用户名: 密码: 验证码:
硅烷直接改性环氧涂层的防护性能及其作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然环境中,除少数贵金属外,大多数金属都容易发生腐蚀,这会导致金属材料结构的破坏和各种功能的丧失。有机涂层具有低成本、易施工等优点,成为应用最广泛的金属防腐蚀方法。环氧树脂具有粘结力强、耐化学试剂性能好等优点,被广泛用作金属防腐蚀的有机涂层。但环氧涂层的缺点是吸水量大,这限制了它的应用。本文采用含烷氧基的硅烷试剂直接改性环氧涂层,增强了涂层抵御水、离子渗入的能力,提高了涂层与金属基体间的结合力,从而提高涂层的防护能力。这为硅烷试剂在金属防腐蚀领域的应用提供了一条新的思路。主要研究工作包括:
     (1)直接共混掺杂改性
     将环氧基丙基三甲氧基硅烷(GPTMS)单体直接掺杂到环氧树脂/聚酰胺涂层中去,采用电化学阻抗谱(EIS)求得涂层电容的变化研究了涂层的吸水情况。结果表明,GPTMS硅烷单体掺杂后,环氧涂层的吸水量显著降低。随共混硅烷量的增加,涂层的饱和吸水量先减小然后增大,5wt%GPTMS掺杂的涂层吸水量最低。采用差示扫描量热法(DSC)研究了环氧树脂/聚酰胺复合物浸泡前后的玻璃转化温度(T_g)。纯坏氧涂层的T_g在浸泡后明显下降,而GPTMS掺杂涂层的T_g在浸泡后却略有增大。这种增大可能是硅烷组分的水解、缩合形成的Si-O-Si结构对涂层结构具有修复作用造成的。通过对环氧复合物粉末在浸泡前后的红外谱图的研究,我们发现对于硅烷掺杂涂层浸泡后1100cm~(-1)的吸收峰强度略有增强,验证了Si-O-Si的生成。
     (2)化学改性
     然而,仅仅极少数硅烷单体可直接用于共混改性环氧涂层,一些长链硅烷如十二烷基三甲氧基硅烷(DTMS)的掺杂甚至会破坏涂层的性能。为解决这个问题,我们通过化学改性的方法把硅烷单体接枝到环氧分子上去。
     γ-氨基丙基三甲氧基硅烷(γ-APS)可以通过氨基与环氧树脂中的环氧基之间的开环反应接枝到环氧树脂上去。我们发现用1wt%γ-APS改性后涂层的吸水量明显降低,而过量的硅烷会造成涂层固化不完全破坏涂层的性能。同样地,我们发现硅烷改性的涂层在浸泡后T_g略有增加。EIS实验和Machu实验都证明了改性涂层的防护性能比空白涂层有所提高。
     对于不能和环氧基反应的硅烷单体,我们则借助合适的催化剂,通过环氧树脂的羟基与硅烷的烷氧基反应,把硅烷单体接枝到环氧分子上去。红外光谱的研究发现,改性树脂中对应羟基的吸收减弱而Si-O-C对应的吸收峰明显增强。通过对EIS数据的拟合,我们得到了涂层电容、涂层电阻、涂层/金属界面双电层电容和电荷转移电阻等与涂层金属体系性能及涂层失效过程有关的电化学参数。和纯环氧涂层相比,改性涂层具有较大的反应电阻和较小的界面双电层电容。这表明改性涂层的性能得到提高。Machu实验和沸水实验同样表明改性涂层性能大大提高。GPTMS硅烷化学改性涂层具有最好的防护性能。鉴于此,我们进一步研究了该种硅烷的用量对涂层性能的影响,发现随着硅烷用量的增加,涂层性能随之提高,但当硅烷用量超过化学计量,涂层性能的提高则不再明显。
     (3)硅烷预聚体(preploymer)改性
     硅烷单体的水解活性太大,不利于缓蚀作用的长久发挥。我们设想通过对影响硅烷水解、缩合因素的控制,合成出部分水解缩合但仍具有水解活性烷氧基的硅烷预聚体,该预聚体由硅烷单体经不完全水解通过缩聚得到,烷氧基在水渗入时仍可像硅烷单体那样发挥“修复”作用,但由于硅烷已经部分聚合,水解活性降低,这样可能有利于发挥更长期的保护作用。
     我们分别以甲基三甲氧基硅烷(MTMS)和γ-APS为底物合成出两种不同的硅烷预聚体,并直接掺杂到环氧树脂/聚酰胺涂层体系中去。MTMS硅烷预聚体由于和涂层相容性差,改性涂层性能的提高甚微。而γ-APS预聚体掺杂的涂层性能则大大提高。对涂层电容值及弥散系数(n)演化的分析表明,改性涂层抗水渗入的能力增强,接触角测试也表明预聚体改性涂层的憎水性要优于纯坏氧涂层及单体改性涂层。EIS实验、Machu实验和沸水实验都表明预聚体改性涂层性能大大提高。
Most metals, except some noble metals, are prone to corrosion in nature environment, which can result in destruction and function-loss of metallic materials. Organic coatings were widely used for metal protection against corrosion due to their low price and high processibility. Among them, epoxy resin was the one that was most widely used painting component due to its good adhesion with metal substrates and high resistance against organic solvent. However, the high water uptake of epoxy coatings restricts the application in highly humid environment. In this paper, silane agents were directly used to modify epoxy coatings, aiming to improve the protection performance by improving the barrier performance against water permeation of the coatings and increasing the adhesion between metal substrate and polymer coatings, giving a novel method to utilize the silane agents in metal corrosion control. The main contents are listed as follows:
     (1) Modification by direct incorporation
     3-glycidoxypropyltrimethoxy silane (GPTMS) were directly incorporated into epoxy/polyamide systems. Coating capacitance, which was measured by electrochemical impedance spectroscopy (EIS), was employed to calculate the amount of water uptake in epoxy coatings in aqueous solution.
     The water absorption in epoxy coatings was found to decrease drastically after incorporated with silane component. With the increase of silane content, water uptake of epoxy coatings passes through a minimum, corresponding to 5wt.% of silane incorporation. Differential scanning calormetry (DSC) was used to measure the glass-transition temperature (T_g) of the coatings before and after immersed in water. After water permeation T_g of pure epoxy-polyamide coatings is found to conventionally decrease. However, for silane-incorporated coatings T_g increase slightly after water penetration. The self-repairing effect due to the hydrolysis and condensation of silane agents is proposed to interpret the interesting T_g increase. For GPTMS incorporated coatings, it is found that the relative peak intensity at 1100cm~(-1), corresponding to the Si-O-Si bonds, increased slightly after immersion, which was caused by the formation of Si-O-Si bonds.
     (2) Chemical modification
     Our experimental results showed that only few silane monomers gave positive results by the above-mentioned simple direct incorporations. For example, some long-chained silanes (e.g. dodecyl-trimethoxy silane, DTMS) deteriorated the performance of the incorporated organic coatings, due to their poor compatibility with polymeric resins. To overcome this drawback, the silane agents were grafted to epoxy resin molecules by chemical modification.
     Two main methods were used in chemical modification,γ-amino-propyltrimethoxy silane (γ-APS) can be grafted to epoxy resins via the opening cycle reaction between the amino groups inγ-APS and the epoxide groups in epoxy resins. It was found that the water uptake of epoxy coatings decreased after modified with 1 wt.% content ofγ-APS. whereas excessive amounts of this silane monomer result in the deterioration in performance against water permeation. Similar, the T_g ofγ-APS modified coating was also found to increase slightly. EIS measurement and Machu test demonstrated that the protection performance was improved after modification.
     Those silanes. which cannot react with the epoxide groups, can be grafted to epoxy resin via the reaction between the alkoxy groups in silane and the hydroxy groups in epoxy resin under the catalysis of organotin compounds. FTIR spectra showed that the absorption intensity of -OH decreased and a new absorption corresponding to the Si-O-C bonds appeared after modification. The parameters related to the protection performance of the coatings, such as coating capacitance (C_c), coating resistance (R_c), double layer capacitance (C_(dl)) and charge transfer resistance (R_(ct)), were then obtained by fitting of the EIS data. The result indicated an enhancement in protectiveness of silane-modified epoxy coatings against substrate corrosion, which was characterized by higher R_(ct) and lower C_(dl) at substrate/electrolyte interface. The results of Machu test and boiling water test were in good accordance with the conclusion derived from EIS measurement. The best performance was observed for coating system modified by GPTMS. Thereby, we further investigate the corrosion performance of GPTMS-modified epoxy coatings with various content of this silane monomer. The result showed that the protection performance was improved with the increase of silane content. But when the amount of silane exceeds the stoichiometric values, only slight improvement in protectiveness can be observed compared with that modified by stoichiometric amount of GPTMS silane monomer.
     (3) Modification with prepolymers of silanes
     The high hydrolysable activity of silane monomer is harmful for long-term protection. By controlling the reaction conditions, we synthesized the prepolymers based on silane monomers. There are residual alkoxy in prepolymer, which can also undergo hydroxylation and condensation to form Si-O-Si structure after water permeation as silane monomer does. The prepolymer has partly condensed which may reduce its hydrolysable activity, and this may guarantee a long-term protection.
     Two different prepolymers were synthesized, one was based on methyltrimethoxy silane (MTMS) and the other was based onγ-APS silane monomer. They were directly incorporated into the epoxy/polyamide systems aiming to enhance the protection performance. The improvement in protection performance is almost negligible for MTMS prepolymer-incorporated coatings due to the poor compatibility with polymeric resins. Whereas, forγ-APS prepolymer-incorporated coatings, the protection performance of coatings were improved significantly after incorporation. The evolution of C_c values and the dispersion coefficient (n) during the immersion revealed that the barrier performance against water permeation was improved after prepolymer incorporation. The contact angle measurement also showed thatγ-APS prepolymer incorporation improved the hydrophobicity of the epoxy coatings. Machu test and boiling water test also showed an improvement on protection properties forγ-APS prepolymer-incorporated coatings.
引文
[1]吴继勋,金属防腐蚀技术,冶金工业出版社,1992.
    [2]陈旭俊,黄惠金,蔡亚汉,金属腐蚀预保护基本教程,机械工业出版社,1986.
    [3]A.Miszczyk,H.Szalinska,Laboratory evaluation of epoxy coatings with an adhesion pormoter by impedance,Prog.Org.Coat.,25(1995)357-363.
    [4]F.Mansfeld,H.Xiao,L.T.Han,Electrochemical impedance and noise data for polymer coated steel exposed at remote marine test sites,Prog.Org.Coat.,30(1997)89-100.
    [5]N.Tang,W.J.van Ooij,G.Gorecki,Electrochemical test methods for evalutating organic coatings on metal:an update.Part Ⅰ.Introduction and generalities regarding electrochemical testing of organic coatings,Prog.Org.Coat.,30(1997)225-233.
    [6]A.Miszczyk,T.Schauer,Electrochemical approach to evaluate the interlalyer adhesion of organic coatings,Prog.Org.Coat.,52(2005)298-305.
    [7]L.Bousselmi,C.Fiaud,B.Tribollet,E.Triki,The characterisation of the coated layer at the interface carbon steel-natural salt water by impedance spectroscopy,Corros.Sci.,39(1997)1711-1724.
    [8]张金涛,胡吉明,张鉴清,曹楚男,金属涂装预处理新技术与涂层性能研究方法进展,表面技术,34(2005)1-5.
    [9]D.H.van der Weude,E.P.M.van Westing,J.H.de Wit,EIS measurements on artificial blisters in organic coatings,Electrochim.Acta,41(1996)1103-1107.
    [10]V.B.Miskovic-Stankovic,J.B.Zotovic,Z.Kacarevuc-Popovic,M.D.Maksimovic,Corrosion behaviour of epoxy coatings electrodeposited on steel electrochemically modified by Zn-Ni alloy,Electrochim.Acta,44(1999)4269-4277.
    [11]M.F.Montemor,A.M.Simoes,M.G.S.Ferreira,Composition and corrosion behaviour of galvanised steel treated with rare-earth salts:the effect of the cation,Prog.Org.Coat.,44(2002)111-120.
    [12]O.Ferraz,E.Cavalcanti.A.R.D.Sarli,The characterization of protective properties for some naval steel/polimeric coating/3%NaCl solution systems by EIS and visual assessment,Corros.Sci..37(1995)1267-1280.
    [13]L.Philippe.C.Sammon.S.B.Lyon,J.Yarwood,An FTIR/ATR in situ study of sorption and transport in corrosion protective organic coatings 1.Water sorption and the role of inhibitor anions,Prog.Org.Coat.,49(2004)302-314.
    [14]V.B.Miskovic-Stankovic,M.D.Maksimovic,Z.Kacarevuc-Popovic,The sorption characteristics of epoxy coatings electrodeposited on steel during exposure to different corrosive agents,Corros.Sci.,38(1996)1513-1523.
    [15]B.Bajat,V.B.Miskovic-Stankovic,Protective properties of epoxy coatings electrodeposited on steel electrochemically modified by Zn-Ni alloys,Prog.Org.Coat.,49(2004)183-196.
    [16]王受谦,杨淑贞,防腐蚀涂料与涂装技术,北京:化学工业出版社,2002年1月.
    [17]I.Dehri,M.Erbil,The effect of relative humidity on the atmospheric corrosion of defective organic coating materials:an EIS study with a new approach,Corros.Sci.,42(2000)969-978.
    [18]C.Le Pen,C.Lacabanne,N.Pebere,Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method:influence of fillers,Prog.Org.Coat.,39(2000):167-175.
    [19]V.B.Miskovic-Stankovic,D.M.Drazic,M.J.Teodorovi c,Electrolyte penetration through epoxy coatings electrodeposited on steel,Corros.Sci.,37(1995)241-252.
    [20]M.V.Popa,P.Drob,E.Vasilescu,M.Anghel,l.Mirza-Rosca,A.S.Lopez,Electrochemical characterisation of electrodeposited organic coatings,Materials and Corrosion,53(2002)91-97.
    [21]S.R.Taylor,P.Moongkhamklang,The delineation of local water interaction with epoxy coatings using fluorescence microscopy,Prog.Org.Coat.,54(2005)205-210.
    [22]C.Perez,A.Collazo,M.lzquierdo,P.Merino,X.R.Novoa,Characterisation of the barrier properties of different paint systems Part Ⅱ.Non-ideal diffusion and water uptake kinetics,Prog.Org.Coat.,37(1999)169-177.
    [23]S.Gonzalez,V.Fox,R.M.Souto,Laboratory evaluation of corrosion resistance at metallic substrates by an organic coating:delamination effects,J.Adhesion Sci.Technol.,18(2004)455-464.
    [24]V.Lavaert,M.De Cock,M.Moors,E.Wettinck,Influence of pores on the quality of a silicon polyester coated galvanised steel system,Prog.Org.Coat.,38(2000)213-221.
    [25]C.G.Oliveira.M.G.S.Ferreira,Ranking high-quality paint systems using EIS.Part Ⅱ: defective coatings, Corros. Sci., 45(2003) 139-147.
    [26] E. Almeida, D. Santos, J. Uruchurtu, Corrosion performance of waterborne coatings for structural steel, Prog. Org. Coat., 37 (1999) 131-140.
    [27] J. van den Brand, S. Van Gils, P.C.J. Beentje, H. Terryn, V. Sivel, J.H.W. de Wit, Improving the adhesion between epoxy coatings and aluminium substrates, Prog. Org. Coat., 51(2004) 339-350.
    [28] J. van den Brand, S. Van Gils, P.C.J. Beentje, H. Terryn, V. Sivel, J.H.W. de Wit, Changes in epoxy-coated aluminium due to exposure to water,Prog. Org. Coat., 51(2004) 351-364.
    [29] G.P. Sundararajan, W.J. van Oiij, Silane based pretreatments for automotive steels, Surface Engineering, 16 (2000) 315-320.
    
    [30] M.S. Donley, V.N. Balbyshev, N.N. Voevodin, Self-assembled Nanophase Particle (SNAP) surface treatments for corrosion protection of AA2024-T3, Prog. Org. Coat., 52 (2005) 34-38.
    [31] W. Machu, L. Schiffman, F.D. Archiv, Principles and Prevention of Corrosion, Eisenhutenwesen, 37 (1966) 679.
    
    [32] 虞兆年,防腐蚀涂料与涂装,化学工业出版社,2002.
    
    [33] K. Darowicki , M. Szocinski, Evaluating the performance of organic coatings under mechanical stress using electrochemical impedance spectroscopy, J Solid State Eletrochem, 8 (2004)346-351.
    [34] J. M. Mcintyre, H.Q. Pham, Electrochemical impedance spectroscopy; a tool for organic coatings optimizations, Prog. Org. Coat., 27 (1996) 201-207.
    [35] E. Potvin, L. Brossard, G. Larochelle, Corrosion protective performance of commercial low -VOC epoxy/urethane coatings on hot-rolled 1010 mild steel, Prog. Org. Coat., 31 (1997) 363-373.
    [36] Nie Tanga, Wim J. van Ooij, George Gorecki, Comparative EIS study of pretreatment performance in coated metals. Prog. Org. Coat., 30 (1997) 255-263.
    [37] P.R.Sere, A.R. Armas. C.I. Eisner, A.R. Di Sarli,The surface condition effect on adhesion and corrosion resistance of carbon steel/chlorinated rubber/artificial sea water systems, Corros.Sci., 38(1996)853-866.
    [38] P.L. Bonora. F.Deflorian. L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochim. Acta, 41 (1996) 1073-1082.
    [39]J.B.Bajat,V.B.Miskovic-Stankovic,M.D.Maksimovic,D.M.Drazic,Electrochemical deposition and characterization of Zn- Co alloys and corrosion protection by electrodeposited epoxy coating on Zn- Co alloy,Electrochim.Acta,47(2002)4101-4112.
    [40]A.Horvath,R.Schiller,Rescaled range analysis of the corrosion potential noise,Corros.Sci.,45(2003)597-609.
    [41]V.J.Gelling,M.M.Wiest,D.E.Tallman,G.P.Bierwagen,G.G.Wallace,Electroactive-conducting polymers for corrosion control:4.Studies of poly(3-octyl pyrrole)and poly(3-octadecyl pyrrole)on aluminum 2024-T3 alloy,Prog.Org.Coat.,43(2001)149-157.
    [42]R.L.De Rosa,D.A.Earl,G.P.Bierwagen,Statistical evaluation of EIS and ENM data collected for monitoring corrosion barrier properties of organic coatings on Al-2024-T3,Corros.Sci.,44(2002)1607-1620.
    [43]H.Greisiger,T.Schauer,On the interpretation of the electrochemical noise data for coatings,Prog.Org.Coat.,39(2000)31-36.
    [44]G.P.Bierwagen,R.Twite,G.Chen,D.E.Tallman,Atomic force microscopy,scanning electron microscopy and electrochemical characterization of Al alloys,conversion coatings,and primers used for aircraft,Prog.Org.Coat.,32(1997)25-30.
    [45]T.Schauer,H.Greisiger,L.Dulog,Details on MEM analysis of electrochemical noise data and correlation with impedance measurements for organic coatings on metals,Electrochim.Acta,43(1998)2423-2433.
    [46]M.Khobaib,A.Rensi,T.Matakis,M.S.Donley,Real time mapping of corrosion activity under coatings,Prog.Org.Coat.,41(2001)266-272.
    [47]L.B.Reynolds,R.Twite,M.Khobaib,M.S.Donley,G.P.Bierwagen,Preliminary evaluation of the anticorrosive properties of aircraft coatings by electrochemical methods,Prog.Org.Coat.,32(1997)31-34.
    [48]J.H.Oshorne,K.Y.Blohowiak,S.R.Taylor,C.Hunter et al.,Testing and evaluation of nonchromated coating systems for aerospace applications,Prog.Org.Coat.,41(2001)217-225.
    [49]曹楚南,张鉴清,电化学阻抗谱导论.北京:科学出版社,2002年7月.
    [50]曹楚南,腐蚀电化学原理,北京:化学工业出版社.2004年4月.
    [51] 张鉴清,曹楚南,电化学阻抗谱方法研究与评价有机涂层,腐蚀与防护,19(1998)99-104.
    
    [52] F. Deflorian, L. Fedrizzi, S. Rossi, F. Buratti, P.L. Bonora, Electrochemical characterisation of organic coatings for the automotive industry, Prog. Org. Coat., 39 (2000) 9-13.
    [53] Q. L. Thu, G.P. Bierwagen, S. Touzain, E1S and ENM measurements for three different organic coatings on aluminum, Prog. Org. Coat., 42 (2001) 179-187.
    [54] L. De Rosa, T. Monetta, F. Bellucci, D.B. Mitton, A. Atienza, C. Sinagra, The effect of a conversion layer and organic coating on the electrochemical behavior of 8006 and 8079 aluminum alloys, Prog. Org. Coat., 44 (2002) 153-160.
    [55] J.H.W. de Wit, J. M. Costa, A.D.Mercer, Progress in the understanding and prevention of corrosion, The Institute of Materials, London, UK, 1993,240-253.
    [56] A.S. Castela, A.M. Simoes, An impedance model for the estimation of water absorption in organic coatings. Part I: A linear dielectric mixture equation, Corros. Sci., 45 (2003) 1631-1646.
    [57] A.S. Castela, A.M. Simoe An impedance model for the estimation of water absorption in organic coatings. Part II: A complex equation of mixtures, Corros. Sci., 45 (2003) 1647-1660.
    [58] F. Deflorian, L. Fedrizzi, S. Rossi, P.L. Bonora, Organic coating capacitance measurement by EIS: ideal and actual trends, Electrochim. Acta, 44 (1999) 4243-4249.
    [59] C.G. Oliveira , M.G.S. Ferreira , Ranking high-quality paint systems using EIS. Part I: intact coatings, Corros. Sci., 45 (2003) 123-138.
    [60] Z. Ranjbar, S. Moradian, M. R. M. Z. Attar, EIS investigation of cataphoretically electrodeposited epoxy coatings having different EEWs, Prog. Org. Coat., 51 (2004) 87-90.
    [61] M.G. Olivier, M. Poelman, M. Demuynck, J.P. Petitjean, EIS evaluation of the filiform corrosion of aluminium coated by a cataphoretic paint, Prog. Org. Coat., 52 (2005) 263-270.
    [62] F. Deflorian, S. Rossi, L. Fedrizzi, P.L. Bonora, EIS study of organic coating on zinc surface pretreated with environmentally friendly products. Prog. Org. Coat., 52 (2005) 271-279.
    [63] A.T. A. Jenkins, R.D. Armstrong, The breakdown in the barrier properties of organic coatings due to filiform corrosion, Corros. Sci., 38 (1996) 1147-1157.
    [64] F.Deflorian, L.Fedrizzi, P.L.Bonora, Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints, Corros. Sci., 38 (1996) 1697-1708.
    [65] B.N.Grgur, M.M.Gvozdenovic, V.B. Miskovic-Stankovic, Z.Kacarevuc-Popovic, Corrosion behavior and thermal stability of electrodeposited PANI/epoxy coating system on mild steel in sodium chloride solution, Prog. Org. Coat., 56 (2006) 214-219.
    [66] S.Haruyama, S. Asari, T.Tsuru, Corrosion protection by organic coating, J Electrochemical Society, 87 (1978) 197-207.
    [67] I. Sekine, Recent evaluation of corrosion protective paint films by electrochemical methods, Prog. Org. Coat., 31 (1997) 73-80.
    [68] R.M. Souto, M.L. Llorente, L. Fernandez-Merida, Accelerated tests for the evaluation of the corrosion performance of coil-coated steel sheet: EIS under cathodic polarisation, Prog. Org. Coat., 53 (2005) 71-76.
    [69] S. Gonzalez, M.A.Gil, J.O. Hernandez, V. Fox, R.M. Souto, Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating, Prog. Org. Coat., 41 (2001) 167-170.
    [70] J.G. Liu, C.W. Yan, Electrochemical characteristics of corrosion behavior of organic/Dacromet composite systems pretreated with gamma-aminopropyltriethoxysilane, Surface & Coatings Technology, 200 (2006) 4976-4986 .
    [71] F. Mansfeld, L. T. Han, C. C. Lee, G. Zhang, Evaluation of corrosion protection by polymer coatings using electrochemical impedance spectroscopy and noise analysis, Electrochim. Acta, 43 (1998) 2933-2945.
    [72] N. J. Kouloumbi, S. T. Kyvelidis, Evaluation of the anticorrosive behaviour of organic coatings by using a variant of electrochemical impedance spectroscopy, Mikrochim. Acta, 136(2001)175-180.
    [73] A. Amirudin, D. Thierry, Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals, Prog. Org. Coat.. 26 (1995) 1-28.
    [74] B.S. Skerry, D.A. Eden, Electrochemical testing to assess corrosion protective coatings, Prog. Org. Coat., 15 (1986) 269-285.
    [75] F. Mansfeld, C. Chen, C. C. Lee, H.Xiao, The effect of asymmetric electrodes on the analysis of electrochemical impedance and noise data, Corros. Sci., 38 (1996) 497-513.
    [76] F. Mansfeld, C. C. Lee, G. Zhang, Comparison of electrochemical impedance and noise data in the frequency domain, Electrochim. Acta, 43 (1998) 435-438.
    [77] A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 1: Calibration of the Kelvinprobe and basic delamination mechanism, Corros. Sci., 41 (1999) 547-578.
    [78] W. Furbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanised steel - a mechanistic approach.: Part 1: delamination from a defect with intact zinc layer, Corros. Sci., 43 (2001) 207-227.
    [79] A.P. Nazarov, D. Thierry, Scanning Kelvin probe study of metal/polymer interfaces, Electrochim. Acta, 49 (2004) 2955-2964.
    [80] B. Reddy, J.M. Sykes, Degradation of organic coatings in a corrosive environment: a study by scanning Kelvin probe and scanning acoustic microscope, Prog. Org. Coat., 52 (2005) 280-287.
    [81] J. Vogelsang, W. Strunz, Electrochemical investigations of organic, corrosion protective barrier coatings - limiting factors of small signal perturbation techniques, Materials and Corrosion, 52 (2001) 462-469.
    [82] W. Strunz, Dielectric relaxation in barrier coatings: A square root of time process, Prog. Org. Coat., 39 (2000) 49-60.
    [83] C.A. Schiller, W. Strunz, The evaluation of experimental dielectric data of barrier coatings by means of different models, Electrochim. Acta, 46 (2001) 3619-3625.
    [84] W. Strunz, C.A. Schiller, J. Vogelsang, The evaluation of experimental dielectric data of barrier coatings in frequency- and time domain, Electrochim. Acta, 51 (2006) 1437-1442.
    [85] I.M. Zin, S.B. Lyon, A. Hussain, Under-film corrosion of epoxy-coated galvanised steel: An EIS and SVET study of the effect of inhibition at defects, Prog. Org. Coat., 52 (2005) 126-135.
    [86] A.C. Bastos, M.G.S. Ferreira, A.M. Simoes. Comparative electrochemical studies of zinc chromate and zinc phosphate as corrosion inhibitors for zinc, Prog. Org. Coat., 52 (2005) 339-350.
    [87] J.T. Zhang, J.M. Hu, J.Q. Zhang, C.N. Cao, The influence of curning agent on the performance of epoxy coatings on mild steel, Corrosion, 61 (2005) 872.
    [88] W.G. Ji, J.M. Hu, J.Q. Zhang, C.N. Cao, Reducing the water absorption in epoxy coatings by silane monomer incorporation, Corros. Sci.. 48 (2006) 3731-3739.
    [89]W.G.Ji,J.M.Hu,L.Liu,J.Q.Zhang,C.N.Cao,Water uptake of epoxy coatings modified with γ -APS silane monomer,Prog.Org.Coat.,57(2006)439-443.
    [90]M.Doherty,J.M.Sykes,Micro-cells beneath organic lacquers:a study using scanning Kelvin probe and scanning acoustic microscopy,Corros.Sci.,46(2004)1265-1289.
    [91]I.Sekine,M.Yuasa,N.Hirose,T.Tanaki,Degradation evaluation of corrosion protective coatings by electrochemical,physicochemical and physical measurements,Prog.Org.Coat.,45(2002)1-13.
    [92]朱自莹,顾仁敖,陆天虹,拉曼光谱在化学中的应用,沈阳:东北大学出版社,1998年12月.
    [93]M.C.Bernard,S.Duval,S.Joiret,M.Keddam,F.Ropital,H.Takenouti,Analysis of corrosion products beneath an epoxy-amine varnish film,Prog.Org.Coat.,45(2002)399-404.
    [94]C.Corfias,N.Pebere,C.LAcabanne,Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method:influence of the polymer binder,Corros.Sci.,42(2000)1337-1350.
    [95]M.F.Montemor,A.M.Simoes,M.G.S.Ferreira,Composition and behaviour of cerium films on galvanised steel,Prog.Org.Coat.,43(2001)274-281.
    [96]M.Del Grosso Destreri,J.Vogelsang,L.Fedrizzi,Water up-take evaluation of new waterborne and high solid epoxy coatings.:Part Ⅰ:measurements by means of gravimetrical methods,Prog.Org.Coat.,37(1999)57-67.
    [97]F.Deflorian,L.Fedrizzi,S.Rossi,Electrochemical impedance spectroscopy and Fourier transform infrared spectroscopy of natural and accelerated weathering of organic coatings,Corrosion,54(1998)598-605.
    [98]A.S.Castela,A.M.Simoes,Assessment of water uptake in coil coatings by capacitance measurements,Prog.Org.Coat.,46(2003)55-61.
    [99]M.D.G.Destreria,Jo.Vogelsang,L.Fedrizzi,F.Deflorian,Water up-take evaluation of new waterborne and high solid epoxy coatings.Part Ⅱ:electrochemical impedance spectroscopy,Prog.Org.Coat.,37(1999)69-81.
    [100]S.Gonzalez,I.C.M.Rosca,R.M.Souto,Investigation of the corrosion resistance characteristics of pigments in alkyd coatings on steel,Prog.Org.Coat..43(2001)282-285.
    [101] H. Ochsa, J. Vogelsang, Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions, Electrochim. Acta, 49 (2004) 2973-2980.
    [102] S. H. Mcknight, J. W. Gilespie, JR. In situ examination of water diffusion to the polypropylene-silane interface using FTIR-ATR, J Appl Polym Sci., 64 (1997) 1971-1985.
    [103] M. Liu, P. Wu, Y. Ding, S. Li, Study on diffusion behavior of water in epoxy resins cured by active ester, Phys. Chem. Chem. Phys., 5 (2003) 1848-1852.
    [104] T. Nguyen, E. Byrd, D. Bentz, C. Lin, In situ measurement of water at the organic coating/substrate interface, Prog. Org. Coat., 27 (1996) 181-193.
    [105] S.Y. Zhang, W.F. Zhou, Evaluation of thin defect-free epoxy coatings using electrochemical impedance spectroscopeJ. Appl. Electrochem., 28 (1998) 1277-1281.
    [106] J.B. Bajat, M.D. Maksimovic, V.B. Misicovic-Stankovic, S.Zec, Electrodeposition and characterization of Zn-Ni alloys as sublayers for epoxy coating deposition, J. Appl. Electrochem., 31 (2001)355-361.
    [107] Y.C. Chen, H.C. Lin, Y.D. Lee, The effects of phenyltrimethoxysilane coupling agents on the properties of PTFE/silica composites, J. Polym Research, 11 (2004) 1-7.
    [108] J.B. Bajat, Z. Kacarevic-Popovic, V.B. Misicovic-Stankovic, M.D.Maksimovic, Corrosion behaviour of epoxy coatings electrodeposited on galvanized steel and steel modified by Zn-Ni alloys, Prog. Org. Coat., 39 (2000) 127-135.
    [109] S. Y. Zhang, S.J. Li, X.W. Luo, W.F. Zhou, Mechanism of the significant improvement in corrosion protection by lowering water sorption of the coating, Corros. Sci., 42 (2000) 2037-2041.
    [110] S.Y. Zhang, Y.F. Ding, S.J. Li, X.W. Luo, W.F. Zhou, Effect of polymeric structure on the corrosion protection of epoxy coatings, Corros. Sci., 44 (2002) 861-869.
    [111] V. Barranco, J. Carpentier, G. Grundmeier, Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate. Electrochim. Acta, 49 (2004) 1999-2013.
    [112] D. M. Brasher, A. H. Kingsbury, Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water uptake, J. Appl. Chem., 4 (1954) 62.
    
    [113] A.S.L. Castela, A.M. Simoes, M.G.S. Ferreira. E.I.S. evaluation of attached and free polymer films, Prog. Org. Coat., 38 (2000) 1-7.
    
    [114] Y.H. Wei, L.X. Zhang, W. Ke, Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion, Corros. Sci., 48 (2006) 1449-1461.
    
    [115] J. Neshati, M. R. Fardi, Evaluation and investigation of surface treatment of industrial coatings by impedance spectroscopy, Surface Engineering, 20 (2004) 299-304.
    
    [116] J.M. Sykes, A variant of the Brasher-Kingsbury equation, Corros. Sci., 46 (2004) 515.
    [117] T. Prosek, D. Thierry, A model for the release of chromate from organic coatings, Prog. Org. Coat., 49 (2004) 209-217.
    [118] J. Sinko, Challenges of chromate inhibitor pigments replacement in organic coatings, Prog. Org. Coat., 42 (2001) 267-282.
    [119] L. Fedrizzi, F. Deflorian, S. Rossi, L. Fambri, P. L. Bonora, Study of the corrosion behaviour of phosphatized and painted industrial water heaters, Prog. Org. Coat., 42 (2001) 65-74.
    [120] M. Zubielewicz, W. Gnot, Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings, Prog. Org. Coat., 49 (2004) 358-371.
    [121] X. W. Yu, C. N. Cao, Z. M. Yao, D. R. Zhou, Z. D. Yin, Corrosion behavior of rare earth metal (REM) conversion coatings on aluminum alloy LY12 Mater. Sci. Eng. A, 284 (2000) 56-63.
    
    [122] B. F. Rivera, B. Y. Johnson, M. J. O. Keefe, W. G. Fahrenholtz, Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6, Surf. Coat. Technol., 176 (2004) 349-356.
    [123] C.T. Lin, P. Lin, M. W. Hsiao, Chemistry of a single-step phosphate/paint system, Ind. Eng. Chem. Res., 31 (1992)424-430.
    [124] C.T. Lin, P. Lin, F. Quitian-Puello, Interfacial chemistry of a single-step phosphate/paint system, Eng. Chem. Res., 32 (1993) 818-825.
    [125] L. Li, C.T. Lin, SEM-EDS investigations of self-phosphating coatings, Eng. Chem. Res., 33 (1994)3241-3246.
    [126] T. Yu, C.T. Lin, Performance of in-situ phosphatizing reagents in solvent-borne paints, Eng. Chem. Res., 36 (1997) 368-374.
    
    [127] T. Yu. L. Li. C.T. Lin, Chemical affinity of in-Situ phosphatizing reagents on cold-rolled steel, J. Phys. Chem., 99 ( 1995) 7613-7620.
    [128] D. Q. Zhu, W. J. van Ooij, Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane, Prog. Org. Coat., 49 (2004) 42-53.
    [129] D. Q. Zhu, W. J. van Ooij, Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]amine, Electrochim. Acta, 49 (2004) 1113-1125.
    [130] D. Q. Zhu, W. J. van Ooij, Corrosion protection of AA 2024-T3 by bis- [3-(triethoxysilyl)propyl]tetrasulfide in sodiumchloride solution. Part 2: mechanism for corrosion protection, Corros. Sci., 45 (2003) 2177-2197.
    [131] V. Palanivel, D. Q. Zhu, W. J. van Ooij, Nanoparticle-filled silane films as chromate replacements for aluminum alloys, Prog. Org. Coat., 47 (2003) 384-392.
    
    [132]W. J. van Ooij, D.Q. Zhu, Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl] tetrasulfide on Al 2024-T3substrates, Corrosion, 57 (2001) 413-427.
    
    [133] G. E. Kozerski, R. H. Gallavan, M. J. Ziemelis, Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling, Anal. Chim. Acta, 489 (2003) 103-114.
    
    [134] M. L. Abel, J. F. Watts, R. P. Digby, The adsorption of alkoxysilanes on oxidesed aluminium substrates, Inter. J. Adhes. & Adhes., 18 (1998) 179-192.
    [135] W. J. van Ooij, D. Q. Zhu, G. Prasad, S. Jayaseelan, Y. Fu, N. Teredesai,Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding, Surf. Eng., 16(2000)386-376.
    [136] C. M. Bertelsen, F. J. Boerio, Linking mechanical properties of silanes to their chemical structure:an analytical study of γ-GPS solutions and films, Prog. Org. Coat., 41 (2001) 239-246.
    [137] A. Franquet, J. De Laet, T. Schram, H.Terryn, V. Subramanian, W. J. van Ooij, J. Vereecken, Determination of the thickness of thin silane films on aluminium surfaces by means of spectroscopic ellipsometry, Thin Solid Films, 384 (2001) 37-45.
    [138]R.Shacham,D.Mandler,Electrochemically induced Sol-Gel deposition of zirconia thin films,Adv.Mater.,11(1999)384-388.
    [139]M.Sheffer,A.Groysman,D.Mandler,Electrodeposition of sol- gel films on Al for corrosion protection,Corros.Sci.,45(2003)2893-2904.
    [140]M.K.Harun,S.B.Lyon,J.Marsh,A surface analytical study of functionalised mild steel for adhesion promotion of organic coatings,Prog.Org.Coat.,46(2003)21-27.
    [141]A.Guillet,Treatment of fillers with organofunctional silanes,technology and applications,Macromol.Symp.,194(2003)63-74.
    [142]D.A.Boyles,J.J.Kellar,W.M.Cross,Nover surface treatment for glass fillers,Macromol.Symp.,194(2003)135.
    [143]M.A.Khan,M.M.Hassan,Effect of γ-Aminopropyl Trimethoxy Silane on the Performance of Jute- Polycarbonate Composites,J.Appl.Polym.Sci.,100(2006)4142-4154.
    [144]E.Vassileva,K.Friedrich,Epoxy/Alumina Nanoparticle Composites.Ⅱ.Influence of Silane Coupling Agent Treatment on Mechanical Performance and Wear Resistance,J.Appl.Polym.Sci.,101(2006)4410-4417.
    [145]胡吉明,刘倞,张金涛,张鉴清,曹楚南,铝合金表面BTSE硅烷化研究,金属学报,40(2004)1189-1194.
    [146]F.Deflorian,S.Rossi,L.Fedrizzi,Silane pre-treatments on copper and aluminium,Electrochim.Acta,51(2006)6097-6103.
    [147]刘倞,胡吉明,张鉴清,曹楚南,金属表面硅烷化防护处理及其研究现状,中国腐蚀与防护学报,26(2006)59-64.
    [148]P.R.Underhill G.Goring,D.L.DuQuesnay,A study of the deposition of 3-glycidoxypropyltrimethoxysilane on aluminum,Int.J.Adhes.Adhes.,18(1998)307-311.
    [149]J.Song,W.J.van Ooij,Bonding and corrosion protection mechanisms of gamma-APS and BTSE silane films on aluminum substrates,Int.J.Adhes.Adhes.,17(2003)2191-2221.
    [150]A,Franquet,H.Terryn,J.Vereecken,Study of the effect of different aluminium surface pretreatments on the deposition of thin non-functional silane coatings,Surf.Interface Anal.,36(2004)681-684.
    [151]U.Bexell,M.Olsson.Characterization of a non-organofunctional silane film deposited on Al,Zn and Al-43.4Zn-1.6Si alloy-coated steel,Surf.Interface Anal.,31(2001)212-222.
    [152]U.Bexell,M.Olsson,Time-of-flight SIMS characterization of hydrolysed organofunctional and non-organofunctional silanes deposited on Al,Zn and Al-43.4Zn-1.6Si alloy-coated steel,Surf.Interface Anal.,35(2003)880-887.
    [153]H.Woo,P.Reueroft,R.J Jacob,J.Adhes.Sci.Technol.,7(1993)681-697.
    [154]A Seth,W.J.van Oiij,Novel,water-based high-performance primers that can replace metal pretreatments and chromate-containing primers,J.Mater.Eng.Performance,13(2004)468-474.
    [155]胡吉明,刘倞,张鉴清,曹楚南,LY12铝合金表面电化学沉积制备DTMS硅烷膜及其耐蚀性研究,高等学校化学学报,27(2006)1121-1125.
    [156]L.Liu,J,M.Hu,J.Q.Zhang,C.N.Cao,Improving the formation and protective properties of silane films by the combined use of electrodeposition and nanoparticles incorporation,Electrochim.Acta,52(2006)538-545.
    [157]M.F.Montemor,M.G.S.Ferreira,Corrosion performance of a two-step pre-treatment for galvanized steel based on lanthanum nitrate and silanes,Interface Anal.,36(2004)773-776.
    [158]A.M.Cabral,W.Trabelsi,R.Serra,M.F.Montemor,M.L.Zheludkevich,M.G.S.Ferreira,The corrosion resistance of hot dip galvanised steel and AA2024-T3 pre-treated with bis-[triethoxysilylpropyl]tetrasulfide solutions doped with Ce(NO_3)_3,Corros.Sci.,48(2006)3470-3488.
    [159]M.G.S.Ferreira,R.G.Duarte,M.F.Montemor,A.M.P.Simoes,Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel,Electrochim.Acta,49(2003)2927-2935.
    [160]W.J.Oiij,D.Zhu,M.Stacy,A.Seth,T.Mugada,J.Gandhi,P.Puomi,Corrosion protection properties of organofunctional silanes-An overview,Tsinghua Sci.Technol.,10(2005)639-664.
    [1]高云震,任继嘉,宁福元,铝合金表面处理,北京:冶金工业出版社,1991年8月,Chap.6.
    [2]胡吉明,刘倞,张金涛,张鉴清,曹楚南,铝合金表面BTSE硅烷化研究,金属学报,40(2004)1189-1194.
    [3]胡吉明,张鉴清,谢德明,曹楚南,环氧树脂涂覆LY12铝合金在NaCl溶液中的阻抗模型,物理化学学报,19(2003)144-149.
    [4]B.Boukamp,A package for impedance/admittance data analysis,Solid State Ionics,20(1986)31-44.
    [1]J.T.Zhang,J.M.Hu,J.Q.Zhang,C.N.Cao,Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCI solution,Prog.Org.Coat.,49(2004)293-301.
    [2]F.Bellucci,L.Nicodemo,T.Monetta,A study of corrosion initiation on polyimide coatingsCorros.Sci.,33(1992)1203-1226.
    [3]J.Jang,E.K.Kim,Corrosion protection of epoxy-coated steel using different silane coupling agents,J.Appl.Polym.Sci.,71(1999)585-593.
    [4]J.T.Zhang,J.M.Hu,J.Q.Zhang,C.N.Cao,Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS,Prog.Org.Coat.,51(2004) 145-151.[5]P.Li,T.C.Tan,J.Y.Lee,Corrosion Protection of Mild Steel by Electroactive Polyaniline Coatings,Synth.Met.,88(1997)237-242.
    [6]张树永,罗小雯,李善君等,电化学阻抗法研究降低环氧涂层的吸水性能,化学学报,57(1999)329-332.
    [7]D.Q.Zhu,W.J.van Ooij,Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodiumchloride solution.Part 2:mechanism for corrosion protection,Corros.Sci.,45(2003)2177-2197.
    [8]D.Q.Zhu,W.J.van Ooij,Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane,Prog.Org.Coat.,49(2004)42-53.
    [9]D.Susac,C.W.Leung,X.Sun and K.C.Wong,Comparison of a chromic acid and a BTSE final rinse applied to phosphated 2024-T3 aluminum alloy,Surf.Coat.Tech.,187(2004)216-224.
    [10]W.J.van Ooij,D.Q.Zhu,Electrochemical impedance spectroscopy of bis-[triethoxysilypropyl]tetrasulfide on AI 2024-T3substrates,Corrosion,57(2001)413-427.
    [11]J.Song,W.J.van Ooij,Bonding and corrosion protection mechanisms of gamma-APS and BTSE silane films on aluminum substrates,Int.J.Adhes.Adhes.,17(2003)2191-2221.
    [12]A.S.Castela,A.M.Simoes,An impedance model for the estimation of water absorption in organic coatings.Part Ⅰ:A linear dielectric mixture equation,Corros.Sci.,45(2003)1631-1646.
    [13]A.S.Castela.A.M.Simoes.Water sorption in freestanding PVC films by capacitance measurements,Prog.Org.Coat.,46(2003)130-134.
    [14]J.B.Bajat,M.D.Maksimovic.V.B.Misicovic-Stankovic,S.Zec,Electrodeposition and characterization of Zn-Ni alloys as sublayers for epoxy coating deposition,J.Appl.Electrochem.,31(2001)355-361.
    [15]V.N.Nguyen,F.X.Perrin.J.L.Vernet,Water permeability of organic/inorganic hybrid coatings prepared by sol - gel method:a comparison between gravimetric and capacitance measurements and evaluation of non-Fickian sorption models,Corros.Sci.,47(2005)397-412.
    [16]P.Musto,G.Ragosta,L.Mascia,Vibrational Spectroscopy Evidence for the Dual Nature of Water Sorbed into Epoxy Resins,Chem.Mater.,12(2000)1331-1341.
    [17]A.S.L.Castela,A.M.Simoes,M.G.S.Ferreira,E.I.S.evaluation of attached and free polymer films,Prog.Org.Coat.,38(2000)1-7.
    [18]A.Conde,A.Duran,J.J.de Damborenea,Polymeric sol-gel coatings as protective layers of aluminium alloys,Prog.Org.Coat.,46(2003)288-296.
    [19]M.Del Grosso Destreri,J.Vogelsang,L.Fedrizzi,Water up-take evaluation of new waterborne and high solid epoxy coatings.:Part Ⅰ:measurements by means of gravimetrical methods,Prog.Org.Coat.,37(1999)57-67.
    [20]G.P.Bierwagen,L.He,J.Li,L.Ellingson,D.E.Tallman,Consideration of a new accelerated evaluation method for coating corrosion resistance - thermal cycling testing,Prog.Org.Coat.,39(2000)67.
    [21]C.L.Pen,C.Lacabarme,N.Pebere,Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method:influence of fillers,Prog.Org.Coat.,39(2000)167-175.
    [22]L.Rey,N.Poisson,A.Maazouz,H.Sautereau,Enhancement of crack propagation resistance.in epoxy resins by introducing,poly(dimethylsiloxane)particles,J Mater.Sci.,34(1999)1775-1781.
    [23]罗小雯,陈月辉,电化学阻抗法研究环氧膜的吸水性能,高等学校化学学报,179(1996)329-331.
    [24]G.E.Kozerski,R.H.Gallavan,M.J.Ziemelis,Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling,Anal.Chim.Acta,489(2003)103-114.
    [25]S.Fellahi,N.Chikhi,M.Bakar,Modification of Epoxy Resin with Kaolin as a Toughening Agent,J.Appl.Polym.Sci.,82(2001)861-878.
    [26]M.I.Tejedor,L.Raredes,M.A.Anderson,Evaluation of ATR-FTIR spectroscopy as an "in situ" tool for following the hydrolysis and condensation of alkoxysilanes under rich H_2O conditions,Chem.Mater.,10(1998)3410-3421.
    [1]J.S.Quinton,P.C.Dastoor,Conformational dynamics of g-APS on the iron oxide surface:an adsorption kinetic study using XPS and ToF-SIMS,Surf.Interface Anal.,30(2000)21-24.
    [2]A.Franquet,J.De Laet,T.Schram,H.Terryn,V.Subramanian,W.J.van Ooij,J.Vereecken,Determination of the thickness of thin silane films on aluminium surfaces by means of spectroscopic ellipsometry,Thin Solid Films,384(2001)37-45.
    [3]V.Subramanian,W.J.van Ooij,Silane based metal pretreatments as alternatives to chromating,Surface Engineering,15(1999)168-172.
    [4]L.Thomsen,B.Watts,P.C.Dastoor,A NEXAFS orientation study of γ-aminopropyltriethoxysilane on zinc oxide surfaces,Surf.Interface Anal.,38(2006)1139-1145.
    [5]S.Fellahi,N.Chikhi,M.Bakar,Modification of Epoxy Resin with Kaolin as a Toughening Agent,J.Appl.Polym.Sci.,82(2001)861-878.
    [6]J.Li,C.S.Jeffcoate,G.P.Bierwagen,D.J.Mills,D.E.Tallman,Thermal transition effects and electrochemical properties in organic coatings:Part Ⅰ- Initial studies on corrosion protective organic coatings corrosion,54(1998)763-771.
    [7]M.Del Grosso Destreri,J.Vogelsang,L.Fedrizzi,Water up-take evaluation of new waterborne and high solid epoxy coatings.:Part Ⅰ:measurements by means of gravimetrical methods,Prog.Org.Coat.,37(1999)57-67.
    [8] C. L. Pen, C. Lacabanne, N. Pebere, Structure of waterborne coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of fillers, Prog. Org. Coat., 39(2000)167-175.
    
    [9] C. Corfias, N. Pebere, C. Lacabanne, Characterization of a thin protective coating on galvanized steel by electrochemical impedance spectroscopy and a thermostimulated current method, Corros. Sci., 41 (1999) 1539-1555.
    
    [10] C. Corfias, N. Pebere, C. Lacabanne, Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of the polymer binder, Corros. Sci., 42 (2000) 1337-1350.
    
    [11] S. Duval, Y. Camberlin, M. Glotin, M. Keddam, F. Ropital, H. Takenouti, Characterisation of organic coatings in sour media and influence of polymer structure on corrosion performance, Prog. Org. Coat., 39 (2000) 15-22.
    [12] C. Le Pen, C. Lacabanne, N. Pebere, Characterisation of water-based coatings by electrochemical impedance spectroscopy, Prog. Org. Coat., 46 (2003) 77-83.
    [13] Z.Z . Lazarevic' , V.B. Misˇkovic'-Stankovic',Z. Kacˇarevic'-Popovic', D.M. Drazˇic', Determination of the protective properties of electrodeposited organic epoxy coatings on aluminium and modified aluminium surfaces, Corros. Sci., 47 (2005) 823-834.
    [14] A.C. Bastos , C. Ostwald , L. Engl , G. Grundmeier, A.M. Simoes, Formability of organic coatings—an electrochemical approach, Electrochim. Acta, 49 (2004) 3947-3955.
    [15] V.B. MisIkovicA-StankovicA, M.R. StanicA, D.M. DrazIic, Corrosion protection of aluminium by a cataphoretic epoxy coating, Prog. Org. Coat., 36 (1999) 53-63.
    [16] S.M. Mirabedini, G.E. Thompson, S. Moradian, J.D. Scantlebury, Corrosion performance of powder coated aluminium using EIS, Prog. Org. Coat., 46 (2003) 112-120.
    [17] P.L. Bonora, F.Deflorian, L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochim. Acta, 41 (1996) 1073-1082.
    [18] F.Deflorian, L. Fedrizzi, P.L. Bonora, Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints, Corros. Sci., 38 (1996) 1697-1708.
    
    [19] W. Machu. L. Schiffman, F.D. Archiv, Principles and Prevention of Corrosion. Eisenhutenwesen. 37 (1966) 679.
    [1] P.L. Bonora, F.Deflorian, L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochim. Acta, 41 (1996) 1073-1082.
    [2] J. T. Zhang, J. M. Hu, J. Q. Zhang, C. N. Cao, Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS, Prog. Org. Coat., 51 (2004) 145-151.
    [3] J.M. Hu, J.T. Zhang, J.Q. Zhang, C.N. Cao, Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminum alloys, Corros. Sci., 47 (2005) 2607-2618.
    [4] M. Mahdavian A., M.M. Attar, Investigation on zinc phosphate effectiveness at different pigment volume concentrations via electrochemical impedance spectroscopy, Electrochim. Acta, 50 (2005)4645.
    [5] R.G. Duarte, A.C. Bastos, A.S. Castela, M.G.S. Ferreira, A comparative study between Cr(VI)-containing and Cr-free films for coil coating systems, Prog. Org. Coat., 52 (2005) 320-327.
    [6] 曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002年7月
    
    [7] J.M. Hu, J.Q. Zhang, C.N. Cao, I.M. Hsing, Kinetics investigation of H_2/CO electrooxidation in PEFCs by the combined use of equivalent circuit fitting and mathematical modeling of the faradaic impedance, Electrochim. Acta, 49 (2004) 5227-5234.
    [8] J. T. Zhang, J. M. Hu, J. Q. Zhang, C. N. Cao, Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution, Prog. Org. Coat., 49 (2004) 293-301.
    [9] A. Amirudin, D. Thierry, Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals, Prog. Org. Coat., 26 (1995) 1-28.
    [10]C. Corfias, N. Pebere, C. LAcabanne, Characterization of protective coatings by electrochemical impedance spectroscopy and a thermostimulated current method: influence of the polymer binder. Corros. Sci., 42 (2000) 1337-1350.
    [11] H. Ochsa, J. Vogelsang, Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions. Electrochim. Acta, 49 (2004) 2973-2980.
    [12] P. Carbonini. T. Monetta. L. Nicodemo, P. Mastronardi, B. Scatteia, F. Bellucci, Electrochemical characterisation of multilayer organic coatings, Prog. Org. Coat., 29 (1996) 13-20.
    [13] J.B. Bajat, V.B. Miskovi'c-Stankovi'c, Z. Kaˇcarevi'c-Popovi, Electrochemical and sorption characteristics and thermal stability of epoxy coatings electrodeposited on steel modified by Zn-Co alloy, Prog. Org. Coat., 45 (2003) 379-387.
    [14] Nie Tanga, Wim J. van Ooij, George Gorecki, Comparative EIS study of pretreatment performance in coated metals, Prog. Org. Coat., 30 (1997) 255-263.
    [15] M. Poelman, M.-G. Olivier, N. Gayarre b, J.-P. Petitjean, Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium, Prog. Org. Coat., 54 (2005) 55-62.
    [16] L. Fedrizzi, F. Deflorian, G. Boni, P.L. Bonora, E. Pasini, EIS study of environmentally friendly coil coating performances, Prog. Org. Coat., 29 (1996) 89-96.
    [17] J.J. Suay, M.T. Rodriguez, K.A. Razzaq, J.J. Carpio, J.J. Saura, The evaluation of anticorrosive automotive epoxy coatings by means of electrochemical impedance spectroscopy, Prog. Org. Coat., 46 (2003) 121-129.
    [18] Q. L. Thu, G.P. Bierwagen, S. Touzain, EIS and ENM measurements for three different organic coatings on aluminum, Prog. Org. Coat., 42 (2001) 179-187.
    [19] J. Flis, M. Kanoza, Electrochemical and surface analytical study of vinyl-triethoxy silane films on iron after exposure to air, Electrochim. Acta, 51 (2006) 2338-2345.
    [20] Z.Z . Lazarevic', V.B. Misˇkovic'-Stankovic',Z. Kacˇarevic'-Popovic', D.M. Drazˇic', Determination of the protective properties of electrodeposited organic epoxy coatings on aluminium and modified aluminium surfaces, Corros. Sci., 47 (2005) 823-834.
    [21] A.C. Bastos , C. Ostwald , L. Engl, G. Grundmeier , A.M. Simoes, Formability of organic coatings—an electrochemical approach, Electrochim. Acta, 49 (2004) 3947-3955
    [22] E. Potvin, L. Brossard, G. Larochelle, Corrosion protective performance of commercial low -VOC epoxy/urethane coatings on hot-rolled 1010 mild steel, Prog. Org. Coat., 31 (1997) 363-373.
    [23] L.F. Vesga, E. Vera, J.H. Panqueva, Use of the electrochemical impedance spectroscopy to evaluate the performance of a primer applied under different surface preparation methods. Prog. Org. Coat.. 39(2000)61-65.
    [24] F. Deflorian, L. Fedrizzi, S. Rossi, F. Buratti, P.L. Bonora, Electrochemical characterisation of organic coatings for the automotive industry, Prog. Org. Coat., 39 (2000) 9-13.
    [25] J.M. McIntyre, H.Q. Pham, Electrochemical impedance spectroscopy; a tool for organic coatings optimizations, Prog. Org. Coat., 27(1996) 201-207.
    [26] M. D. G. Destreri, JoErg Vogelsang, L. Fedrizzi, F. Deflorian, Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy, Prog. Org. Coat., 37 (1999) 69-81.
    [27] O.Ferraz, E.Cavalcanti, A.R. D. Sarli,The characterization of protective properties for some naval steel/polimeric coating/3% NaCl solution systems by EIS and visual assessment, Corros. Sci., 37(1995) 1267-1280.
    [28] P.R. Sere, A.R. Armas, C.I. Eisner, A. R. Di Saril, The surface condition effect on adhesion and corrosion resistance of carbon steel/chlorinated rubber/artificial sea water systems, Corros. Sci., 38(1996)853-866.
    [29] S.M. Mirabedini, G.E. Thompson, S. Moradian, J.D. Scantlebury, Corrosion performance of powder coated aluminium using EIS, Prog. Org. Coat., 46 (2003) 112-120.
    [30] F.Deflorian, L.Fedrizzi, P.L.Bonora, Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints, Corros. Sci., 38 (1996) 1697-1708.
    [31]P.R. Underhili, G. Goring, D. L. DuQuesnay,A study of the deposition of 3-glycidoxypropyltrimethoxysilane on aluminum, Int. J. Adhes. Adhes., 18 (1998) 307-311.
    [32] J. Song, W.J. van Ooij, Bonding and corrosion protection mechanisms of gamma-APS and BTSE silane films on aluminum substrates, Int. J. Adhes. Adhes., 17 (2003) 2191-2221.
    [33] T.L. Metroke, J. S. Gandhi, A. Apblett, Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy, Prog. Org. Coat., 50 (2004) 231-246.
    [1]刘倞,胡吉明,张鉴清,曹楚南,金属表面硅烷化防护处理及其研究现状,中国腐蚀与防护学报,26(2006)59-64.
    [2]P.R.Underhill,G.Goring,D.L.DuQuesnay,A study of the deposition of 3-glycidoxypropyltrimethoxysilane on aluminum,Int.J.Adhes.Adhes.,18(1998)307-311.
    [3]J.Song,W.J.van Ooij,Bonding and corrosion protection mechanisms of gamma-APS and BTSE silane films on aluminum substrates,Int.J.Adhes.Adhes.,17(2003)2191-2221.
    [4]A.Franquet,H.Terryn,J.Vereecken,Study of the effect of different aluminium surface pretreatments on the deposition of thin non-functional silane coatings,Surf.Interface Anal.,36(2004)681-684.
    [5]A.V.Cunliffe,S.Evans,D.A.Tod,S.A.Torry,P.Wylie,Optimum preparation of silanes for steel pre-treatment,Int.J.Adhes.Adhes.,21(2001)287-296.
    [6]扬亭阁,王车辉,有机硅透明树脂的研制及应用,辽宁化工,6(1997)345-346.
    [7]刘莹,有机硅透明树脂,应用科技,1(1997)17.
    [8]晨光院有机硅编写组,有机硅单体及聚合物,化学工业出版社.
    [9]G.E.Kozerski,R.H.Gallavan,M.J.Ziemelis,Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling,Anal.Chim.Acta,489(2003)103-114.
    [10]W.J.Oiij,D.Zhu,M.Stacy,A.Seth,T.Mugada,J.Gandhi,P.Puomi,Corrosion protection properties of organofunctional silanes-An overview,Tsinghua Sci.Technol.,10(2005)639-664.
    [11]O.Satoshi,F.Naokatsu,Theoretical Study of Hydrolysis and Condensation of Silicon Alkoxides,J.Phys.Chem.A,102(1998)3991-3998.
    [12]U.Bexell,M.Olsson,Time-of-flight SIMS characterization of hydrolysed organofunctional and non-organofunctional silanes deposited on Al,Zn and Al-43.4Zn-1.6Si alloy-coated steel,Surf.Interface Anal..35(2003)880-887.
    [13]A.Franquet.H.Terryn,J.Vereecken.Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-red spectroscopic ellipsometry,Thin Solid Films,441(2003)76-84.
    [14]G.Tesoro,Y.Wu.Silane coupling agents:The role of the organofunctional group,J.Adhesion Sci.Technol.,10(1991)771-784.
    [15]A.V.Cunliffe,S.Evans,D.A.Tod.Optimum preparation of silanes for steel pre-treatment,Adhesion& Adhesives,21(2001)287-296.
    [16]P.L.Bonora.F.Deflorian,L.Fedrizzi,Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion,Electrochim.Acta,41(1996)1073-1082.
    [17] J. T. Zhang, J. M. Hu, J. Q. Zhang, C. N. Cao, Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS, Prog. Org. Coat., 51 (2004) 145-151.
    [18] J.M. Hu, J.T. Zhang, J.Q. Zhang, C.N. Cao, Corrosion electrochemical characteristics of red iron oxide pigmented epoxy coatings on aluminum alloys, Corros. Sci., 47 (2005) 2607-2618.
    [19] Y.H. Wei , L.X. Zhang, W. Ke, Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion, Corros. Sci., 48 (2006) 1449-1461.
    [20] S. Feliu, Jr., M. Morcukki, The reproducibility of impedance parameters obtained for painted specimens, Prog. Org. Coat., 25 (1995) 365-377.
    
    [21] E. Potvin, L. Brossard, G. Larochelle, Corrosion protective performance of commercial low -VOC epoxy/urethane coatings on hot-rolled 1010 mild steel, Prog. Org. Coat., 31 (1997) 363-373.
    
    [22] L.B. Reynolds, R. Twite, M. Khobaib, M.S. Donley, G.P. Bierwagen, Preliminary evaluation of the anticorrosive properties of aircraft coatings by electrochemical methods, Prog. Org. Coat., 32(1997)31-34.
    [23] Q. L. Thu, G.P. Bierwagen, S. Touzain, EIS and ENM measurements for three different organic coatings on aluminum, Prog. Org. Coat., 42 (2001) 179-187.
    
    [24] L. De Rosa, T. Monetta, F. Bellucci, D.B. Mitton, A. Atienza, C. Sinagra, The effect of a conversion layer and organic coating on the electrochemical behavior of 8006 and 8079 aluminum alloys, Prog. Org. Coat., 44 (2002) 153-160.
    [25] G. Bierwagen. D. Tallman, J. Li, L. He, C. Jeffcoate, EIS studies of coated metals in accelerated exposure, Prog. Org. Coat., 46 (2003) 148-157.
    
    [26] N.N. Voevodin. V.N. Balbyshev, M. Khobaib, M.S. Donley, Nanostructured coatings approach for corrosion protection, Prog. Org. Coat., 47 (2003) 416-423.
    
    [27] M. Zubielewicz, W. Gnot, Mechanisms of non-toxic anticorrosive pigments in organic waterborne coatings, Prog. Org. Coat., 49 (2004) 358-371.
    
    [28] S. Touzain. Q. Le Thu, G. Bonnet, Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests, Prog. Org. Coat., 52 (2005)311.
    
    [29] 李清秀,薛命颖,张炜等. 含有硅氧链的胺类化合物的合成,复旦学报,38(1999)685-688.
    [1]M.Poelman,M.G.Olivier,N.Gayarre,J.P.Petitjean,Electrochemical study of different ageing tests for the evaluation of a cataphoretic epoxy primer on aluminium,Prog.Org.Coat.,54(2005)55-62.
    [2]T.L.Metroke,J.S.Gandhi,A.Apblett,Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy,Prog.Org.Coat.,50(2004)231-246.
    [3]C.G.Oliveira M.M.G.S.Ferreira,Ranking high-quality paint systems using EIS.Part Ⅰ:intact coatings,Corros.Sci.,45(2003)123-138.
    [4]Y.H.Wei,L.X.Zhang,W.Ke,Corros.Sci.,48(2006)1449.
    [5]V.Barranco,J.Carpentier,G.Grundmeier,Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate,Electrochim.Acta,49(2004)1999-2013.
    [6]H.Ochsa,J.Vogelsang,Effect of temperature cycles on impedance spectra of barrier coatings under immersion conditions,Electrochim.Acta,49(2004)2973-2980.
    [7]E.Potvin.L.Brossard,G.Larochelle,Corrosion protective performance of commercial low -VOC epoxy/urethane coatings on hot-rolled 1010 mild steel, Prog. Org. Coat., 31 (1997) 363-373.
    [8] J. M. Mcintyre, H.Q. Pham, Electrochemical impedance spectroscopy; a tool for organic coatings optimizations, Prog. Org. Coat., 27 (1996) 201-207.
    [9] F. Deflorian, L. Fedrizzi, S. Rossi, F. Buratti, P.L. Bonora, Electrochemical characterisation of organic coatings for the automotive industry, Prog. Org. Coat., 39 (2000) 9-13.
    [10] M. D. G. Destreria, Jo. Vogelsang, L. Fedrizzi, F. Deflorian, Water up-take evaluation of new waterborne and high solid epoxy coatings. Part II: electrochemical impedance spectroscopy, Prog. Org. Coat., 37 (1999) 69-81.
    [11] Z. Ranjbar, S. Moradian, M. R. M. Z. Attar, EIS investigation of cataphoretically electrodeposited epoxy coatings having different EEWs, Prog. Org. Coat., 51 (2004) 87-90.
    [12] A.S. Castela, A.M. Simoe An impedance model for the estimation of water absorption in organic coatings. Part II: A complex equation of mixtures, Corros. Sci., 45 (2003) 1647-1660.
    [13] F. Deflorian, L. Fedrizzi, S. Rossi, P.L. Bonora, Organic coating capacitance measurement by EIS: ideal and actual trends, Electrochim. Acta, 44 (1999) 4243-4249.
    
    [14] E.P.M. van Westing, G.M. Ferrari, J.H.W. de Wit, The determination of coating performance with impedance measurements—II. Water uptake of coatings, Corros. Sci., 36 (1991) 957-977.
    
    [15] A. Amirudin, D. Thierry, Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals, Prog. Org. Coat., 26 (1995) 1-28.
    [16] M.G. Olivier, M. Poelman, M. Demuynck, J.P. Petitjean, EIS evaluation of the filiform corrosion of aluminium coated by a cataphoretic paint, Prog. Org. Coat., 52 (2005) 263-270.
    
    [17] P.R. Sere, A.R. Armas, C.I. Eisner, A. R. Di Saril, The surface condition effect on adhesion and corrosion resistance of carbon steel/chlorinated rubber/artificial sea water systems, Corros. Sci., 38(1996)853-866.
    
    [18] P.L. Bonora, F.Deflorian, L. Fedrizzi, Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochim. Acta, 41 (1996) 1073-1082.
    [19 F.Deflorian, L.Fedrizzi, P.L.Bonora, Influence of the photo-oxidative degradation on the water barrier and corrosion protection properties of polyester paints, Corros. Sci., 38 (1996) 1697-1708.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700