎缩变薄,在细胞坏死的同时可见凋亡,凋亡相关蛋白Bax以及钙蛋白酶m-calpain表达上升,将急性急性高眼压性模型作为动物模型研究视网膜缺血再灌注损伤的发病机制中有一定可行性。
     第二部分:急性高眼压诱导的视网膜缺血再灌注损伤中的凋亡及钙蛋白酶表达
     目的:
     探讨caspase-3、m-calpain、calpastatin蛋白相关的细胞凋亡、以及钙蛋白酶在急性高眼压诱导的视网膜缺血再灌注损伤中的发生机制中的作用。
     方法:
     用急性高眼压诱发大鼠发生视网膜缺血再灌注损伤,用western-blot的方法研究m-calpain蛋白、caspase-3的表达,用RT-PCR法测定calpains、calpastatin的mRNA的改变,并与对照组进行比较。
     结果:
     SD大鼠在视网膜缺血再灌注前均有m-calpain和caspase-3蛋白的基础表达。缺血再灌注后24 h m-calpain和caspase-3的表达均较正常组上升,视网膜缺血再灌注后m-calpain/calpastatin的比值在6h后增加,24h达到最高峰,72h后开始回落。
     结论:
     急性高眼压诱导大鼠视网膜缺血再灌注损伤中的细胞凋亡,m-calpain和caspase-3的表达上升,缺血损伤导致calpain/calpastatin的比例上升。
     第三部分:钙蛋白酶抑制剂E-64d对急性高眼压诱导的视网膜缺血再灌注损伤预防作用
     目的:
     探讨E-64d(半胱氨酸蛋白酶抑制剂)在大鼠视网膜缺血再灌注损伤(RIRI)中对calpain和caspase-3表达的调节作用。
     方法:
     将SD大鼠随机分为视网膜缺血再灌注组,E-64d治疗组和正常组。通过前房穿刺加压法制成视网膜缺血再灌注损伤(RIRI)动物模型,缺血再灌注分为1、3、6、24、72小时5个时间段。采用Western-blot以及RT-PCR方法测定在大鼠视网膜缺血再灌注损伤的calpian蛋白和mRNA表达情况以及caspase-3的蛋白表达改变。
     结果:
     缺血再灌注后24小时m-calpain、caspase-3蛋白的表达均较正常组上升,而玻璃体腔注射E-64d组m-calpain、caspase-3蛋白表达与正常组相似,比缺血再灌注组下降。视网膜缺血再灌注后m-calpain/calpastatin mRNA的比值在6小时后上升,24小时达到最高峰,72小时后开始回落,其中缺血再灌注组6小时、24小时、72小时与正常组比较P值均小于0.05,其差异有显著统计学意义;E-64d组与视网膜缺血再灌注24小时组比较,P值小于0.05,其差异也有显著统计学意义。但是三组的m-calpain和calpastatin mRNA转录强度差异均无显著的统计学意义(P>0.05)。
     结论:
     E-64d作用后较缺血再灌注同一时间段的视网膜细胞形态明显好转,水肿减轻,视网膜各层细胞m-calpain蛋白阳性率明显下降。E-64d能降低视网膜缺血再灌注时m-calpain、caspase-3蛋白的表达,调控m-calpain/calpastatin的mRNA比值。可能对视网膜的缺血再灌注损伤有保护作用。
Retinal ischemia is a common clinical entity which remains a common cause of visual impairment and blindness in the world because of the lack of effective treatment. Ischemia/reperfusion injury (IRI) of the retina is one of the deleterious pathophysiological processes leading to visual impairment. It is well studied that apoptosis and calcium concentration elevates in IRI. The family of calpains is one kind of neutral restrictive proteolytic enzyme which distributes diffusely. Under pathological condition, abnormal elevated calcium can activate calpains and induce diseases. E-64d is a specific inhibitor of calpains with high permeability and high combinative ability. It is known that E-64d can protect neural system from proteolytic enzyme.
     The retinal thickness and morphologic changes was detected by histology. The protein expression of m-calpain (a calpain isoform) in the retina was accessed by immunohistochemistry and Western blot assay. The mRNA of m-calpain as well as calpastatin (an endogenous protein inhibitor of calpain) in the retina was accessed by RT-PCR, and the ratio of m-calpain/calpastatin was then calculated. To evaluate the effect of E-64d on the expression calpain, the drug (5ul of 100uM) was injected intravitreously immediately after IRI. Our study showed that there were retinal edematous changes, particularly in the inner plexiform layer after IRI. Calpain is involved in the retina injury of rats induced by ischemia/reperfusion. Calpain inhibitor E-64d decreased the protein expression of calpain, as well as the ratio increase of calpain/calpastatin mRNA. E-64d also inhibited retinal damage induced by IRI, suggesting the possible role of E-64d in the protection of retina apoptosis induced by IRI..
     Role of Calpains in the Mechanism of High intraocular pressure (IOP)-induced Ischemia/Reperfusion Injury in Rat Retina
     Introduction
     Retinal ischemia is a common clinical entity which remains a common cause of visual impairment and blindness in the world because of the lack of effective treatment. Ischemia/reperfusion injury (IRI) of the retina is one of the deleterious pathophysiological processes leading to visual impairment. Understanding the pathophysiological effect of IRI on the retina is important for the development of therapeutic strategies for protecting the retinal neurons. Studies have suggested that IRI initiates apoptosis in the retinal neuro-epithelium.
     The cascade of neuronal apoptosis, as reported in other tissues, is evidenced by the increased expression of bcl-2 family genes such as bax (pro-apoptosis) and bcl-2 (anti-apoptosis), with an increased bax/bcl-2 ratio favoring apoptosis. The final 'execution' of apoptosis is mediated by the activation of cysteine proteases, including caspases and calpains. Calpains, which mainly consist of two isoforms named m-calpain(activated in mili-molar Ca~(2+)) and u-calpain (activated in micro-molar Ca~(2+)), which are regulated by the endogenous inhibitor, calpastatin. The activity of calpastatin is considered to play a critical role in preventing calpain-mediated catabolism in tissues. With an increased calpain to calpastatin ratio, calpastatin is digested by calpain and loses its inhibitory activity. Since calpain activity may mediate cell death and damage in the IRI, it is of considerable interest to explore the benefit of a therapeutic approach that involves calpain inhibitors in neurodegenerative diseases. It has already been shown that E-64d, the first reported cell permeable calpain inhibitor, is capable of providing potent neuro-protective effect by inhibiting calpain-related neuron apoptosis in the injury of spinal cord. However, the involvement of calpains, and further, the effect of E-64d, is still unclear in the retina neuronal apoptosis induced by IRI.
     High intraocular pressure (IOP)-induced ocular ischemia is a commonly used model for retinal ischemia research and has been described in a number of animal species, such as the rat and rabbit. High IOP induces global ischemia with obstruction of both the retinal and uveal circulation. This particular model presents pathological features which are almost identical to that seen after central retinal artery obstruction (CRAO). In such a model, we investigated the effect of E-64d on the expression of m-calpain and calpastatin in rat retina subjected to IRI.
     1. Establishment of the Animal model of Ischemia/Reperfusion Injury in the Rat Retina
     Purpose:
     To study the possibility of using high intraocular pressure (IOP)-induced Ischemia/Reperfusion Injury as the animal model.
     Methods:
     Sprague-Daley rats weighing 200-300g were purchased from the Shanghai laboratory animal center, the Chinese Academy of Science. Rats were maintained under standard lighting conditions with a 12:12h light/dark cycle at a room temperature between 21~24°C. A slit-lamp microscopic examination was performed on each rat to exclude any ocular defect. The rats were then anesthetized with 10% chloral hydrate (400 mg/kg) intraperitoneally. A 20-gauge needle connected with normal saline tubing was introduced into the anterior chamber of the right eye. A high IOP (109.7 mmHg) was achieved and maintained by lifting the infusion bottle to a height of 150 cm for 1 hour. The high IOP was attenuated by taking out the needle from the anterior chamber. The rat was then sacrificed the eyeball enucleated at 1、3、6、24 or 72 hours after the procedure. The eyeballs were fixed with paraformaldehyde and embedded in paraffin. The retinas were cut into 5μm thick sections and were processed for hematoxylin and eosin staining as well as immunohistochemistry.
     Results:
     There was an obvious increase in retinal thickness after IRI, particularly in the inner plexiform layer. Edematous changes were also seen in cells in the ganglion cell layer (GCL). Many pyknotic cells were found in the inner nuclear layer (INL) and outer nuclear layer (ONL) at 6h and 24h. By the end of the experiment, 72h after the IRI, cells in the retinal layers did exhibit obvious degenerative changes. Immunostaining of m-calpain as well as bax were detected slightly or not at all in GCL and INL. The staining became more intense from 1 to 24h, and was largely confined to the cells of the GCL and INL. There was most intense staining in cells located in the outer regions of the INL. The staining in the INL appeared to mark a structure lining the outer boundary of this cellular layer and the outer plexiform layer.
     Conclusions:
     High intraocular pressure (IOP) can induce Ischemia/Reperfusion Injury in the rat retina. The changes of retinal morphology were similar with retinal ischemia. It is a recommendable way to use high intraocular pressure (IOP)-induced animal as the model of Ischemia/Reperfusion Injury.
     2.Role of Calpains in the Mechanism of High intraocular pressure (IOP)-induced Ischemia/Reperfusion Injury in Rat Retina
     Purpose:
     To investigate the role of apoptosis and Calpains expression in the high intraocular pressure (IOP)-induced Ischemia/Reperfusion Injury in Rat Retina. Methods: Animal model retina IRI was set up by increasing the intraocular pressure (110 mmHg) of a rat eye for 1 h. The retinal thickness and morphologic changes was detected by histology. The protein expression of m-calpain (a calpain isoform) in the retina was accessed by immunohistochemistry and Western blot assay. The mRNA of m-calpain as well as calpastatin (an endogenous protein inhibitor of calpain) in the retina was accessed by RT-PCR, and the ratio of m-calpain/calpastatin was then calculated.
     Results:
     There were retinal edematous changes, particularly in the inner plexiform layer after IRI. The protein expression of m-calpain in the retina was increased 24h after IRI. The mRNA expression of m-calpain and calpastatin was also increased 24h and 3h after IRI, respectively. The mRNA ratio of mcalpain/calpastatin was increased at the 6h, 24h and 72h after IRI (P < 0.05).
     Conclusions:
     There were apoptosis and increase of m-calpain protein expression, as well as the mRNA ratio increase of m-calpain/calpastatin in the rat retina of IRI.
     3. Inhibition of Calpain Expression by E-64d in the Rat Retina Subjected to Ischemia/Reperfusion Injury
     Purpose:
     To investigate the effect of E-64d, a selective inhibitor of calpain, on the expression of calpain and calpastatin in rat retina of ischemia/reperfusion injury (IRI).
     Methods:
     Animal model of retina IRI was set up by increase the intraocular pressure (110 mmHg) of a rat eye for 1 h. The retinal thickness and morphologic changes was detected by histology. The protein expression of m-calpain (a calpain isoform) in the retina was accessed by immunohistochemistry and Western blot assay. The mRNA of m-calpain as well as calpastatin (an endogenous protein inhibitor of calpain) in the retina was accessed by RT-PCR, and the ratio of m-calpain/calpastatin was then calculated. To evaluate the effect of E-64d on the expression calpain, the drug (5 ul of 100 uM) was injected intravitreously immediately after IRI.
     Results:
     There was retinal edematous changes, particularly in the inner plexiform layer after IRI. The protein expression of m-calpain in the retina was increased 24h after IRI, an effect that was inhibited by E-64d (P < 0.05). The mRNA expression of m-calpain and calpastatin was also increased 24h and 3h after IRI, respectively. Neither m-calpain nor calpastatin mRNA expression was influenced by E-64d (P > 0.05). The mRNA ratio of mcalpain/calpastatin was increased at the 6h, 24h and 72h after IRI and only at 24h the increase of the ratio was inhibited by E-64d (P < 0.05).
     Conclusions:
     In the rat retina of IRI, E-64d inhibits the increase of m-calpain protein expression, as well as the mRNA ratio increase of m-calpain/calpastatin. E-64d also inhibited retinal damage induced by IRI, suggesting the possible role of E-64d in the protection of retina apoptosis induced by IRI
引文
[1]Ondiveeran HK,Fox-Robichaud A.New developments in the treatment of ischemia/reperfusion injury.Curr Opin Investig Drags.2001 Jun;2(6):783-91.
    [2]Osborne N.N.,Casson R.J.,Wood J.P.,Chidlow G.,Graham M.,Melena J.Retinal ischemia:mechanisms of damage and potential therapeutic strategies.Prog Retin Eye Res.2004 Jan;23(1):91-147.
    [3]Joo CK,Choi JS,Ko HW,Park KY,Sohn S,Chun MH,Oh YJ,Gwag BJ.Necrosis and apoptosis after retinal ischemia:involvement of NMDA-mediated excitotoxicity and p53.Invest Ophthalmol Vis Sci.1999Mar;40(3):713-20.
    [4]肖骏,刘早霞,邹贺,李旭,张晓光.缺血再灌注损伤对大鼠视网膜功能的影响.中华眼底病杂志.2003;19(4):235-236.
    [5]Takahashi A,Masuda A,Sun M,Centonze VE,Herman B.Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH(pHm).Brain Res Bull.2004 Feb 15;62(6):497-504.
    [6]Singh M,Savitz SI,Hoque R,Gupta G,Roth S,Rosenbaum PS,Rosenbaum DM.Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia.J Neurochem.2001 Apr;77(2):466-75.
    [7]Tezel G,Yang X.Caspase-independent component of retinal ganglion cell death,in vitro.Invest Ophthalmol Vis Sci.2004 Nov;45(11):4049-59.
    [8]Zatz M,Starling A.Calpains and disease.N Engl J Med.2005 Jun 9;352(23):2413-23.
    [9]Yamashima T.Implication of cysteine proteases calpain,cathepsin and caspase in ischemic neuronal death of primates.Prog Neurobiol.2000Oct;62(3):273-95.
    [10]Pontremoli S.,Melloni E.,Viotti P.L.,Michetti M.,Salamino F.,Horecker B.L.Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains.Arch Biochem Biophys.1991 Aug 1;288(2):646-52.
    [11]Sorimachi Y,Harada K,Saido TC,Ono T,Kawashima S,Yoshida K.Downregulation of calpastatin in rat heart after brief ischemia and reperfusion.J Biochem.1997 Oct;122(4):743-8.
    [12]Sakamoto YR,Nakajima TR,Fukiage CR,Sakai OR,Yoshida YR,Azuma MR,Shearer TR.Involvement of Calpain isoforms in ischemia-reperfusion injury in rat retina.Curr Eye Res.2000 Jul;21(1):571-80.
    [13]Ray SK,Matzelle DC,Wilford GG,Hogan EL,Banik NL.E-64-d prevents both calpiain upregulation and apoptosis in the lesion and penumbra following spinal cord injury in rats.Brain Res.2000 Jun 9;867(1-2):80-9.
    [1]Joo CK,Choi JS,Ko HW,Park KY,Sohn S,Chun MH,Oh YJ,Gwag BJ.Necrosis and apoptosis after retinal ischemia:involvement of NMDA-mediated excitotoxicity and p53.Invest Ophthalmol Vis Sci.1999Mar;40(3):713-20.
    [2]Ondiveeran HK,Fox-Robichaud A.New developments in the treatment of ischemia/reperfusion injury.Curr Opin Investig Drags.2001 Jun;2(6):753-91.
    [3]Lafuente MP,Villegas-Perez MP,Selles-Navarro I,Mayor-Torroglosa S,Miralles de Imperial J,Vidal-Sanz M.Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult.Neuroscience.2002;109(1):157-68.
    [4]Smith GG,Baird CD.Survival time of retinal cells when deprived of their blood supply by increased intraocular pressure.Am J Ophthalmol.1952May;35(5:2):133-6.
    [5]Pannicke T,Uckermann O,Iandiev I,Biedermann B,Wiedemann P,Perlman I,Reichenbach A,Bringmann A.Altered membrane physiology in Muller glial cells after transient ischemia of the rat retina.Glia.2005 Apr 1;50(1):1-11.
    [6]Adachi K,Kashii S,Masai H,Ueda M,Morizane C,Kaneda K,Kume T,Akaike A,Honda Y.Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia.Graefes Arch Clin Exp Ophthalmol.1998Oct;236(10):766-74:
    [7]Kageyama T,Ishikawa A,Tamai M.Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion.Jpn J Ophthalmol.2000 Mar-Apr;44(2):110-4.
    [8]Wang C,Nguyen HN,Maguire JL,Perry DC.Role of intracellular calcium stores in cell death from oxygen - glucose deprivation in a neuronal cell line.J Cereb Blood Flow Metab.2002 Feb;22(2):206-14.
    [9]Kuriyama H,Waki M,Nakagawa M,Tsuda M.Involvement of oxygen free radicals in experimental retinal ischemia and the selective vulnerability of retinal damage.Ophthalmic Res.2001 Jul-Aug;33(4):196-202.
    [10]Jo N,Wu GS,Rao NA.Upregulation of chemokine expression in the retinal vasculature in ischemia-reperfusion injury.Invest Ophthalmol Vis Sci.2003Sep;44(9):4054-60.
    [11]Chan PH.Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia.Neurochem Res.2004 Nov;29(11):1943-9.
    [12]Gross RL,Ji J,Chang P,Pennesi ME,Yang Z,Zhang J,Wu SM.A mouse model of elevated intraocular pressure:retina and optic nerve findings.Trans Am Ophthalmol Soc.2003;101:163-9;discussion 169-71.
    [13]Ji J,Chang P,Pennesi ME,Yang Z,Zhang J,Li D,Wu SM,Gross RL.Effects of elevated intraocular pressure on mouse retinal ganglion cells.Vision Res.2005 Jan;45(2):169-79.
    [14]Osborne N.N.,Casson R.J.,Wood J.P.,Chidlow G.,Graham M.,Melena J.Retinal ischemia:mechanisms of damage and potential therapeutic strategies.Prog Retin Eye Res.2004 Jan;23(1):91-147.
    [15][15]Cho SG;Choi EJ.Apoptotic signaling pathways:caspases and stress-activated protein kinases.J Biochem Mol Biol.2002 Jan 31;35(1):24-7.
    [16][16]Philchenkov A.Caspases:potential targets for regulating cell death.J Cell Mol Med.2004 Oct-Dec;8(4):432-44.
    [1]Lafuente MP,Villegas-Perez MP,Selles-Navarro I,Mayor-Torroglosa S,Miralles de Imperial J,Vidal-Sanz M.Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult.Neuroscience.2002;109(1):157-68.
    [2]Chan PH.Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia.Neurochem Res.2004 Nov;29(11):1943-9.
    [3]Philchenkov A.Caspases:potential targets for regulating cell death.J Cell Mol Med.2004 Oct-Dec;8(4):432-44.
    [4]Tamada Y,Nakajima E,Nakajima T,Shearer TR,Azuma M.Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia.Brain Res.2005 Jul 19;1050(1-2):148-55.
    [5]Altznauer F,Conus S,Cavalli A,Folkers G,Simon HU.Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis.J Biol Chem.2004 Feb 13;279(7):5947-57.
    [6]Pontremoli S,Melloni E,Viotti PL,Michetti M,Salamino F,Horecker BL.Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains.Arch Biochem Biophys.1991 Aug 1;288(2):646-52.
    [7]GUROFF G.A neutral calcium-activated proteinase from the soluble fraction of rat brain.J Biol Chem.1964 Jan;239:149-55.
    [8]Carafoli E.,Molinari M.Calpain:a proteinase in search of a function?Biochem Biophys Res Commun.1998 Jun 18;247(2):193-203.
    [9]Sorimachi H,Ishiura S,Suzuki K.Structure and physiological function of calpain.Biochem J.1997 Dec 15;328(Pt 3):721-32.
    [10]Saido TC,Sorimachi H,Suzuki K.Calpain:new perspectives in molecular diversity and physiological-pathological involvement.FASEB J.1994Aug;8(11):814-22.
    [11]Nakamura Y,Fukiage C,Azuma M,Shearer TR.Oxidation enhances calpain-induced turbidity in young rat lenses.Curr Eye Res.1999Jul;19(1):33-40.
    [12]Sakamoto YR,Nakajima TR,Fukiage CR,Sakai OR,Yoshida YR,Azuma MR,Shearer TR.Involvement of Calpain isoforms in ischemia-reperfusion injury in rat retina.Curr Eye Res.2000 Jul;21(1):571-80.
    [13]Pontremoli S,Melloni E,Viotti PL,Michetti M,Salamino F,Horecker BL.Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains.Arch Biochem Biophys.1991 Aug 1;288(2):646-52.
    [14]Hosfield CM,Elce JS,Jia Z.Activation of calpain by Ca2+:roles of the large subunit N-terminal and domain Ⅲ-Ⅳ linker peptides.J Mol Biol.2004Oct 29;343(4):1049-53.
    [1]Buchi ER,Suivaizdis I,Fu J.Pressure-induced retinal ischemia in rats:an experimental model for quantitative study.Ophihalmologica.1991;203(3):138-47.
    [2]Takahashi A.,Masuda A.,Sun M.,Centonze V.E.,Herman B.OxiEdative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH(pHm).Brain Res Bull.2004 Feb 15;62(6):497-504.
    [3]Tamai M,Matsumoto K,Omura S,Koyama I,Ozawa Y,Hanada K.In vitro and in vivo inhibition of cysteine proteases by EST,a new analog of E-64.J Pharmacobiodyn.1986 Aug;9(8):672-7.
    [4]Tamai M,Omura S,Kimura M,Hanada K,Sugita H.Prolongation of life span of dystrophic hamster by cysteine proteinase inhibitor,loxistation (EST).J Pharmacobiodyn.1987 Nov;10(11):678-81.
    [5]Ray SK,Matzelle DC,Wilford GG,Hogan EL,Banik NL.E-64-d prevents both calpiain upregulation and apoptosis in the lesion and penumbra following spinal cord injury in rats.Brain Res.2000 Jun 9;867(1-2):80-9.
    [6]Marigo V.Programmed cell death in retinal degeneration:targeting apoptosis in photoreceptors as potential therapy for retinal degeneration.Cell Cycle.2007 Mar 15;6(6):652-5.
    [7]Germain F,Fernandez E,de la Villa P.Morphological signs of apoptosis in axotomized ganglion cells of the rabbit retina.Neuroscience.2007 Feb 9;144(3):898-910.
    [8]Lam TT,Abler AS,Tso MO.Apoptosis and caspases after ischemiareperfusion injury in rat retina.Invest Ophthalmol Vis Sci.1999 Apr;40(5):967-75.
    [9]Rosenbaum PS,Gupta H,Savitz SI,Rosenbaum DM.Apoptosis in the retina.Clin Neurosci.1997;4(5):224-32.
    [10]Osborne NN,Casson RJ,Wood JP,Chidlow G,Craham M,Melena J.Retinal ischemia:mechanisms of damage and potential therapeutic strategies.Prog Retin Eye Res.2004 Jan;23(1):91-147.
    [11]Harwood SM,Yaqoob MM,Allen DA.Caspase and calpain function in cell death:bridging the gap between apoptosis and necrosis.Ann Clin Biochem.2005 Nov;42(Pt 6):415-31.
    [12]McKernan DP,Guerin MB,O'Brien CJ,Cotter TG.A key role for calpains in retinal ganglion cell death.Invest Ophthalmol Vis Sci.2007 Dec;48(12):5420-30.
    [13]Sorimachi H,Ishiura S,Suzuki K.Structure and physiological function of calpain.Biochem J.1997 Dec 15;328(Pt 3):721-32.
    [14]Tamada Y,Nakajima E,Nakajima T,Shearer TR,Azuma M.Proteolysis of neuronal cytoskeletal proteins by calpain contributes to rat retinal cell death induced by hypoxia.Brain Res.2005 Jul 19;1050(1-2):148-55.
    [15]Zatz M,Starling A.Calpains and disease.N Engl J Med.2005 Jun 9;352(23):2413-23.
    [16]GUROFF G.A NEUTRAL,CALCIUM-ACTIVATED PROTEINASE FROM THE SOLUBLE FRACTION OF RAT BRAIN.J Biol Chem.1964Jan;239:149-55.
    [17]Fan TJ,Han LH,Cong RS,Liang J.Caspase family proteases and apoptosis.Acta Biochim Biophys Sin(Shanghai).2005 Nov;37(11):719-27.
    [18]Bartus RT,Hayward NJ,Elliott PJ,Sawyer SD,Baker KL,Dean RL,Akiyama A,Straub JA,Harbeson SL,Li Z,Powers J.Calpain inhibitor AK295 protects neurons from focal brain ischemia.Effects of post occlusion intra-arterial administration.Stroke.1994 Nov;25(11):2265-70.
    [19]Donkor IO.A survey of calpain inhibitors.Curr Med Chem.2000 Dec;7(12):1171-88.
    [20]Pontremoli S,Melloni E,Viotti PL,Michetti M,Salamino F,Horecker BL.Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains.Arch Biochem Biophys.1991 Aug 1;288(2):646-52.
    [21]Tamada Y,Fukiage C,Daibo S,Yoshida Y,Azuma M,Shearer TR.Involvement of calpain in hypoxia-induced damage in rat retina in vitro.Comp Biochem Physiol B Biochem Mol Biol.2002 Feb;131(2):221-5.
    [22]Nakajima E,David LL,Bystrom C,Shearer TR,Azuma M.Calpain-specific proteolysis in primate retina:Contribution of calpains in cell death.Invest Ophthalmol Vis Sci.2006 Dec;47(12):5469-75.
    [1]Joo CK,Choi JS,Ko HW,Park KY,Sohn S,Chun MH,Oh YJ,Gwag BJ.Necrosis and apoptosis after retinal ischemia:involvement of NMDA-mediated excitotoxicity and p53.Invest Ophthalmol Vis Sci.1999 Mar;40(3):713-20.
    [2]Stefansson E,Wilson CA,Schoen T,Kuwabara T.Experimental ischemia induces cell mitosis in the adult rat retina.Invest Ophthaknol Vis Sci.1988Jul;29(7):1050-5.
    [3]Smith GG,Baird CD.Survival time of retinal cells when deprived of their blood supply by increased intraocular pressure.Am J Ophthalmol.1952May;35(5:2):133-6.
    [4]Daugeliene L,Niwa M,Hara A,Matsuno H,Yamamoto T,Kitazawa Y,Uematsu T.Transient ischemic injury in the rat retina caused by thrombotic occlusion-thrombolytic reperfusion.Invest Ophthalmol Vis Sci.2000Aug;41(9):2743-7.
    [5]Lafuente MP,Villegas-Perez MP,Selles-Navarro I,Mayor-Torroglosa S,Miralles de Imperial J,Vidal-Sanz M.Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult.Neuroscience.2002;109(1):157-68.
    [6]Takahashi A,Masuda A,Sun M,Centonze VE,Herman B.Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH(pHm).Brain Res Bull.2004 Feb 15;62(6):497-504.
    [7]Singh M,Savitz SI,Hoque R,Gupta G,Roth S,Rosenbaum PS,Rosenbaum DM.Cell-specific caspase expression by different neuronal phenotypes in transient retinal ischemia.J Neurochem.2001 Apr;77(2):466-75.
    [8]Tezel G,Yang X.Caspase-independent component of retinal ganglion cell death,in vitro.Invest Ophthalmol Vis Sci.2004 Nov;45(11):4049-59.
    [9]Adachi K,Kashii S,Masai H,Ueda M,Morizane C,Kaneda K,Kume T,Akaike A,Honda Y.Mechanism of the pathogenesis of glutamate neurotoxicity in retinal ischemia.Graefes Arch Clin Exp Ophthalmol.1998Oct;236(10):766-74.
    [10]Kageyama T,Ishikawa A,Tamai M.Glutamate elevation in rabbit vitreous during transient ischemia-reperfusion.Jpn J Ophthalmol.2000 Mar-Apr;44(2):110-4.
    [11]Bull ND,Barnett NL.Retinal glutamate transporter activity persists under simulated ischemic conditions.J Neurosci Res.2004 Nov 15;78(4):590-9.
    [12]Shaked I,Ben-Dror I,Vardimon L.Glutamine synthetase enhances the clearance of extracellular glutamate by the neural retina.J Neurochem.2002Nov;83(3):574-80.
    [13]Melena J,Osborne NN.Voltage-dependent calcium channels in the rat retina:involvement in NMDA-stimulated influx of calcium.Exp Eye Res.2001Apr;72(4):393-401.
    [14]Kuriyama H,Nakagawa M,Tsuda M.Intracellular Ca(2+)changes induced by in vitro ischemia in rat retinal slices.Exp Eye Res.2001 Sep;73(3):365-74.
    [15]Cheung JY,Bonventre JV,Malis CD,Leaf A.Calcium and ischemic injury.N Engl J Med.1986 Jun 26;314(26):1670-6.
    [16]Wang C,Nguyen HN,Maguire JL,Perry DC.Role of intracellular calcium stores in cell death from oxygen-glucose deprivation in a neuronal cell line.J Cereb Blood Flow Metab.2002 Feb;22(2):206-14.
    [17]Melena J,Stanton D,Osborne NN.Comparative effects of antiglaucoma drugs on voltage-dependent calcium channels.Graefes Arch Clin Exp Ophthalmol.2001 Jul;239(7):522-30.
    [18]Aydemir O,Naziroglu M,Celebi S,Yilmaz T,Kukner AS.Antioxidant effects of alpha-,gamma- and succinate-tocopherols in guinea pig retina during ischemia-reperfusion injury.Pathophysiology.2004 Dec;11(3):167-171.
    [19]Kuriyama H,Waki M,Nakagawa M,Tsuda M.Involvement of oxygen free radicals in experimental retinal ischemia and the selective vulnerability of retinal damage.Ophthalmic Res.2001 Jul-Aug;33(4):196-202.
    [20]Jo N,Wu GS,Rao NA.Upregulation of ehemokine expression in the retinal vasculature in ischemia-reperfusion injury.Invest Ophthalmol Vis Sci.2003Sep;44(9):4054-60.
    [21]Tsujikawa A,Ogura Y,Hiroshiba N,Miyamoto K,Kiryu J,Tojo SJ,Miyasaka M,Honda Y.Retinal ischemia-reperfusion injury attenuated by blocking of adhesion molecules of vascular endothelium.Invest Ophthalmol Vis Sci.1999 May;40(6):1183-90.
    [22]Neufeld AH,Sawada A,Becket B.Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9944-8.
    [23] Veriac S , Tissie G., Bonne C. Oxygen free radicals adversely affect the regulation of vascular tone by nitric oxide in the rabbit retina under high intraocular pressure. Exp Eye Res. 1993 Jan;56(1):85-8.
    [24] Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci. 2002 Apr 1;22(7):RC216.
    [25] Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H, Miyawaki N. Interleukin-1 beta mediates ischemic injury in the rat retina. Exp Eye Res. 2001 Nov;73(5):661-7.
    [26] Schmidt M, Giessl A, Laufs T, Hankeln T, Wolfrum U, Burmester T. How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina. J Biol Chem. 2003 Jan 17;278(3): 1932-5.
    [27] Stone J, Maslim J, Valter-Kocsi K, Mervin K, Bowers F, Chu Y, Bamett N, Provis J, Lewis G, Fisher SK, Bisti S, Gargini C, Cervetto L, Merin S, Peer J.Mechanisms of photoreceptor death and survival in mammalian retina. Prog Retin Eye Res. 1999 Nov;18(6):689-735.
    [1]Schmidt M,Giessl A,Laufs T,Hankeln T,Wolfrum U,Burmester T.How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina.J Biol Chem.2003 Jan 17;278(3):1932-5.
    [2]Stone J,Maslim J,Valter-Kocsi K,Mervin K,Bowers F,Chu Y,Barnett N,Provis J,Lewis G,Fisher SK,Bisti S,Gargini C,Cervetto L,Merin S,Peer J.Mechanisms of photoreceptor death and survival in mammalian retina.Prog Retin Eye Res.1999 Nov;18(6):689-735.
    [3]Buchi ER,Suivaizdis I,Fu J.Pressure-induced retinal ischemia in rats:an experimental model for quantitative study.Ophthalmologica.1991;203(3):138-47.
    [4]Li Y,Roth S,Laser M,Ma JX,Crosson CE.Retinal preconditioning and the induction of heat-shock protein 27.Invest Ophthalmol Vis Sci,2003;Mar;44(3):1299-304.
    [5]Roth S.Endogenous neuroprotection in the retina.Brain Res Bull.2004 Feb 15;62(6):461-6.
    [6]Yokoyama A,Oshitari T,Negishi H,Dezawa M,Mizota A,Adachi-Usami E.Protection of retinal ganglion cells from ischemia-reperfusion injury by electrically applied Hsp27.Invest Ophthalmol Vis Sci.2001 Dec;42(13):3283-6.
    [7]郭斌,杨新光,王莉,王晓娟,黄东华,张文强.热休克反应对大鼠视网膜缺血再灌注损伤的防御作用。中华眼底病杂志.2003;19(2):117-120.
    [8]Lee MC,Chung YT,Lee JH,Jung JJ,Kim HS,Kim SU.Antioxidant Effect of Melatonin in Human Retinal Neuron Cultures.Exp Neurol.2001 Dec;172(2):407-15.
    [9]Joo CK,Choi JS,Ko HW,Park KY,Sohn S,Chun MH,Oh YJ,Gwag BJ.Necrosis and apoptosis after retinal ischemia:involvement of NMDA-mediated excitotoxicity and p53.Invest Ophthalmol Vis Sci.1999Mar;40(3):713-20.
    [10]Sakamoto YR,Nakajima TR,Fukiage CR,Sakai OR,Yoshida YR,Azuma MR,Shearer TR.Involvement of Calpain isoforms in ischemia-reperfusion injury in rat retina.Curr Eye Res.2000 Jul;21(1):571-80.
    [11]Toriu N,Akalke A,Yasuyoshi H,Zhang S,Kashii S,Honda Y,Shimazawa M,Hara H.Lomerizine,a Ca2+ channel blocker,reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina.Exp Eye Res.2000 Apr;70(4):475-84.
    [12]Osborne NN,Wood JP,Cupido A,Melena J,Chidlow G.Topical flunarizine reduces IOP and protects the retina against ischemia excitotoxicity.Invest Ophthalmol Vis Sci.2002 May;43(5):1456-64.
    [13]Fontaine V,Mohand-Said S,Hanoteau N,Fuchs C,Pfizenmaier K,Eisel U.Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF)in retinal ischemia:opposite roles of TNF receptor 1 and TNF receptor 2.J Neurosci.2002 Apr 1;22(7):RC216.
    [14]Yoneda S,Tanihara H,Kido N,Honda Y,Goto W,Hara H,Miyawaki N.Interleukin-1beta mediates ischemic injury in the rat retina.Exp Eye Res.2001 Nov;73(5):661-7.
    [15]Takita H,Yoneya S,Gehlbach PL,Duh EJ,Wei.LL,Mori K.Retinal Neuroprotcetion against Ischemic Injury Mediated by Intraocular Gene Transfer of Pigment Epithelium-Derived Factor.Invest Ophthalmol Vis Sci.2003 Oct;44(10):4497-504.
    [16]牛膺筠,赵岩松,高云霞,周占宇,王红云等.成纤维细胞生长因子对鼠视网膜缺血再灌注损伤的治疗作用.中华眼科杂志,2003;39(11):664-668.
    [17]Roth S,Dreixler JC,Shaikh AR,Lee KH,Bindokas V.Mitochondrial potassium ATP channels and retinal ischemic preconditioning.Invest Ophthalmol Vis Sci.2006 May;47(5):2114-24.
    [18]游志鹏,姜德咏.一氧化氮合酶在大鼠视网膜缺血再灌注损伤中的表达及意义.眼视光学杂志.2003;5(4):237-238.
    [19]Cheon EW,Park CH,Kang SS,Cho GJ,Yoo JM,Song JK,Choi WS.Nitric oxide synthase expression in the transient isehemic rat retina:neuroprotection of betaxolol.Neurosci Lett.2002 Sep 27;330(3):265-9.
    [20]Hangai M,Miyamoto K,Hiroi K,Tujikawa A,Ogura Y,Honda Y,Yoshimura N.Roles of constitutive nitric oxide synthase in postischemic rat retina.Invest Ophthalmol Vis Sci.1999 Feb;40(2):450-8.
    [21]Maynard KI,Chen D,Arango PM,Ogilvy CS.Nitric oxide produced during ischemia improves functional recovery in the rabbit retina.Neuroreport.1996 Dec 20;8(1):81-5.
    [22]Lam TT,Tso MO.Nitric oxide synthase(NOS)inhibitor sameliorate retinal damage induced by ischemia in rats.Res Commun Mol Pathol Pharmacol.1996 Jun;92(3):329-40.
    [23]Ju WK,Kim KY,Park SJ,Park DK,Park CB,Oh SJ,Chung JW,Chun MH.Nitric oxide is involved in sustained and delayed cell death of rat retina following transient ischemia.Brain Res.2000 Oct 27;881(2):231-6.
    [24]Hare W,WoldeMussie E,Lai R,Ton H,Ruiz G,Feldmann B,Wijono M,Chun T,Wheeler L.Efficacy and safety of memantine,an NMDA-type open-channel blocker,for reduction of retinal injury associated with experimental glaucoma in rat and monkey.Surv Ophthalmol.2001 May;45Suppl 3:S284-9.
    [25]Seo SY,Yun BS,Ryoo IJ,Choi JS,Joo CK,Chang SY,Chung JM,Oh S,Gwag BJ,Yoo ID.Complestatin is a noncompetitive peptide antagonist of N-methyl-Daspartateand alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid/kainite receptors:secure blockade of ischemic neuronal death.J Pharmacol Exp Ther.2001Oct;299(1):377-84.
    [26]Ettaiche M,Fillacier K,Widmann C,Heurteaux C,Lazdunski M.Riluzole improves functional recovery after ischemia in the rat retina.Invest Ophthalmol Vis Sci.1999 Mar;40(3):729-36.
    [27]陈少强,陈文列,张更,钟秀容,黄焱.亚低温对大鼠视网膜缺血再灌注损伤保护作用的电镜观察.福建医科大学学报.2000;34(4):334-337.
    [28]Yu D,Eldred WD.GABA(A)and GABA(C)receptor antagonists increase retinal cyclic GMP levels through nitric oxide synthase.Vis Neurosci.2003Nov-Dec;20(6):627-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700