用户名: 密码: 验证码:
TiB_2/Al复合材料的自润滑机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自润滑材料一般由润滑剂和承载相组成,当滑动摩擦时存在润滑剂失效、溅落等问题,在空间环境或高精密仪器仪表环境下适用范围有限,金属材料作为承载体,需要加入大量的固体润滑剂,往往使得力学性能与自润滑性不能同时兼顾,因此设计制备一种既有一定机械强度,又有自润滑性能的材料具有重要的工程意义和材料科学价值。
     赵敏博士等人发现了TiB_2/Al复合材料具有高强度和自润滑特性,但是对其自润滑机理研究还很不深入。本论文以GCr15轴承钢为对磨件对TiB_2/Al复合材料的自润滑行为及机理进行进一步的的研究。
     对增强体TiB_2颗粒进行预氧化处理,用压力浸渗法制备TiB_2/Al复合材料,采用扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)对微观组织进行了观察,采用CJS111A型和WTM-2E型销盘式摩擦磨损试验机对材料摩擦学性能进行了测试,并对摩擦学机理进行探讨。
     摩擦学研究具有系统依赖性和时间依赖性。在系统依赖性方面,TiB_2/Al-GCr15摩擦副的内部因素如复合材料界面结合、增强体体积分数和外部因素如载荷、滑动速度、GCr15的表面粗糙度、真空及氩气气氛试验等诸多条件,并且进行了系统分析和对比研究。在时间依赖性方面,综合各种条件下的磨合曲线,总结并推导出了TiB_2/Al复合材料的自润滑机理。
     研究发现,TiB_2颗粒预氧化是TiB_2/Al复合材料产生自润滑特性的必要条件。预氧化过后的TiB_2颗粒表面被一层20-30nm厚的由TiO2和B_2O_3组成的混合氧化物包裹。两种氧化物为TiB_2在预热温度下与空气中的O2反应所致。其中反应物B_2O_3及其与空气中的水蒸气反应生成的具有层状结构的固体润滑剂硼酸(H_3BO_3)对摩擦磨损性能有重要影响,这是TiB_2/Al复合材料具有自润滑性的内在因素。
     增强体体积分数与摩擦学行为研究表明,存在黏着磨损向自润滑状态转变的临界体积分数。体积分数低于24.3%,不具备自润滑性;两者之间为过渡区,自润滑现象的产生受到试验条件的影响;高于31.6%,则具备自润滑性。
     选取了0.49N、0.98N、1.96N、3.92N载荷研究载荷对材料摩擦磨损性能的影响,结果表明,当载荷≥0.98N时,不具备自润滑特性,载荷为0.49N时,材料在各种速度下出现了自润滑性。可以据此推论:摩擦时在材料表面的润滑膜很薄,承载能力较弱,高载下无法有效的起到降低摩擦的作用。
     选取0.2、0.5、0.8、1.0、1.5、2.0m/s时的摩擦系数研究了速度对摩擦学行为的影响。结果表明,1)随着速度的升高,摩擦系数从0.5降到0.2。磨损机制也从黏着磨损为主转化成以氧化磨损为主。2)材料自身具备自润滑剂,但是低速下仍然不具备自润滑特性,说明维持自润滑特性仅仅依靠预氧化产生的TiO2和B_2O_3远远不够,需要TiB_2在摩擦热作用下的持续氧化来源源不断的提供自润滑剂。3)自润滑条件下的复合材料磨损表面存在润滑膜,局域分布,且由氧化物混合组成,很薄。
     本文还研究了GCr15盘的表面粗糙度对摩擦磨损行为的影响。发现存在自润滑现象的最佳表面粗糙度,且该数值与TiB_2颗粒预氧化后氧化物层厚度有紧密联系。设TiB_2的表面氧化物厚度为h,对磨盘的表面粗糙度为Ra。则最佳表面粗糙度的大小与增强体表面预氧化产生的TiO2和B_2O_3层厚度大小相当,在20-30nm数量级,即Ra~0.02-0.03μm。1)Ra>>h,对应Ra0.606μm和Ra0.372μm。接触时氧化物层无法填满对磨盘微凸体间隙,造成高硬度的对磨盘微凸体对复合材料的磨粒磨损,产生大量犁沟。2)Ra~h,对应Ra0.023μm。接触时氧化物层刚好填满对磨盘微凸体间隙,阻止了对磨盘与基体合金的黏着,减小了摩擦。3)Ra<     摩擦系数曲线的实时变化,是摩擦副体系内各种减小摩擦、增大摩擦的因素互相影响的一种外在表现。对不同载荷、滑动速度、表面粗糙度情况下的摩擦系数曲线进行综合分析,得出预氧化TiB_2颗粒表面氧化物在磨合阶段起作用,平稳阶段主要是摩擦热的积累使得增强体TiB_2急剧氧化,进而提供源源不断的润滑剂,减小了摩擦。TiB_2/Al-GCr15组成的摩擦副体系,产生自润滑现象时,润滑剂产生的来源,一个是预氧化TiB_2引入,一个是摩擦热使增强体TiB_2持续氧化所致。
Self-lubricating material is generally used for the solid lubricant as lubricating phase,the metal material as the carrier body, usually a large amount of the solid lubricant is neededto satisfy the lubricating requirment. But the mechanical properties and self-lubrication cannot be satisfied at the same time, therefore one kind of material, which has good mechanicalstrength and self-lubrication is needed.
     Zhao min has found TiB_2/Al composites can meet the above requirements, but did notanalysis its self-lubricating mechanism in depth. The purpose of this thesis is to investigatethe self-lubricating mechanism of TiB_2/Al composite in detail.
     The reinforcement TiB_2particles are pre-oxidized, and the pre-oxidation temperature isoptimized, and then TiB_2/Al composites are fabricated by the pressure infiltration method.Microstructure is analyzed by using scanning electron microscopy (SEM), transmissionelectron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM).Tribological properties were tested using CJS111A and WTM-2E type pin-on-disc weartester, and tribological mechanism was discussed.
     For tribology, there are system dependence and time dependence. The tribologicalsystem is divided into internal and external factors for TiB_2/Al-GCr15system. The internalfactors, including the composite interface and volume fraction; external factors, includingload, sliding speed, surface roughness, vacuum and argon atmosphere. Both factors areinvestigated in detail. Finally, through the study of time-dependence of coefficient offriction, the self-lubricating mechanism of TiB_2/Al composite is deduced..
     Microstructure observation showed that TiB_2particles after pre-heating were coated byone layer (0.02-0.03μm) of mixed oxide composed of TiO2and B_2O_3. Furthermore, B_2O_3reacted with H2O from the air to generate H_3BO_3, which has good lubrication. This wasthe intrinsic self lubricating factor for TiB_2/Al composites.
     The investigation of volume fraction showed that there were critical values:non-adhesion wear volume fraction (24.3%) and self lubricating volume fraction (31.6%).And theoretical calculation showed that the critical volume fraction of non-adhesive wearand self-lubricating,24.3%and31.6%, respectively. Volume fraction of less than24.3%donot have self-lubricating properties; higher than31.6%, self-lubrication is expected;between the two values is the transition zone, self-lubricating phenomenon is affected bythe test conditions.
     0.49,0.98,1.96,3.92N were selected to investigate the effect of load on tribologicalproperties. Test results show that when load>0.49N, self-lubricating characteristics do notappear, load=0.49N, the material showed self-lubrication. It can be deduced: Duringsliding, the lubricating film of the surface is thin, it can not reduce friction effectively. The microstructure observed after pre-oxidation of the surface oxide layer showed a thickness of20-30μm, which can not withstand a greater load.
     0.2,0.5,0.8,1.0,1.5,2.0m/s were selected as the experimental conditions toinvestigate the effect of speed on tribological properties. The results show that1) As thespeed increases, the coefficient of friction is from0.5to0.2. Wear mechanism was fromadhesive wear to oxidation wear.2) material has lubricant by itself, introduced bypre-oxidation of reinforcement, but still do not have self-lubricating properties at thelow-speed, which means the maintaining of self-lubricating properties needs a large numberof lubricant, the supply of pre-oxidation of TiB_2oxidized is not enough.3) there wasself-lubricating film in the wear surface, local distributed.
     Effect of surface roughness of GCr15steel. There was one optimal surface roughnessfor self-lubrication, and the value was related to the thickness of oxide coated TiB_2. SetTiB_2surface oxide thickness as h, surface roughness was Ra. Then, the size of optimalsurface roughness is in the same magnitude of TiO2and B_2O_3layer thickness, equivalent to0.02-0.03μm, i.e. Ra~0.020-0.030μm.1) Ra>> h, corresponding to Ra0.606μm andRa0.372μm. Oxide layer can not fill the asperity, resulting in a large number of furrows.2)Ra~h, corresponding to Ra0.023μm. The oxide layer just fill asperities on the disc gap, toprevent the adhesion of the disc with the matrix alloy, reducing the friction.3) Ra <     The introduction of pre-oxidation of the oxide layer is embodied in the curve of thecoefficient of friction. Real-time changes in the Coefficient of friction curve, reducingor increasing was an external performance for different factors influencing friction.Coefficient of friction curves in different load, sliding speed, surface roughness wereanalyzed, results show that the pre-oxidation of TiB_2particles influence the coefficientof friction in the initial stage of the friction curve. In a stable stage, the frictional heataccumulation enhanced TiB_2oxidation, providing a steady source of lubricant to reducefriction. For TiB_2/Al-GCr15system, during self-lubricating period, there are twosources of lubricant: pre-oxidation of TiB_2and oxidation of the reinforcement TiB_2during sliding.
引文
[1]宁莉萍,王静波,欧阳锦林,张树伟,孟军虎.铜和石墨对铁基含油自润滑复合材料机械及摩擦学性能的影响[J].摩擦学学报,2001,05:335-339.
    [2]许德强,杨宏伟.石墨在热喷涂耐磨材料中的自润滑机理[J].金属热处理,2002(10):12-15.
    [3]卢铃,朱定一,汪才良.金属基/石墨固体自润滑材料的研究进展[J].材料导报,2007(02):38-42.
    [4] Y. X. Wu, F. X. Wang, Y. Q. Cheng, N. P. Chen. A study of the optimizationmechanism of solid lubricant concentration in NiMoS2self-lubricatingcomposite[J]. Wear,1997,205(1–2):64-70.
    [5] R. Gilmore, M. A. Baker, P. N. Gibson, W. Gissler. Preparation andcharacterisation of low-friction TiB2-based coatings by incorporation of C orMoS2[J]. Surface&Coatings Technology,1998,105(1-2):45-50.
    [6] N. Hiraoka. Wear life mechanism of journal bearings with bonded MoS2filmlubricants in air and vacuum[J]. Wear,2001,249(10-11):1014-1020.
    [7] L. Q. Kong, Q. L. Bi, M. Y. Niu, S. Y. Zhu, J. Yang, W. M. Liu. ZrO2(Y2O3)–MoS2–CaF2self-lubricating composite coupled with different ceramicsfrom20°C to1000°C[J]. Tribology International,2013,64(0):53-62.
    [8] L. Deters, F. Mueller, M. Berger. Self-lubricating dry rubbingbearings-fundamentals and methods of calculation, in Tribology Series,M.P.G.D. D. Dowson and A.A. Lubrecht[M]. Elsevier,2003:183-194.
    [9]刘勇,蒋斌,郝明凤,丁玉梅,杨卫民,屈兴荣.滑动轴承聚合物基自润滑材料的开发与应用进展.工程塑料应用[J],2010(01):80-84.
    [10]陈鹊.高密度聚乙烯自润滑光纤电缆护套管[P].发明专利, CN1409327.
    [11]西田卓彦.高温用高强度自润滑复合材料及其制造方法[P]. CN1149321.
    [12] J. Deng, T. Cao. Self-lubricating mechanisms via the in situ formed tribofilm ofsintered ceramics with CaF2additions when sliding against hardened steel[J].International Journal of Refractory Metals and Hard Materials,2007,25(2):189-197.
    [13] M. Zhao, G. H. Wu, L. T. Jiang, Z. Y. Dou. Friction and wear properties ofTiB2P/Al composite[J]. Composites Part A: Applied Science andManufacturing,2006,37(11):1916-1921.
    [14]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008:5
    [15]谢友柏.摩擦学科学及工程应用现状与发展战略研究摩擦学在工业节能、降耗、减排中地位与作用的调查[M].北京市:高等教育出版社,2009:19
    [16]杨威锋.固体自润滑材料及其研究趋势[J].润滑与密封,2007,196(12):118-120.
    [17]中国科学院金属研究所.摩擦学术语[S],GB/T17754-1999.
    [18]广州机床研究所七室.自润滑材料国内外概况[J].润滑与密封,1979(02):58-65.
    [19] B. Bhushan. Modern Tribology Handbook. Two Volume Set[M]. Taylor&Francis,2010:1451.
    [20]栾恩杰,汪亚卫.国防科技名词大典[M].北京市:航空工业出版社,2002:487.
    [21]李世林.粉末冶金法制备航空青铜含油自润滑轴承[J].宇航材料工艺,2011(03):74-77.
    [22]王显方,黄勇.含油自润滑罗拉轴承在细纱机上的应用[J].棉纺织技术,2009(06):361-363.
    [23]王显方,潘红玮,黄勇.含油自润滑轴承在纺纱机械上的应用探讨[J].纺织器材,2007(06):84-85.
    [24]王显方.铜基含油自润滑罗拉轴承使用效果分析[J].纺织器材,2011(06):26-29.
    [25]颜志光.润滑材料与润滑技术[M].北京市:中国石化出版社,2000:273.
    [26]王毓民,王恒.润滑材料与润滑技术[M].北京市:化学工业出版社,2004:273.
    [27]焦明华.自润滑轴承在机械设计中的应用性研究[J].合肥工业大学学报(自然科学版),1995(03):87-92.
    [28]陈鹊.硅酮树脂固体自润滑复合材料[P].发明专利, CN1392198
    [29]于建,郑涛.耐磨自润滑性聚对苯二甲酸丁二醇酯及其制备方法[P].发明专利, CN1417255.
    [30]袁国栋.固体自润滑材料及其制造方法[P].发明专利, CN85107628.
    [31]李雨葆,肖汉城,朱雪琴.复合自润滑耐磨带材的制造方法及其制品[P].发明专利, CN86105028.
    [32] http://www.msb-bearing.com/c-product-01-SF1-ph.htm
    [33]邓建新.自润滑刀具及其加工[M].北京市:科学出版社,2010:8
    [34]石淼森.固体润滑材料[M].北京市:化学工业出版社,2000:15
    [35] T. Langan, J. Pickens. The Effect of TiB2Reinforcement on the MechanicalProperties of an Al--Cu--Li Alloy-Based Metal-Matrix Composite[J]. Scriptametallurgica et materialia,1991,25(7):1587-1591.
    [36] A. Kuruvilla. Microstructure--Property Correlation in Al/TiB2(XD)Composites[J]. Scripta Metallurgica et Materialia,1990,24(5):873-878.
    [37] R. Mitra, M. E. Fine, J. R. Weertman. Interfaces in as-extruded XD Al/TiC andAl/TiB2metal matrix composites[J]. Journal of Materials Research,1993,8:2380-92.
    [38] C. A. Caracostas. Wear mechanisms during lubricated sliding of XD2024-AlTiB2metal matrix composites against steel[J]. Scripta Metallurgica etMateriala,1992,27(2):167-172.
    [39] M. John, L. C. Brupbacher, C. Dennis. Process for forming metal-ceramiccomposites[M], Martin Marietta Corporation,1987.
    [40] A. V. Smith, D. D. L. Chung. Titanium diboride particle-reinforced aluminiumwith high wear resistance[J]. Journal of Materials Science,1996,31(22):5961-5973.
    [41] E. Taheri-Nassaj, M. Kobashi, T. Choh. Fabrication and analysis of an in situTiB2/Al composite by reactive spontaneous infiltration[J]. Scripta Materialia,1996,34(8):1257-1265.
    [42]张跃,李英,韩雅芳,夏洋. A1/TiB2复合材料复合工艺研究[J].高技术通讯,1996,11:37-41.
    [43] C. Bartels. Investigation of the precipitation kinetics in an Al6061/TiB2metalmatrix composite[J]. Materials Science and Engineering a-Structural MaterialsProperties Microstructure and Processing,1997,237(1):12-23.
    [44] L. Lu, O. M. Lai, F. L. Chen. Al-4wt%Cu Composite reinforced with in-situTiB2particles[J]. Acta Materialia,1997,45(10):4297-4309.
    [45] E. TaheriNassaj, M. Kobashi, T. Choh. Fabrication and analysis of in situformed boride/Al composites by reactive spontaneous infiltration[J]. ScriptaMaterialia,1997,37(5):605-614.
    [46]凌兴珠,徐振民. Ti, B化合物制取颗粒增强TiB2/Al复合材料[J].中南工业大学学报,1997,06:57-60.
    [47] Y. Chen. Microstructures and properties of Al-5.5Cu/TiB2in-situ compositesprepared by spray deposition[J]. Zhongguo Youse Jinshu Xuebao/ChineseJournal of Nonferrous Metals,1998,8(4):579-584.
    [48] C. F. Feng, L. Froyen. On the reaction mechanism of an Al-TiO2-B system forproducing in-situ (Al2O3+TiB2)/Al composites[J]. Scripta Materialia,1998,39(1):109-118.
    [49] S. Lakshmi, L. Lu, M. Gupta. In situ preparation of TiB2reinforced Al basedcomposites [J]. Journal of Materials Processing Technology,1998,73(1-3):160-166.
    [50]凌兴珠,徐振民. TiB2颗粒增强铝合金复合材料研究[J].有色金属,1998,02:100-104.
    [51] K. L. Tee, L. Lu, M.O. Lai. In situ processing of Al-TiB2composite by thestir-casting technique[J]. Journal of Materials Processing Technology,1999,89-90:513-519.
    [52] K. L. Tee, L. Lu, M.O. Lai. Synthesis of in situ Al-TiB2composites using stircast route[C].10th International Conference on Composite Structures,Melbourne: Elsevier Ltd.2000:203
    [53] S. C. Tjong, K. C. Lau. Properties and abrasive wear of TiB2/Al-4%Cucomposites produced by hot isostatic pressing[J]. Composites Science andTechnology,1999,59(13):2005-2013.
    [54] S. C. Tjong, Z. Y. Ma, R. K. Y. Li. The dynamic mechanical response of Al2O3and TiB2particulate reinforced aluminum matrix composites produced byin-situ reaction[J]. Materials Letters,1999,38(1):39-44.
    [55] S. Zhang. Interface structure of Al-5.5Cu/TiB2in-situ composites fabricated byspray deposition[J]. Zhongguo Youse Jinshu Xuebao/Chinese Journal ofNonferrous Metals,1999,9:131-135.
    [56] Z. Y. Chen. Solidification and interfacial structure of in situ Al-4.5Cu/TiB2composite[J]. Journal of Materials Science,2000,35(22):5605-5608.
    [57] Y. He. Microstructure and properties of TiB2/Al-7%Si-0.5%Mg compositefabricated by in-situ reaction[J]. Zhuzao/Foundry,2000,49(7):396-397.
    [58] K. L. Tee, L. Lu, M.O. Lai. Wear performance of in-situ Al-TiB2composite[J].Wear,2000,240(1-2):59-64.
    [59] L. Lü, M. O. Lai, Y. Su, H. L. Teo, C. F. Feng. In situ TiB2reinforced Al alloycomposites[J]. Scripta materialia,2001,45(9):1017-1023.
    [60] Y. F. Han, X. F. Liu, X. F. Bian. In situ TiB2particulate reinforced near eutecticAl–Si alloy composites[J]. Composites Part A: Applied Science andManufacturing,2002,33(3):439-444.
    [61]董仕节.(TiB2+Al2O3)增强铜基复合材料的研究[J].材料工程,2002(07):6-11.
    [62] R. Taghiabadi, M. Mahmoudi, M. Emamy Ghomy, J. Campbell. Effect ofcasting techniques on tensile properties of cast aluminium alloy Al/TiB2containing metal matrix composite[J]. Materials Science and Technology,2003,19(4):497-502.
    [63] S. C. Tjong, G. S. Wang, Y. W. Mai. Low-cycle fatigue behavior of Al-basedcomposites containing in situ TiB2, Al2O3and Al3Ti reinforcements[J].Materials Science and Engineering a-Structural Materials PropertiesMicrostructure and Processing,2003,358(1-2):99-106.
    [64] M. Acilar, F. Gul. Effect of the applied load, sliding distance and oxidation onthe dry sliding wear behaviour of Al-10Si/SiCp composites produced byvacuum infiltration technique[J]. Materials&Design,2004,25(3):209-217.
    [65] F. Gul, M. Acilar. Effect of the reinforcement volume fraction on the drysliding wear behaviour of Al-10Si/SiCp composites produced by vacuuminfiltration technique[J]. Composites Science and Technology,2004,64(13-14):1959-1970.
    [66] O. K. Lepakova, L. G. Raskolenko, Y. M. Maksimov. Self-propagatinghigh-temperature synthesis of composite material TiB2-Fe[J]. Journal ofMaterials Science,2004,39(11):3723-3732.
    [67] A. Mandal, R. Maiti, M. Chakraborty, B. S. Murty. Effect of TiB2particles onaging response of Al-4Cu alloy[J]. Materials Science and Engineering A,2004,386(1-2):296-300.
    [68] Z. Y. Ma, S. C. Tjong. High temperature creep behavior of in-situ TiB2particulate reinforced copper-based composite[J]. Materials Science andEngineering: A,2000,284(1-2):70-76.
    [69] S. Tjong, G. Wang. High-cycle fatigue properties of Al-based compositesreinforced with in situ TiB2and Al2O3particulates[J]. Materials Science andEngineering: A,2004,386(1):48-53.
    [70] M. Zhao, G. H. Wu, Z. Y. Dou, L. T. Jiang. TiB2P/Al composite fabricated bysqueeze casting technology[J]. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing,2004,374(1-2):303-306.
    [71]王宝龙,赵俊国,王文武. TiB2材料的特性及其在铝工业中的应用[J].轻金属,2004,05:23-26.
    [72] T. Fan, G. Yang, D. Zhang. Thermodynamic effect of alloying addition onin-situ reinforced TiB2/Al composites[J]. Metallurgical and MaterialsTransactions A,2005,36(1):225-233.
    [73] C. S. Ramesh, A. R. Khan, A. Ravikumar, N. P. Savanprabhu. Prediction ofwear coefficient of Al6061-TiO2composites[J]. Wear,2005,259(1-6):602-608.
    [74]益小苏,杜善义,张立同.材料科学与工程大典[M].北京市:化学工业出版社,2005:350.
    [75] D. C. Li, B. Yu, Y. J. Zhang, Z. X. Qiu, Microstructure of TiB2/Al compositefabricated by LSM[J]. Dongbei Daxue Xuebao/Journal of NortheasternUniversity,2003,24(6):569-571.
    [76] S. C. Tjong, K. C. Lau. Properties and abrasive wear of TiB2/Al-4%Cucomposites produced by hot isostatic pressing[J]. Composites Science andTechnology,1999,59(13):2005-2013.
    [77] J. Chen, T. Fan, D. Zhang. Ternary diffusion coefficients—Theoreticaltreatment and application to the In-situ-reinforced TiB2/Al composite[J].Metallurgical and Materials Transactions A,2006,37(7):2275-2281.
    [78] G. M Cui, J. M. Zeng, H. Q Tang, H. L. Li, Y. L. Yang. Preparation ofTiB2p/Al-10Sn Composite and Study of Friction-Wear Properties[J]. FoundryTechnology,2006,27(4):337.
    [79] H. Z. Yi, N. H. Ma, Y. J. Zhang, X. F. Li, H. W. Wang. Effective elastic moduliof Al–Si composites reinforced in situ with TiB2particles[J]. Scriptamaterialia,2006,54(6):1093-1097.
    [80] M. Zhao, L. T. Jiang, G. H. Wu. Property characteristics of a TiB2P/Alcomposite fabricated by squeeze casting technology[J]. Journal of MaterialsScience&Technology,2006,22(1):83-86.
    [81] N. Ehsani, F. Abdi, H, Abdizadeh, H. R. Baharvandi. The effect of TiB2powderon microstructure and mechanical behavior of Al-TiB2metal matrixcomposites[C]. International Conference on Smart Materials andNanotechnology in Engineering. International Society for Optics and Photonics.2007:560-564
    [82] H. Z. Gu, Z. X. Yong, B. Zheng, J. M Zeng. Investigation on Purification andDegassing of TiB2/Al Composite Fabricated by LSM Method[J]. KeyEngineering Materials,2007,353:3051-3054.
    [83] A. Mandal, M. Chakraborty, B. S. Murty. Effect of TiB2particles on slidingwear behaviour of Al-4Cu alloy[J]. Wear,2007,262(1-2):160-166.
    [84] K. S. Moghaddam, H. Abdizadeh, HR. Baharvandi, N. Ehsani, F. Abdi.Hardness and tensile strength of zircon particles and TiB2reinforced Al-A356.1alloy matrix composites: comparative study[C]. Society of Photo-OpticalInstrumentation Engineers (SPIE) Conference Series.2007:45-49
    [85] Y. Zhang, N. Ma, H. Wang. Effect of particulate/Al interface on the dampingbehavior of in situ TiB2reinforced aluminium composite[J]. Materials Letters,2007,61(14):3273-3275.
    [86] M. Zhao, L.T. Jiang, G.H. Wu Ambient mechanical properties of TiB2P/Alcomposites by squeeze casting[J]. Acta Materiae Compositae Sinica,2007,5:002.
    [87] D. Z. Zhu, G. H. Wu, G. Q. Chen, Q. Zhang. Mechanical Properties of HighReinforcement Content TiB2P/Al Composites under Quasi-Static and DynamicLoading[J]. Key Engineering Materials,2007,353:1459-1462.
    [88]赵敏,姜龙涛,武高辉.挤压铸造TiB2P/Al复合材料室温力学性能[J].复合材料学报,2007,05:1-5.
    [89] S. Kumar, M. Chakraborty, V. S. Sarma, B. S. Murty. Tensile and wearbehaviour of in situ Al-7Si/TiB2particulate composites[J]. Wear,2008,265(1-2):134-142.
    [90] K. R. Ravi, M. Saravanan, R. M. Pillai, A. Mandal, B. S. Murty, M.Chakraborty, B. C. Pai. Equal channel angular pressing of Al–5wt%TiB2insitu composite[J]. Journal of Alloys and Compounds,2008,459(1):239-243.
    [91] K. Sivaprasad, S. P. K. Babu, S. Natarajan, R. Narayanasamy, B. A. Kumar, G.Dinesh. Study on abrasive and erosive wear behaviour of Al6063/TiB2in situcomposites[J]. Materials Science and Engineering a-Structural MaterialsProperties Microstructure and Processing,2008,498(1-2):495-500.
    [92] H. H. Sun, H. W. Wang, D. Chen, N. H. Ma, X. F. Li. Conversion‐coatingtreatment applied to in situ TiB2p reinforced A l Si‐alloy composite forcorrosion protection[J]. Surface and Interface Analysis,2008,40(10):1388-1392.
    [93] D. Z. Zhu, G. H. Wu, G. Q. Chen, Q. Zhang. Dynamic deformation behavior ofa high reinforcement content TiB2/Al composite at high strain rates[J].Materials Science and Engineering: A,2008,487(1):536-540.
    [94] S. Kumar, V. Subramanya, B. Murty. Effect of temperature on the wearbehavior of Al-7Si-TiB2in-situ composites[J]. Metallurgical and MaterialsTransactions A,2009,40(1):223-231.
    [95] A. Mandal, B. S. Murty, M. Chakraborty. Wear behaviour of near eutectic Al-Sialloy reinforced with in-situ TiB2particles[J]. Materials Science andEngineering a-Structural Materials Properties Microstructure and Processing,2009,506(1-2):27-33.
    [96] S. Natarajan, R. Narayanasamy, S. P. K. Babu, G. Dinesh, B. A. Kumar, K.Sivaprasad. Sliding wear behaviour of Al6063/TiB2in situ composites atelevated temperatures[J]. Materials&Design,2009,30(7):2521-2531.
    [97] H. H. Sun, H. W. Wang, D. Chen, N. H. Ma, X. F. Li. Electrochemicalcorrosion behavior of Al–Si alloy composites reinforced with in situ TiB2particulate[J]. Materials and corrosion,2009,60(6):419-423.
    [98] S. L. Guo, D. F. Li, D. W. Chen, W. Hao. Characterization of deformationstability of in-situ TiB2/6351composites during hot compression based onMurty criterion[J]. Transactions of Nonferrous Metals Society of China,2010,20(2):267-275.
    [99] S. Kumar, V. S. Sarma, B. S. Murty. High temperature wear behavior ofAl–4Cu–TiB2in situ composites[J]. Wear,2010,268(11–12):1266-1274.
    [100] C. S. Ramesh, A. Ahamed, B. H.Channabasappa, R. Keshavamurthy,Development of Al6063–TiB2in situ composites[J]. Materials&Design,2010,31(4):2230-2236.
    [101] J. P. Yao, S. Z. Zhong, Z. Lei, P. Huo Mechanical Properties of Al-SiAlloy-Based Composites Reinforced by In Situ TiB2Particulates[J]. AdvancedMaterials Research,2010,105:126-129.
    [102]李恒德.工程材料学[M].济南市:山东科学技术出版社.2001:300-305..
    [103] R. Anandkumar, A. Almeida, R. Vilar. Wear behavior of Al–12Si/TiB2coatingsproduced by laser cladding[J]. Surface and Coatings Technology,2011,205(13–14):3824-3832.
    [104] C. Mallikarjuna, S. M. Shashidhara, U. S. Mallik, K. I. Parashivamurthy. Grainrefinement and wear properties evaluation of aluminum alloy2014matrix-TiB2in-situ composites[J]. Materials&Design,2011,32(6):3554-3559.
    [105] C. S. Ramesh, A. Ahamed. Friction and wear behaviour of cast Al6063basedin situ metal matrix composites[J]. Wear,2011,271(9–10):1928-1939.
    [106] C. S. Ramesh, S. Pramod, R. Keshavamurthy. A study on microstructure andmechanical properties of Al6061–TiB2in-situ composites[J]. MaterialsScience and Engineering: A,2011,528(12):4125-4132.
    [107] Z. Sadeghian, B. Lotfi, M. H. Enayati, P. Beiss. Microstructural andmechanical evaluation of Al–TiB2nanostructured composite fabricated bymechanical alloying[J]. Journal of Alloys and Compounds,2011,509(29):7758-7763.
    [108] S. F. Tian, L. T. Jiang, G. H. Wu. Effects of vacuum degree on tribologicalbehavior of TiB2/Al composites[J]. Transactions of Nonferrous Metals Societyof China,2011,21, S2(0):295-299.
    [109] J. Xue, J. Wang, Y. F. Han, P. Li, B. D. Sun. Effects of CeO2additive on themicrostructure and mechanical properties of in situ TiB2/Al composite[J].Journal of Alloys and Compounds,2011,509(5):1573-1578.
    [110] Q. Guo, L. T. Jiang, G. Q. Chen, D. Feng, D. L. Sun, G. H. Wu. SEM and TEMcharacterization of the microstructure of post-compressed TiB2/2024Alcomposite[J]. Micron,2012,43(2–3):380-386.
    [111] Q. Guo, L. T. Jiang, G. Q. Chen, D. Feng, D. L. Sun, G. H. Wu. Residualmicrostructure associated with impact craters in TiB2/2024Al composite[J].Micron,2012,43(2–3),344-348.
    [112] W. M. Huang, M. L Wang, H. W. Wang, N. H. Ma, X. F. Li. Theelectrodeposition of aluminum on TiB2/A356composite from ionic liquid asprotective coating[J]. Surface and Coatings Technology,2012,213(0):264-270.
    [113] W. M. Huang, M. L Wang, H. W. Wang, N. H. Ma, X. F. Li. Improvement inthe corrosion resistance of TiB2/A356composite by molten-saltelectrodeposition and anodization[J]. Surface and Coatings Technology,2012,206(23):4988-4991.
    [114] P. T. Li, Y. G. Li, Y. Y. Ma, G. L. Wu, X. F. Liu. Distribution of TiB2particlesand its effect on the mechanical properties of A390alloy[J]. Materials Scienceand Engineering: A,2012,546(0):146-152.
    [115] P. T. Li, Y. G. Li, J. F. Nie, X. F. Liu. Influence of forming process onthree-dimensional morphology of TiB2particles in Al-Ti-B alloys[J].Transactions of Nonferrous Metals Society of China,2012,22(3):564-570.
    [116] Z. W. Liu, Q. Y. Han, J. G. Huang. Effect of ultrasonic vibration onmicrostructural evolution of the reinforcements and degassing of in situTiB2p/Al–12Si–4Cu composites[J]. Journal of Materials ProcessingTechnology,2012,212(2):365-371.
    [117] A. Mazahery, M. O. Shabani. Tribological behaviour of semisolid–semisolidcompocast Al–Si matrix composites reinforced with TiB2coated B4Cparticulates[J]. Ceramics International,2012,38(3):1887-1895.
    [118] S. Suresh, N. Shenbag, V. Moorthi. Aluminium-Titanium Diboride (Al-TiB2)Metal Matrix Composites: Challenges and Opportunities[J]. ProcediaEngineering,2012,38(0):89-97.
    [119] J. Xue, J. Wang, Y. F. Han, P. Li, B. D. Sun. Behavior of CeO2additive inin-situ TiB2particles reinforced2014Al alloy composite[J]. Transactions ofNonferrous Metals Society of China,2012,22(5):1012-1017.
    [120] L. Zhang, G. S. Gan, B. Yang. Microstructure and property measurements on insitu TiB2/70Si–Al composite for electronic packaging applications[J]. Materials&Design,2012,36(0):177-181.
    [121] K. Niranjan, P. R. Lakshminarayanan. Dry sliding wear behaviour of in situAl–TiB2composites[J]. Materials&Design,2013,47(0):167-173.
    [122] A. Wang, H. J. Rack. Dry sliding wear in2124Al-SiCw/17-4PH stainless steelsystems[J]. Wear,1991,147(2):355-374.
    [123] J. Duszczyk, D. Bialo. Friction and Wear of P/M Al-20si-Al2O3Composites inKerosene[J]. Journal of Materials Science,1993,28(1):193-202.
    [124] K. M. Shorowordi, A. S. M. A. Haseeb, J. P. Celis. Tribo-surface characteristicsof Al-B4C and Al-SiC composites worn under different contact pressures[J].Wear,2006,261(5-6):634-641.
    [125]张永振.材料的干摩擦学[M].北京市:科学出版社,2007:147-151.
    [126]徐锦芬.摩擦磨损与润滑原理[M].2002:中科院内部讲义.
    [127]孙家枢.金属的磨损[M].北京市:冶金工业出版社.1992:100-105.
    [128] J. K. M. Kwok, S. C. Lim. High-speed tribological properties of some Al/SiCpcomposites: I. Frictional and wear-rate characteristics[J]. Composites Scienceand Technology,1999,59(1):55-63.
    [129] J. K. M. Kwok, S. C. Lim. High-speed tribological properties of some Al/SiCpcomposites: II. Wear mechanisms[J]. Composites Science and Technology,1999,59(1):65-75.
    [130] R. Bayer. The influence of surface roughness on wear[J]. Wear,1975,35:251-60.
    [131] W. H. Chieh, U. Noritsugu, K. Koji. The effect of surface roughness on frictionof ceramics sliding in water[J]. Wear,1998,218:237–43.
    [132] M. Sahin, C. S. Cetinarslan, H. E. Akata. Effect of surface roughness onfriction coefficients during upsetting processes for different materials[J].Materials&Design,2007,28(2):633-640.
    [133] M. Moriyama. Mechanical and electrical properties of strong TiB2-B4Cceramic system by hot-pressing[J]. Journal of the Ceramic Society of Japan,2001,109(6):550-556.
    [134] G. Sade, J. Pelleg, A. Grisaru. Structural and electrical characterization ofTiB2/TiSi2bilayer barrier structure[J]. Thin Films-Structure and Morphology,1997,441:277-282.
    [135] G. B. Raju, B. Basu, A. K. Suri. Thermal and electrical properties ofTiB2-MoSi2[J]. International Journal of Refractory Metals&Hard Materials,2010,28(2):174-179.
    [136]向新,秦岩. TiB2及其复合材料的研究进展[J].陶瓷学报,1999,02:112-117.
    [137] R. G. Munro. Material properties of titanium diboride[J]. Journal of Researchof the National Institute of Standards and Technology,2000,105(5):709-720.
    [138]刘利,傅正义.硼化钛系复合材料研究进展[J].粉末冶金技术,2000,03:217-220.
    [139] S. Lakshmi, L. Lu, M. Gupta. In situ preparation of TiB2reinforced Al basedcomposites[J]. Journal of materials processing technology,1998,73(1):160-166.
    [140] B. Yang, Y. Q. Wang, B. L. Zhou. The mechanism of formation of TiB2particulates prepared by In Situ reaction in molten aluminum[J]. Metallurgicaland Materials Transactions B,1998,29(3):635-640.
    [141] K. Tee, L. Lu, M. Lai. Mechanical properties of Al-TiB2composite by thestir-casting technique[J]. Mater Sci Techn,2001,17(2):201.
    [142] Z. Ma, S. Tjong. In situ ceramic particle-reinforced aluminum matrixcomposites fabricated by reaction pressing in the TiO2(Ti)-Al-B (B2O3)systems[J]. Metallurgical and Materials Transactions A,1997,28(9):1931-1942.
    [143] I. Gotman, M. Koczak, E. Shtessel. Fabrication of Al matrix in situ compositesvia self-propagating synthesis[J]. Materials Science and Engineering: A,1994,187(2):189-199.
    [144] A. Jha, C. Dometakis. The dispersion mechanism of TiB2ceramic phase inmolten aluminium and its alloys[J]. Materials&design,1997,18(4):297-301.
    [145] M. D. Salvador, V. Amigo, N. Martinez, C. Ferrer. Development of Al–Si–Mgalloys reinforced with diboride particles[J]. Journal of materials processingtechnology,2003,143:598-604.
    [146] N. Eustathopoulos, M. G. Nicholas, B. Drevet. Wettability at hightemperatures[M]. Pergamon,1999,3:102-106.
    [147] S. Rhee. Wetting of ceramics by liquid aluminum[J]. Journal of the AmericanCeramic Society,1970,53(7):386-389.
    [148] T. Sumitomo, T. Aizawa, S. Yamamoto. In-situ formation of self-lubricatingtribo-films for dry machinability[J]. Surface and Coatings Technology,2005,200(5–6):1797-1803.
    [149] A. Erdemir. Tribology of naturally occurring boric acid films on boroncarbide[J]. Surface and Coatings Technology,1996,86-87:507-510.
    [150] A. Erdemir, C. Bindal, G. Fenske. Lubricated boride surfaces[P], GooglePatents.1998:1-10
    [151] A. P. Sannino, H. J. Rack. Dry sliding wear of discontinuously reinforcedaluminum composites: review and discussion[J]. Wear,1995,189(1-2):1-19.
    [152]马爱琼,王臻.硼化钛及其单相陶瓷的制备[J].陶瓷,2005,05:10-14.
    [153]赵敏. TiB2P/Al复合材料的组织性能与自润滑机理研究[D].2005,哈尔滨工业大学.
    [154] A. Ruff, P. Blau. ASM handbook[M], volume18: friction, lubrication and weartechnologyASM International. OH,1990:363.
    [155] M. N. Gardos. Magnéli phases of anion-deficient rutile as lubricious oxides.Part I. Tribological behavior of single-crystal and polycrystalline rutile(TinO2n-1)[J]. Tribology Letters,2000,8(2-3):65-78.
    [156] M. N. Gardos. Magnéli phases of anion-deficient rutile as lubricious oxides.Part II. Tribological behavior of Cu-doped polycrystalline rutile (TinO2n-1)[J].Tribology Letters,2000,8(2-3):79-96.
    [157] M. Woydt. Tribological characteristics of polycrystalline Magneli-type titaniumdioxides[J]. Tribology Letters,2000,8(2-3):117-130.
    [158]田晓宁,赵秦军.单斜相态TiO2(B)的制备和应用研究进展[J].应用化工,2009,38(4):588-591.
    [159]艾兴,邓建新. TiB2的含量对Al2O3/TiB2陶瓷材料的高温氧化行为的影响[J].材料科学与工艺,1996,02:56-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700