用户名: 密码: 验证码:
聚苯胺/半导体金属氧化物基光敏材料的制备及其光电器件的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米材料具有独特的光电特性,在各种光电功能器件方面(如光探测器,光开关,太阳能电池等)有着广泛的应用前景。探索并开发新的光敏性半导体材料,设计并制造新的光电子器件成为当前的研究热点之一。本论文中,以导电聚苯胺和金属氧化物半导体纳米材料为研究对象,利用固相法,水热法,界面法,静电纺丝法等,制备出优化的半导体材料或其复合结构,研究并讨论了其光敏性。并且利用N型金属氧化物和P型聚苯胺之间形成的P-N结特性,设计了N-P-N结构的光探测器。主要工作如下:
     1.通过一步固相反应,将高锰酸钾用苯胺单体进行还原,我们得到了二氧化锰/聚苯胺复合材料,并且第一次报道了二氧化锰纳米复合材料的光敏性,这为我们提供了一个制备紫外光敏材料的新方法。紫外光敏性的产生归因于聚苯胺的相关能级与二氧化锰的价带和导带相匹配,在电子传递过程中,聚苯胺起到了一个桥梁的作用,可以帮助二氧化锰传递电子,这样使更多的电子可以从二氧化锰的价带转移到导带。
     2.通过简单的固相反应,我们将氧化铋和氧化钒利用聚苯胺进行表面功能化,从而第一次实现了氧化铋和氧化钒的紫外和可见光响应。这表明,通过将金属氧化物表面功能化上具有很强光吸收能力,并且能级与金属氧化物相匹配的聚合物以后,金属氧化物的紫外或可见光电流响应可以被诱导,使其从无到有。
     3.我们设计了一个相对独立的紫外光探测器,该三明治结构的光探测器由一层P型聚苯胺纳米纤维(PANI)、两层N型氧化锌纳米棒(ZnO)所组成,与其他光探测器不同的是,它不需要任何额外的偏压只需要紫外光即可工作。光电流的产生受到两个相反的P-N异质结所控制,在零伏的偏压下,我们可以获得高的光电流(1.4×10~(-5)A)和高的光敏度(>10~5),定义为(I光照-I黑暗)/I光照。
     4.我们报道了一个新型的三明治结构的光探测器,该光探测器由一层氧化锌纳米棒,一层聚苯胺纳米网,一层染料修饰的氧化锌纳米棒组成。在没有任何额外偏压的作用下,该光探测器仅仅依靠由P-N结所形成的内电场就可以工作。并且当从同一个方向分别照射紫外和可见光时,该光探测器可以产生相反的光电流响应。
     5.利用TiO_2和聚苯胺的能级匹配,通过简单的方法,我们制造了TiO_2/聚苯胺核壳结构纳米纤维。当纤维在没有氧气存在的条件下被紫外光照射时,光电导增加,这与之前报道过的UV光敏材料的光敏现象类似。然而,当核壳结构纳米纤维在充满氧气的环境下测试时,我们看到了不同于其他光敏材料的现象。在其他报道中,在UV光照下产生电子空穴对,最终会增加光敏材料的光电导。而在我们的实验中,纤维的光电导会随着紫外灯的开启而减小,这是由于TiO_2吸附越多的氧气,TiO_2核和聚苯胺壳之间的P-N结的耗尽区就越厚造成的。
Semiconductor nanomaterial has wide application prospects in various photoelectronicfunctional devices such as photodetectors, photoswitches and solar cells owing to itsdistinctive and outstanding photoelectric characteristics. To explore and develop newphotosensitive semiconductor materials, to design and fabricate new photoelectric deviceshave attracted a great deal of research interest. This dissertation focused on conductingpolyaniline and metal oxide semiconductor nanomaterials. The optimal semiconductornanomaterials and their composites were prepared by solid-state reaction, hydrothermalmethod, interfacial polymerization, electrospinning technique, and the photosensitive propertyof them was investigated and discussed. Using the P-N junction between N-type metal oxideand P-type polyaniline, the N-P-N structural photodetectors were designed and the mainachievements were summarized as follows:
     1. We present a facile synthesis of manganese oxide (MnO_2) nanocomposite with ultraviolet(UV) photosensitive characteristic by a solid-state reaction based on the reduction ofpotassium permanganate (KMnO4) by aniline, which provides a new family and moreselectivity for UV photosensitive nanomaterials in the future. The UV photosensitivemechanism are attributed that the energy level of polyaniline lie in the band gap of the MnO_2and serve as a bridge to transport the photogenerated electrons in MnO_2, then more electronscan be transport from vanlence band to conductor band in MnO_2.
     2. We have developed a method, surface-functionalization with well-matched energy level,to induce ultraviolet (UV) or visible (Vis) photoresponse of semiconductor material film fromnot only weak to strong but also nothing to something. By this way, UV and Visphotoresponses of two metal oxides, Bi_2O_3and V_2O_5, have been realized for the first time byfunctionalizing them with polyaniline (PANI).
     3. We demonstrate a relatively independent UV photodetector which is composed of onelayer of p-type PANI nanowires and two layers of n-type ZnO nanorods. Different to otherUV photoelectronic nanodevices, it doesn’t need any external power source except UV lightwhen it works. High photocurrent (~1.4×10~(-5)A) and photosensitivity (>10~5), defined as(Iphoto-Idark)/Idark, at zero bias have been obtained, which can be attributed to the design of thetwo opposite p–n heterojunctions in the UV photodetectors.
     4. We have designed and fabricated a novel photodetector that is composed ofsandwich-structured n-type zinc oxide nanorods arrays, p-type polyaniline thin film, anddye-modified n-type ZnO nanorods arrays. When the photodetector is alternatively illuminated by ultraviolet and visible light from the same direction, it outputs alternatingcurrent.
     5. The TiO_2/polyaniline (PANI) core-shell nanofibers with unique ultraviolet photoresponse(UV) were designed and fabricated. When the core-shell nanofibers were performed in nooxygen (O_2) and full of O_2environment under UV illumination respectively, the increase anddecrease of photoconduction were observed. The mechanism of the opposite photocurrentresponse of the core-shell materials was investigated in detail, which indicated that thedecrease of the photoconduction in O_2was caused by the increasement of the thickness for thedepletion zone.
引文
[1] Xu T, Qiao Q. Conjugated polymer–inorganic semiconductor hybrid solar cells [J].Energy Environ.Sci.,2011,4:2700-2720.
    [2] Wang J J, Hu J S, Guo Y G, et al. Eco-friendly visible-wavelength photodetectorsbased on bandgap engineerable nanomaterials [J]. J. Mater. Chem.,2011,21:17582-17589.
    [3] Li H G, Wu G, Shi M M, et al. ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultravioletphotodetector [J]. Appl. Phys. Lett.,2008,93:153309.
    [4] Mahanta D, Manna U, Madras G, et al. Multilayer Self-Assembly of TiO2Nanoparticles andPolyaniline-Grafted-Chitosan Copolymer (CPANI) for Photocatalysis [J]. ACS Appl. Mater. Interfaces,2011,3:84-92.
    [5] Jiang L, Fu Y, Li H,et al. Single-Crystalline, Size, and Orientation ControllableNanowires and Ultralong Microwires of Organic [J]. J. Am. Chem. Soc.2008,130:3937–3941.
    [6] Mok S M, Yan F, Chan H L W. Organic phototransistor based on poly(3-hexylthiophene)/TiO2nanoparticle composite [J]. Appl. Phys. Lett.,2008,93:023310.
    [7] Pichler S, Rauch T, Seyrkammer R, et al. Temperature dependent photoresponse from colloidal PbSquantum dot sensitized inorganic/organic hybrid photodiodes [J]. Appl. Phys. Lett.,2011,98:053304.
    [8] Xie F, Lu H, Xiu X, et al. Low dark current and internal gain mechanism of GaN MSM photodetectorsfabricated on bulk GaN substrate [J]. Solid-State Electronics2011,57:39–42.
    [9] Mao A, Shin K, Kim J K, et al. Controlled Synthesis of Vertically Aligned Hematite on ConductingSubstrate for Photoelectrochemical Cells: Nanorods versus Nanotubes [J]. ACS Appl. Mater. Interfaces,2011,3:1852-1858.
    [10] Wang M, Wang Y, Li J. ZnO nanowire arrays coating on TiO2nanoparticles as a compositephotoanode for a high efficiency DSSC [J].Chem. Commun.,2011,47:11246-11248.
    [11] Jenekhe S A, S. Yi. Highly Photoconductive Nanocomposites of Metallophthalocyanines andConjugated Polymers [J]. Adv. Mater.,2000,12:1274-1278.
    [12] Liao Y, Que W, Jin Q, et al. Controllable synthesis of brookite/anatase/rutile TiO2nanocomposites andsingle-crystalline rutile nanorods array [J]. J. Mater. Chem.,2012,22:7937-7944.
    [13] Saito M, Fujihara S. Large photocurrent generation in dye-sensitized ZnO solar cells [J]. EnergyEnviron. Sci.,2008,1:280-283.
    [14] Zhang Z, Shao C, Li X, et al. Electrospun Nanofbers of p-Type NiO/n-Type ZnO Heterojunctions withEnhanced Photocatalytic Activity [J]. ACS Appl. Mater. Interfaces,2010,2:2915-2923.
    [15] Lee H, Heo K, Park J, et al. Graphene–nanowire hybrid structures for high-performancephotoconductive devices [J]. J. Mater. Chem.,2012,22:8372.
    [16] Miyanchi M, Nakajima A, Watanabe T, et al.Photocatalysis and Photoinduced Hydrophilicity ofVarious Metal Oxide Thin Films [J]. Chem. Mater.,2002,14:2812-2816.
    [17] Maensiri S, Masingboon C, Laokul P, et al. Egg White Synthesis and Photoluminescence of PlatelikeClusters of CeO2Nanoparticles [J]. Crystal Growth&Design,2007,7:950-955.
    [18] Lao C S, Park M C, Kuang Q, et al. Giant Enhancement in UV Response of ZnO Nanobelts byPolymer Surface-Functionalization [J]. J. Am. Chem. Soc.,2007,129:12096-12097.
    [19] Yang S, Yang H, Ma H, et al.Manganese oxide nanocomposite fabricated by a simple solid-statereaction and its ultraviolet photoresponse property [J]. Chem. Commun.,2011,47:2619-2621.
    [20] He J H, McConney Y H, Tsukruk V V,et al.Enhancing UV photoconductivity of ZnO nanobelt bypolyacrylonitrile functionalization [J]. J. Appl. Phys.,2007,102:084303.
    [21] Sakai N, Prasad G K, Ebina Y, et al.Layer-by-Layer Assembled TiO2Nanoparticle/PEDOT-PSSComposite Films for Switching of Electric Conductivity in Response to Ultraviolet and Visible Light [J].Chem. Mater.,2006,18:3596-3598.
    [22] Amos F F, Morin S A, Streifer J A,et al. Photodetector Arrays Directly Assembled onto PolymerSubstrates from Aqueous Solution [J]. J. Am. Chem. Soc.,2007,129:14296-14302.
    [23] Sakai N, Ebina Y, Tasada K, et al. Electronic Band Structure of Titania SemiconductorNanosheets Revealed by Electrochemical and Photoelectrochemical Studies [J]. J. Am. Chem. Soc.,2004,126:5851-5858.
    [24] Gong J, Li Y, Chai X, et al. UV-Light-Activated ZnO Fibers for Organic Gas Sensing at RoomTemperature [J]. J. Phys. Chem. C,2010,114:1293-1298.
    [25] Law J B K, Thong J T L. Simple fabrication of a ZnO nanowire photodetector with a fastphotoresponse time [J]. Appl. Phys. Lett.,2006,88:133114.
    [26] Kumar S, Gupta V, Sreenivas K. Synthesis of photoconducting ZnO nano-needles using an unbalancedmagnetron sputtered ZnO/Zn/ZnO multilayer structure [J]. Nanotechnology,2005,16:1167-1171.
    [27] Zheng X J, Yang B, Zhang T,et al. Enhancement in ultraviolet optoelectronic performance ofphotoconductive semiconductor switch based on ZnO nanobelts film [J]. Appl. Phys. Lett.,2009,95:221106.
    [28] Soci C, Zhang A, Xiang B, et al. ZnO Nanowire UV Photodetectors with High Internal Gain [J]. NanoLett.,2007,7:1003-1009.
    [29] Mahmoud W E, Al-Ghamdi A A. Synthesis and properties of bismuth oxide nanoshell coatedpolyaniline nanoparticles for promising photovoltaic properties [J]. Polym. Adv. Technol.,2011,22:877-881.
    [30] Wang F, Min S, Han Y, et al. Visible-light-induced photocatalytic degradation ofmethylene blue with polyaniline-sensitized TiO2composite photocatalysts [J]. Superlattices andMicrostructures,2010,48:170-180.
    [31] Ouchi H, Mukai T, Kamei T, et al. Silicon p-n junction photodiodes sensitive to ultraviolet radiation [J].Electron Device1979,26:1965-1969.
    [32] Zheng H, Li Y, Liu H,et al. Construction of heterostructure materials toward functionality [J]. Chem.Soc. Rev.,2011,40:4506-4524.
    [33] Tang Q, Lin L, Zhao X, et al. p n Heterojunction on Ordered ZnO Nanowires/PolyanilineMicrorods Double Array [J]. Langmuir,2012,28:3972-3978.
    [34] Tang Q, Lin L, Zhao X, et al. p–n Heterojunction on dye-sensitized ZnO nanorod arrays andmacroporous polyaniline network [J]. RSC Adv.,2012,2:1863-1869.
    [35] Gong J,Li Y H, Deng Y L. UV and visible light controllable depletion zone of ZnO-polyaniline p–njunction and its application in a photoresponsive sensor [J]. Phys. Chem. Chem. Phys.,2010,12:14864–14867.
    [36] Ariga K, Hill J P, Ji Q. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique forexploratory research and realistic application [J]. Phys. Chem. Chem. Phys.,2007,9:2319-2340.
    [37] Iler R K. Multilayers of colloidal particles [J]. J. Colloid Interface Sci.,1966,21:569-594.
    [38] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process,1consecutiveadsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Macromol. Chem.Macromol. Symp.,1991,46:321-327.
    [39] Decher G, Hong J D. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: II.Consecutive Adsorption of Anionic and Cationic Bipolar Amphiphiles and Polyelectrolytes on ChargedSurfaces [J]. Ber. Bunsen-Ges. Phys. Chem.,1991,95:1430-1434.
    [40] Zhang J, Bai L, Zhang K,et al. A novel method for the layer-by-layer assembly of metal nanoparticlestransported by polymer microspheres [J]. J. Mater. Chem.,2003,13:514-517.
    [41] Azzaroni Q, Lau K H A. Layer-by-layer assemblies in nanoporous templates: nano-organized designand applications of soft nanotechnology [J]. Soft Matter,2011,7:8709-8724.
    [42] Charlot A, Gabriel S, Detrembleur C, et al. Combination of electrografting and layer-by-layerdeposition: an efficient way to tailor polymer coatings of (semi)-conductors [J]. Chem. Commun.,2007:4656-4658.
    [43] Zhang X, Chen H, Zhang H. Layer-by-layer assembly: from conventional to unconventional methods[J]. Chem. Commun.,2007:1395-1405.
    [44] Decher G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites [J]. Science,1997,277:1232-1237.
    [45] Yao H B, Wu L H, Cui C H, et al. Direct fabrication of photoconductive patterns on LBL assembledgrapheme oxide/PDDA/titania hybrid flms by photothermal and photocatalyticreduction [J]. J. Mater. Chem.,2010,20:5190-5195.
    [46] Patrocinio A O T, Paterno L G, Murakami Iha N Y. Role of Polyelectrolyte for Layer-by-LayerCompact TiO2Films in Effciency Enhanced Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2010,114:17954-17959.
    [47] Sun Z, Xu L, Guo W, et al. Enhanced Photoelectrochemical Performance of Nanocomposite FilmFabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates [J]. J. Phys. Chem. C,2010,114:5211-5216.
    [48] Chang M, Cao X, Zeng H. Electrodeposition Growth of Vertical ZnO Nanorod/PolyanilineHeterostructured Films and Their Optical Properties [J]. J. Phys. Chem. C,2009,113:15544-15547.
    [49] Yoshida T, Lincot D, Oekermann T, et al. Electrodeposition of Inorganic/Organic Hybrid Thin Films[J]. Adv. Funct. Mater.,2009,19:17-43.
    [50] Zhou X, Peng F, Wang H, et al. Carbon nitride polymer sensitized TiO2nanotube arrays with enhancedvisible light photoelectrochemical and photocatalytic performance [J]. Chem. Commun.,2011,47:10323-10325.
    [51] Dutta K, Manna S, De S K. Optical and electrical characterizations of ZnS nanoparticles embedded inconducting polymer [J]. Synth Met,2009,159:315-319.
    [52] Hirai T, Komasawa Z. Preparation of nano-CdS–polyurethane composites via in situpolymerization in reverse micellar systems [J]. J. Mater. Chem.,2000,10:2234-2235.
    [53] Guo T, Wang L, Evans D G, et al. Synthesis and Photocatalytic Properties of a Polyaniline-IntercalatedLayered Protonic Titanate Nanocomposite with a p-n Heterojunction Structure [J]. J. Phys. Chem. C,2010,114:4765-4772.
    [54] Wang D P, Zeng H C. Multifunctional Roles of TiO2Nanoparticles for Architecture of Complex Core-Shells and Hollow Spheres of SiO2-TiO2-Polyaniline System Chem. Mater.,2009,21:4811-4823.
    [55] Abbes I B, Srasra E. Investigation of structure and conductivity properties of polyaniline synthesizedby solid–solid reaction [J]. J Polym Res,2011,18,659-665.
    [56] Gong J, Cui X J, Xie Z W, et al. The solid-state synthesis of polyaniline/H4SiW12O40materials [J].Synth Met,2002,129:187-192.
    [57] Sonawane S, Neppolian B, Teo B, et al. Ultrasound-Assisted Preparation of Semiconductor/PolymerPhotoanodes and Their Photoelectrochemical Properties [J]. J. Phys. Chem. C,2010,114:5148-5153.
    [58] Wang X, Shen Y, Xie A,et al. Novel structure CuI/PANI nanocomposites with bifunctions:superhydrophobicity and photocatalytic activity [J]. J. Mater. Chem.,2011,21:9641-9646.
    [59] Dhawale D S, Dubal D P, Jamadade V S,et al. Room temperature LPG sensor based onn-CdS/p-polyaniline heterojunction [J]. Sensors and Actuators B,2010,145:205-210.
    [60] Ameen S, Jo C, Kim Y S, et al. Heterostructure Formation of Polyaniline/ZnO Nanoparticulate ThinFilm using Electrophoretic Deposition Technique [J]. Theories and Applications of Chem. Eng.,2010,16:557-560.
    [61] Wang D, Ye Q, Yu B, et al. Towards chemically bonded p–n heterojunctions through surface initiatedelectrodeposition of p-type conducting polymer inside TiO2nanotubes [J]. J. Mater. Chem.,2010,20:6910-6915.
    [62] Li Y, Gong J, McCune M, et al. I–V characteristics of the p–n junction between vertically alignedZnO nanorods and polyaniline thin flm [J]. Synth Met,2010,160:499-503.
    [63] Guo Y, Zhang Y, Liu H, et al. Assembled Organic/Inorganic p-n Junction Interface and PhotovoltaicCell on a Single Nanowire [J]. J. Phys. Chem. Lett.,2010,1,327-330.
    [64] Guo Y., Tang Q., Liu H, et al. Light-Controlled Organic/Inorganic P-N Junction Nanowires [J]. J. Am.Chem. Soc.2008,130:9198-9199.
    [65] Chavhan S D, Abellon R D, van Breemen A J J M, et al.Sensitization of p-type NiO Using n-typeConducting Polymers [J]. J. Phys. Chem. C,2010,114:19496-19502.
    [66] Mahmoud W E, Al-Ghamdi A A, Al-Agel F. Synthesis and optical properties of poly(vinyl acetate)/bismuth oxide nanorods [J]. Polym. Adv. Technol.,2011,22:2055-2061.
    [67] Wang J, Ni X. Photoresponsive polypyrrole-TiO2nanoparticles flm fabricated by a novelsurface initiated polymerization [J]. Solid State Communications,2008,146:239-244.
    [68] Yamaura J, Muraoka Y, Yamauchi T, et al. Ultraviolet light selective photodiode based on an organic–inorganic Heterostructure [J]. Appl. Phys. Lett.,2003,83:2097-2099.
    [69] Gong J, Li Y, Deng Y. UV and visible light controllable depletion zone of ZnO-polyaniline p–njunction and its application in a photoresponsive sensor [J]. Phys. Chem. Chem. Phys.,2010,12:14864-14867.
    [70] Mridha S, Basak D. ZnO/polyaniline based inorganic/organic hybrid structure: Electrical andphotoconductivity properties [J]. Appl. Phys. Lett.,2008,92:142111.
    [71] Zhou J, Gu Y, Hu Y, et al. Gigantic enhancement in response and reset time of ZnO UV nanosensor byutilizing Schottky contact and surface functionalization [J]. Appl. Phys. Lett.,2009,94:191103.
    [72] Hagfeldt A, Boschloo G, Sun L, et al. Dye-Sensitized Solar Cells [J]. Chem. Rev.,2010,110:6595-6663.
    [73] Ko S H, Lee D, Kang H W, et al.Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowiresfor a High Efficiency Dye-Sensitized Solar Cell [J]. Nano Lett.,2011,11:666-671.
    [74] Weickert J, Dunbar R B, Hesse H C, et al. Nanostructured Organic and Hybrid Solar Cells [J]. Adv.Mater.,2011,23:1810-1828.
    [75] Qian J, Liu P, Xiao Y, et al. TiO2-Coated Multilayered SnO2Hollow Microspheres for Dye-SensitizedSolar Cells [J]. Adv. Mater.,2009,21:3663-3667.
    [76] Motiei L, Yao Y, Choudhury J,et al.Self-Propagating Molecular Assemblies as Interlayers for EffcientInverted Bulk-Heterojunction Solar Cells [J]. J. Am. Chem. Soc.,2010,132:12528-12530.
    [77] Dayal S, Kopidakis N, Olson D C, et al. Photovoltaic Devices with a Low Band Gap Polymer andCdSe Nanostructures Exceeding3%Effciency [J]. Nano Lett.,2010,10:239-242.
    [78] Chang J A, Rhee J H, Im S H, et al.High-Performance Nanostructured Inorganic-OrganicHeterojunction Solar Cells [J]. Nano Lett.,2010,10:2609-2612.
    [79] Zhu R, Jiang C, Liu B,et al. Highly Effcient Nanoporous TiO2-PolythiopheneHybrid Solar Cells Based on Interfacial Modifcation Using a Metal-Free Organic Dye [J]. Adv. Mater.,2009,21:994-1000.
    [80] Ling T, Wu M, Niu K, et al. Spongy structure of CdS nanocrystals decorated with dye molecules forsemiconductor sensitized solar cells [J]. J. Mater. Chem.,2011,21:2883-2889.
    [81] Liu Y, Hu J, Zhou T, et al. Self-assembly of layered wurtzite ZnS nanorods/nanowires as highly effcient photocatalysts [J]. J. Mater. Chem..2011,21:16621-16627.
    [82] Biboum R N, Njiki C P N, Zhang G, et al. High nuclearity Ni/Co polyoxometalates and colloidal TiO2assemblies as effcient multielectron photocatalysts under visible or sunlight irradiation [J]. J. Mater. Chem.,2011,21:645-650.
    [83] Zhang X, Lu X, Shen Y, et al. Three-dimensional WO3nanostructures on carbon paper:photoelectrochemical property and visible light driven photocatalysis [J]. Chem. Commun.,2011,47:5804-5806.
    [84] Xing M, Zhang J, Chen F, et al. An economic method to prepare vacuum activated photocatalysts withhigh photo-activities and photosensitivities [J]. Chem. Commun.,2011,47:4947-4949.
    [85] Zhou W, Du G, Hu P, et al.Nanoheterostructures on TiO2nanobelts achieved by acid hydrothermalmethod with enhanced photocatalytic and gas sensitive performance [J]. J. Mater. Chem.,2011,21:7937-7945.
    [86] Wang L, Chang Li, Wei L, et al. The effect of1-N-alkyl chain of ionic liquids [C n mim]+Br-(n=2,4,6,8) on the aspect ratio of ZnO nanorods: syntheses, morphology, forming mechanism, photoluminescenceand recyclable photocatalytic activity [J]. J. Mater. Chem.,2011,21:15732-15740.
    [87] Heiligtag F J, Rossell M D, Suess M J, et al. Template-free co-assembly of preformed Au and TiO2nanoparticles into multicomponent3D aerogels [J]. J. Mater. Chem.,2011,21:16893-16899.
    [88] Chen W, Fan Z, Zhang B, et al. Enhanced Visible-Light Activity of Titania via Confinement insideCarbon Nanotubes [J]. J. Am. Chem. Soc.,2011,133:14896-14899.
    [89] Fujishim A, Zhang X, Tryk D A. TiO2photocatalysis and related surface phenomena [J]. SurfaceScience Reports,2008,63:515-582.
    [90] Li X, Wang D, Cheng G, et al. Preparation of polyaniline-modifed TiO2nanoparticles and theirphotocatalytic activity under visible light illumination [J]. Applied Catalysis B: Environmental,2008,81:267-273.
    [91] Zhang H, Zong R, Zhu Y. Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxidevia Hybridization with Monolayer Polyaniline [J]. J. Phys. Chem. C,2009,113:4605-4611.
    [92] Wang F, Min S, Han Y, et al. Visible-light-induced photocatalytic degradation ofmethylene blue with polyaniline-sensitized TiO2composite photocatalysts [J]. Superlattices andMicrostructures,2010,48:170-180.
    [93] Li L, Fang X, Zhai T, et al. Electrical Transport and High-Performance Photoconductivity inIndividual ZrS2Nanobelts [J].Adv. Mater.,2010,22:4151-4156.
    [94] Zhai T, Fang X, Liao M, et al. Fabrication of High-Quality In2Se3Nanowire Arrays towardHigh-Performance Visible-Light Photodetectors [J]. ACS Nano,2010,4:1596-1602.
    [95] Zhang Y., Wang J, Zhu H, et al.High performance ultraviolet photodetectors based on an individualZn2SnO4single crystalline nanowire [J]. J. Mater. Chem.,2010,20:9858-9860.
    [96] Zhai T, Ma Y, Li L,et al. Morphology-tunable In2Se3nanostructures with enhanced electrical andphotoelectrical performances via sulfur doping [J]. J. Mater. Chem.,2010,20:6630-6637.
    [97] Monroy E, Omnes F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors [J].Semicond. Sci. Technol.,2003,18:33-51.
    [98] Jin W, Ye Y, Gan L, et al. Self-powered high performance photodetectors based on CdSenanobelt/graphene Schottky junctions [J]. J. Mater. Chem.,2012,22:2863-2867.
    [99] Yang H Y, Son D I, Kim T W,et al. Enhancement of the photocurrent in ultraviolet photodetectorsfabricated utilizing hybrid polymer-ZnO quantum dot nanocomposites due to an embedded graphene layer[J]. Organic Electronics,2010,11:1313-1317.
    [100] Xue D, Wang J, Wang Y, et al. Facile Synthesis of Germanium Nanocrystals and Their Application inOrganic–Inorganic Hybrid Photodetectors [J]. Adv. Mater.,2011,23:3704-3707.
    [101] Li H, Wu G, Shi M, et al. ZnO/poly(9,9-dihexylfluorene) based inorganic/organic hybrid ultravioletphotodetector [J]. Appl. Phys. Lett.,2008,93:153309.
    [102] Rauch T, Boberl M, Tedde S F,et al.Near-infrared imaging with quantum-dot-sensitized organicphotodiodes [J]. Nature Photonics,2009,3:332-336.
    [103] Xiong H M. Photoluminescent ZnO nanoparticles modifed by polymers [J]. J. Mater. Chem.,2010,20:4251-4262.
    [104] Xiong H, Wang Z, Xia Y. Polymerization Initiated by Inherent Free Radicals onNanoparticle Surfaces: A Simple Method of Obtaining Ultrastable(ZnO)Polymer Core–ShellNanoparticles with Strong Blue Fluorescence [J]. Adv. Mater.,2006,18:748-751.
    [105] Chang M, Cao X L, Zeng H, et al. Enhancement of the ultraviolet emission of ZnO nanostructures bypolyaniline modifcation [J]. Chemical Physics Letters,2007,446:370-373.
    [106] Xiong H M, Wang Z D, Liu D P, et al. Bonding Polyether onto ZnO Nanoparticles: An EffectiveMethod for Preparing Polymer Nanocomposites: with Tunable Luminescence and Stable Conductivity [J].Adv. Funct. Mater.,2005,15:1751-1756.
    [107] Xiong H, Xu Y, Ren Q, et al. Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles withTunable Photoluminescence and Their Application in Cell Imaging [J]. J. Am. Chem. Soc.,2008,130:7522-7523.
    [108] Boyer J, Carling C, Gates B D, et al. Two-Way Photoswitching Using One Type of Near-InfraredLight, Upconverting Nanoparticles, and Changing Only the Light Intensity [J]. J. Am. Chem. Soc.,2010,132:15766-15772.
    [109] Xu X, Li L. Nanophotoswitches with a high on/off ratio based on a structure of indium tinoxide/organic insulator/metal [J]. Appl. Phys. Lett.,2008,92:043302.
    [110] Genovese D, Montalti M, Prodi L, et al. Reversible photoswitching of dye-doped core–shellnanoparticles [J]. Chem. Commun.,2011,47:10975-10977.
    [111] Mok S M, Yan F, Chan H L W. Organic phototransistor based on poly(3-hexylthiophene)/TiO2nanoparticle composite [J]. Appl. Phys. Lett.,2008,93:023310.
    [1] Yang P, Yan H, Mao S,et al.Controlled Growth of ZnO Nanowires and Their Optical Properties [J]. Adv.Funct. Mater.,2002,12:323-331.
    [2] Qian S, Yang C, Song L, et al. Conformation-Induced Electrostatic Gating of the Conduction ofSpiropyran-Coated Organic Thin-Film Transistors [J]. J. Phys.Chem. C,2009,113:10807-10812.
    [3] Lao C S, Park M C, Kuang Q, et al.Giant Enhancement in UV Response of ZnO Nanobelts by PolymerSurface-Functionalization [J]. J. Am. Chem. Soc.,2007,129:12096-12097.
    [4] Wang X, Zhou J, Song J,et al. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on aSingle ZnO Nanowire [J]. Nano Lett.,2006,6:2768-2772.
    [5] Biswanath M, Moumita M, Youngill C, et al. Organic Phototransistor with n-Type SemiconductorChannel and Polymeric Gate Dielectric [J]. J. Phys. Chem. C,2009,113:18870-18873.
    [6] Ping J L, Zhi M L, Xin Z Z, et al. Electrical and Photoresponse Properties of an Intramolecular p-nHomojunction in Single Phosphorus-Doped ZnO Nanowires[J]. Nano Lett.,2009,9:2514-2518.
    [7] Huang Y, Jahreis G, Lucke C,et al. Modulation of the Peptide Backbone Conformation by the SelenoxoPhotoswitch [J]. J. Am. Chem. Soc.,2010,132:7578-7579.
    [8] Wang X H, Shao M W, Shao G, et al.A facile route to ultra-long polyaniline nanowires and thefabrication of photoswitch [J]. J. Colloid Interface Sci.,2009,332:74-77.
    [9] Sonawane S, Neppolian B, Teo B, et al. Ultrasound-Assisted Preparation of Semiconductor/PolymerPhotoanodes and Their Photoelectrochemical Properties [J]. J. Phys. Chem. C,2010,114:5148-5153.
    [10] Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type dopingand light-emitting diode based on ZnO [J]. Nat. Mater.,2005,4:42-46.
    [11] Li Y, Valle F D, Simonnet M, et al. Highly-performance UV detector made of ultra-long ZnO bridgingnanowires [J]. Nanotechnology,2009,20:045501.
    [12] Ahn S E, Lee J S, Kim H, et al. Photoresponse of sol-gel-synthesized ZnO nanorods [J]. Appl. Phys.Lett.,2004,84:5022-5024.
    [13] Soci C, Zhang A, Xiang B, et al. ZnO Nanowire UV Photodetectors with High Internal Gain[J]. NanoLett.,2007,7:1003-1009.
    [14] Cheng C, Xu G, Zhang H, et al. Facile synthesis, optical and photoconductive properties of novel ZnOnanocones [J]. Mater. Res. Bull.,2008,43:3506-3513.
    [15] Gong J, Li Y, Chai X,et al. UV-Light-Activated ZnO Fibers for Organic Gas Sensing at RoomTemperature [J]. J. Phys. Chem. C,2010,114:1293-1298.
    [16] Lieber C M, Wang Z L. Functional Nanowires [M] MRS Bull,2007,32:99-108.
    [17] He J H, Lin Y H, McConney M E, et al. Enhancing UV photoconductivity of ZnO nanobelt bypolyacrylonitrile functionalization [J]. J. Appl. Phys.,2007,102:084303.
    [18] Gong J, Li Y, Deng Y. UV and visible light controllable depletion zone of ZnO-polyaniline p–njunction and its application in a photoresponsive sensor [J]. Phys. Chem. Chem. Phys.,2010,12:14864-14867.
    [19] Lao C S, Kuang Q, Wang Z L,et al. Polymer functionalized piezoelectric-FET as humidity/chemicalnanosensors [J]. Appl. Phys. Lett.,2007,90:262107.
    [20] Wang X, Song J, Liu J,et al. Direct-Current Nanogenerator Driven by Ultrasonic Waves [J]. Science,2007,316:102-105.
    [21] Chen Y, Zhu C, Cao M, et al. Photoresponse of SnO2nanobelts grown in situ on interdigital electrodes[J]. Nanotechnology,2007,18:285502.
    [22] Khan S, Sultana T. Photoresponse of n-TiO2thin film and nanowire electrodes [J]. Sol. Energy Mater.Sol. Cells,2003,76:211-221.
    [23] Kikuchi H, Kitano M, Takeuchi M, et al. Extending the Photoresponse of TiO2to the Visible LightRegion: Photoelectrochemical Behavior of TiO2Thin Films Prepared by the Radio Frequency MagnetronSputtering Deposition Method [J]. J. Phys. Chem. B,2006,110:5537-5541.
    [24] Zhang L J, Wan M X. Self-Assembly Polyaniline-From Nanotubes to Hollow Microsphere [J]. Adv.Funct. Mater.,2003,13:815-820.
    [25] Tang Q W, Wu J H, Sun X M, et al. Templateless self-assembly of highly oriented polyaniline arrays[J]. Chem. Commun.,2009,16:2166-2167.
    [26] Sonawane Y S, Kulkarni M V, Kale B B et al. Electrical and humidity sensing properties ofsynthesized hydrophosphoric acid doped polyaniline [J]. Polym. Adv. Technol.,2008,19:60-65.
    [27] Lu X, Gao H, Chen J, et al. Poly (acrylic acid)-guided synthesis of helical polyaniline/CdS compositemicrowires [J]. Nanotechnology,2005,16:113.
    [28] Gong J, Li Y, Hu Z, et al. Ultrasensitive NH3Gas Sensor from Polyaniline Nanograin Enchased TiO2Fibers [J]. J. Phys. Chem. C,2010,114:9970-9974.
    [1] Tao J G, Luttrell T, Batzill M. A two-dimensional phase of TiO2with a reduced bandgap [J]. Nat. Chem.2011,3:296-300.
    [2] Alexe M, Hesse D. Tip-enhanced photovoltaic effects in bismuth ferrite [J]. Nat. Commun.2011,2:256.
    [3] Yuan J, Li H, Guo S, et al. A facile route to n-type TiO2-nanotube/p-type boron-doped-diamondheterojunction for highly efficient photocatalysts [J]. Chem. Commun.2010,46:3119-3121.
    [4] Graydon O. Biophotonics: Neural optoelectronic interface [J]. Nat. Photonics2011,5:138.
    [5] Zhang Y, Wang J, Zhu H,et al. High performance ultraviolet photodetectors based on an individualZn2SnO4single crystalline nanowire[J]. J. Mater. Chem.2010,20;9858-9860.
    [6] Sun K, Jing Y, Park N, et al. Solution Synthesis of Large-Scale, High-Sensitivity ZnO/Si HierarchicalNanoheterostructure Photodetectors [J]. J. Am. Chem. Soc.2010,132:15465-15467.
    [7] Kind H, Yan H Q, Messer B, et al. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Adv.Mater.2002,14:158-160.
    [8] Yang Q, Guo X, Wang W, et al. Enhancing Sensitivity of a Single ZnO Micro-/Nanowire Photodetectorby Piezo-phototronic Effect [J]. ACS Nano2010,4:6285-6291.
    [9] Amos F F, Morin S A, Streifer J A, et al. Photodetector Arrays Directly Assembled onto PolymerSubstrates from Aqueous Solution [J]. J. Am. Chem. Soc.2007,129:14296-14302.
    [10] Huang Y, Jahreis G, Lucke C, et al. Modulation of the Peptide Backbone Conformation by theSelenoxo Photoswitch [J]. J. Am. Chem. Soc.2010,132:7578-7579.
    [11] Helbing J, Bregy H, Bredenbeck J, et al. A Fast Photoswitch for Minimally Perturbed Peptides:Investigation of the trans f cis Photoisomerization of N–Methylthioacetamide [J]. J. Am. Chem. Soc.2004,126:8823-8834.
    [12] Sun X W, Zhang J Z, Huang J X, et al. A ZnO Nanorod Inorganic/Organic HeterostructureLight-Emitting Diode Emitting at342nm [J]. Nano Lett.2008,8:1219-1223.
    [13] Kamiya T, Narushima S, Mizoguchi H, et al. Electrical Properties and Structure of p-Type AmorphousOxide Semiconductor xZnO·Rh2O3[J]. Adv. Funct. Mater.2005,15:968-974.
    [14] Arango A C, Oertel D C, Xu Y F, et al. Heterojunction Photovoltaics Using Printed Colloidal QuantumDots as a Photosensitive Layer [J]. Nano Lett.2009,9:860-863.
    [15] Zhang Y J, Dong H L, Tang Q X, et al. Organic Single-Crystalline p-n Junction Nanoribbons[J]. J.Am. Chem. Soc.2010,132:11580-11584.
    [16] Yu D S, Yang Y, Durstock M,et al.Soluble P3HT-Grafted Graphene for Efficient BilayerHeterojunction Photovoltaic Devices [J]. ACS Nano2010,4:5633-5640.
    [17] Ingler Jr W B, Baltrus J P, Khan S U M. Photoresponse of p-Type Zinc-Doped Iron(III) Oxide ThinFilms [J]. J. Am. Chem. Soc.2004,126:10238-10239.
    [18] Varghese B, Tamang R, Tok E S,et al. Photothermoelectric Effects in Localized Photocurrent ofIndividual VO2Nanowires [J]. J. Phys. Chem. C2010,114:15149-15156.
    [19] Oka K, Yanagida T, Nagashima K, et al. Specific surface effect on transport properties of NiO/MgOheterostructured nanowires [J]. Appl. Phys. Lett.2009,95:133110.
    [20] Kim J, Lee C W, Choi W. Platinized WO3as an Environmental Photocatalyst that Generates OHRadicals under Visible Light [J]. Environ. Sci. Technol.2010,44:6849-6854.
    [21] Ishizuka S, Suzuki K, Okamoto Y, et al. Polycrystalline n-ZnO/p-Cu2O heterojunctions grown byRF-magnetron sputtering [J]. Phys. Status Solidi2004,1:1067-1070.
    [22] Sakai N, Prasad G K, Takada Y, et al. Layer-by-Layer Assembled TiO2Nanoparticle/PEDOT-PSSComposite Films for Switching of Electric Conductivity in Response to Ultraviolet and Visible Light [J].Chem. Mater.2006,18:3596-3598.
    [23] Gong J, Li Y, Deng Y L. UV and visible light controllable depletion zone of ZnO-polyaniline p–njunction and its application in a photoresponsive sensor [J]. Phys. Chem. Chem. Phys.2010,12:14864-14867.
    [24] Mridha S, Basak D. ZnO/polyaniline based inorganic/organic hybrid structure: Electrical andphotoconductivity properties [J]. Appl. Phys. Lett.2008,92:142111.
    [25] Lao C S, Park M C, Kuang Q, et al. Giant Enhancement in UV Response of ZnO Nanobelts byPolymer Surface-Functionalization [J]. J. Am. Chem. Soc.2007,129:12096-12097.
    [26] Wu M X, Lin X, Hagfeldt A, et al. A novel catalyst of WO2nanorod for the counter electrode ofdye-sensitized solar cells [J]. Chem. Commun.2011,47:4535-4537.
    [27] Ko S H, Lee D, Kang H W, et al. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowiresfor a High Efficiency Dye-Sensitized Solar Cell [J]. Nano Lett.2011,11:666-671.
    [28] Labat F, Ciofini I, Hratchian H P, et al. First Principles Modeling of Eosin-Loaded ZnO Films: A Steptoward the Understanding of Dye-Sensitized Solar Cell Performances [J]. J. Am. Chem. Soc.2009,131:14290-14298.
    [29] Yang S X, Yang H Y, Ma H Y, et al. Manganese oxide nanocomposite fabricated by a simple solid-statereaction and its ultraviolet photoresponse property [J]. Chem.Commun.2011,47:2619-2621.
    [30] Hameed A, Montini T, Gombac V,et al. Surface Phases and Photocatalytic Activity Correlation ofBi2O3/Bi2O4-xNanocomposite [J]. J. Am. Chem. Soc.2008,130:9658-9659.
    [31] Brezesinski K, Ostermann R, Hartmann P, et al. Exceptional Photocatalytic Activity of OrderedMesoporous β-Bi2O3Thin Films and Electrospun Nanofiber Mats [J]. Chem. Mater.2010,22:3079-3085.
    [32] Miyauchi M, Nakajima A, Watanabe T,et al. Photocatalysis and Photoinduced Hydrophilicity ofVarious Metal Oxide Thin Films [J]. Chem. Mater.2002,14:2812-2816.
    [33] Gong J, Cui X J, Xie Z W, et al. The solid-state synthesis of polyaniline/H4SiW12O40materials [J].Synth. Met.2002,129:187-192.
    [34] Téazéa A, Hervéa G, Finke R G, et al.-, β-, and-Dodecatungstosilicic Acids: Isomers and RelatedLacunary Compounds [M]. Inorg. Synth.2007,27:85–496.
    [35] Lu X, Gao H, Chen J, et al. Poly(acrylic acid)-guided synthesis of helical polyaniline/CdS compositemicrowires [J]. Nanotechnology2005,16:113-117.
    [36] Zheng L, Zheng Y, Chen C, et al. Network Structured SnO2/ZnO Heterojunction Nanocatalyst withHigh Photocatalytic Activity [J]. Inorg. Chem.2009,48:1819-1825.
    [37] Yang Y B, Xu L, Li F Y, et al. Enhanced photovoltaic response by incorporating polyoxometalate intoa phthalocyanine-sensitized electrode [J]. J. Mater. Chem.2010,20:10835-10840.
    [38] Guo T, Wang L S, Evans D G,et al. Synthesis and Photocatalytic Properties of aPolyaniline-Intercalated Layered Protonic Titanate Nanocomposite with a p n Heterojunction Structure [J].J. Phys. Chem. C2010,114:4765-4772.
    [39] Su J, Zou X X, Li G D, et al. Macroporous V2O5BiVO4Composites: Effect of Heterojunction on theBehavior of Photogenerated Charges [J]. J. Phys. Chem. C2011,115:8064-8071.
    [1] Wang Z L. Nanogenerators for Self-Powered Devices and Systems [M]. Georgia Institute of Technology,Atlanta, USA,2011:1-5.
    [2] Zhu H, Shan C X, Wang L K, et al. Metal Oxide Semiconductor-Structured MgZnO UltravioletPhotodetector with High Internal Gain [J]. J. Phys. Chem. C,2010,114:7169-7172.
    [3] Lao C S, Park M C, Kuang Q, et al. Giant Enhancement in UV Response of ZnO Nanobelts by PolymerSurface-Functionalization [J]. J. Am. Chem. Soc.2007,129:12096-12097.
    [4] Zhou J Z, Lin L L, Zhang L J,et al. Molecule-Assembled Modulation of the Photocurrent Direction ofTiO2Nanotube Electrodes under the Assistance of the Applied Potential and the Excitation Wavelength [J].J. Phys. Chem. C,2011,115:16828-16832.
    [5] Wu J M, Kuo C H. Ultraviolet photodetectors made from SnO2nanowires [J]. Thin Solid Films,2009,517:3870-3873.
    [6] Yamakata A, Yoshida M, Kubotu J, et al. Potential-Dependent Recombination Kinetics ofPhotogenerated Electrons in n-and p-Type GaN Photoelectrodes Studied by Time-Resolved IR AbsorptionSpectroscopy [J]. J. Am. Chem. Soc.,2011,133:11351-11357.
    [7] Wu H, Sun Y, Lin D, et al. GaN Nanofibers based on Electrospinning: Facile Synthesis, ControlledAssembly, Precise Doping, and Application as High Performance UV Photodetector [J]. Adv. Mater.,2009,21:227-231.
    [8] Fang X, Bando Y, Liao M, et al. Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors [J].Adv. Mater.,2009,21:2034-2039.
    [9] Fang X, Hu L, Huo K, et al. New Ultraviolet Photodetector Based on Individual Nb2O5Nanobelts [J].Adv. Funct. Mater.,2011,21:3907-3915.
    [10] Prabhakar R R, Mathews N, Jinesh K B, et al. Efficient multispectral photodetection using Mn dopedZnO nanowires [J]. J. Mater. Chem.,2012,22:9678-9683.
    [11] Jin Y Z, Wang H P, Sun B Q,et al. Solution-Processed Ultraviolet Photodetectors Based on ColloidalZnO Nanoparticles [J]. Nano Lett.,2008,8:1649-1653.
    [12] Hu L, Yan J, Liao M, et al. Ultrahigh External Quantum Efficiency from Thin SnO2NanowireUltraviolet Photodetectors [J]. Small,2011,7:1012-1017.
    [13] Afsal M, Wang C Y, Chu L W, et al. Highly sensitive metal–insulator–semiconductor UVphotodetectors based on ZnO/SiO2core–shell nanowires [J]. J. Mater. Chem.,2012,22:8420-8425.
    [14] Bie Y Q, Liao Z M, Zhang H Z, et al. Self-Powered, Ultrafast, Visible-Blind UV Detection and OpticalLogical Operation based on ZnO/GaN Nanoscale p-n Junctions [J]. Adv. Mater.,2011,23:649-653.
    [15] Jin W F, Ye Y, Gan L, et al. Self-powered high performance photodetectors based on CdSenanobelt/graphene Schottky junctions [J]. J. Mater. Chem.,2012,22:2863-2867.
    [16] Huang J X, Virji S, Weiller B H,et al. Polyaniline nanofibers: facile synthesis and chemical sensors [J].J. Am. Chem. Soc.,2003,125:314-315.
    [17] Ma H Y, Luo Y Q, Yang S X, et al. Synthesis of Aligned Polyaniline Belts by Interfacial ControlApproach [J]. J. Phys. Chem. C,2011,115:12048–12053.
    [18] Huang J X, Kaner R B. A general chemical route to polyaniline nanofibers [J]. J. Am. Chem. Soc.,2004,126:851-855.
    [19] Wang M L, Wang Y, Li J B. ZnO nanowire arrays coating on TiO2nanoparticles as a compositephotoanode for a high efficiency DSSC [J]. Chem. Commun.,2011,47:11246-11248.
    [20] Greene L E, Law M, Tan P H, et al. General Route to Vertical ZnO Nanowire Arrays Using TexturedZnO Seeds [J]. Nano Lett.,2005,5:1231-1236.
    [21] Téazéa A, Hervéa G, Finke R G, et al.-, β-, and-Dodecatungstosilicic Acids: Isomers andRelated Lacunary Compounds [M]. Inorg. Synth.2007,27:85–496.
    [22] Gong J, Li Y H, Hu Z S, et al. Ultrasensitive NH3Gas Sensor from Polyaniline Nanograin EnchasedTiO2Fibers J]. J. Phys. Chem. C,2010,114:9970-9974.
    [1] Zhan Z, Zheng L, Pan Y,et al. Self-powered, visible-light photodetector based on thermally reducedgraphene oxide–ZnO (rGO–ZnO) hybrid nanostructure [J]. J. Mater. Chem.,2012,22:2589-2595.
    [2] Chitara B, Panchakarla L S, Krupanidhi S B, et al. Infrared Photodetectors Based on Reduced GrapheneOxide and Graphene Nanoribbons [J]. Adv. Mater.,2011,23:5419-5424.
    [3] Barth S, Hernandez-Ramirez F, Holmes J D, et al.Synthesis and applications of one-dimensionalsemiconductors [J]. Prog. Mater. Sci.,2010,55:563-627;
    [4] Chitara B, Krupanidhi S B, Rao C N R. Solution processed reduced graphene oxide ultraviolet detector[J]. Appl. Phys. Lett.,2011,99:113114.
    [5] Song T, Lee S T, Sun B. Prospects and challenges of organic/group IV nanomaterial solar cells [J]. J.Mater. Chem.,2012,22:4216-4232.
    [6] Li C Z, Yip H L, Jen A K Y. Functional fullerenes for organic photovoltaics [J]. J. Mater. Chem.,2012,22:4161-4177.
    [7] Mishra A, B uerle P. Small Molecule Organic Semiconductors on the Move: Promises for Future SolarEnergy Technology [J]. Angew. Chem., Int. Ed.,2012,51:2020-2067.
    [8] Kramer I J, Sargent E H. Colloidal Quantum Dot Photovoltaics: A Path Forward [J]. ACS Nano,2011,5:8506-8514.
    [9] Razeghi M, Rogalski A. Semiconductor ultraviolet detectors [J]. J. Appl. Phys.,1996,79:7433-7473.
    [10] Liao M, Koide Y. High-performance metal-semiconductor-metal deep-ultraviolet photodetectors basedon homoepitaxial diamond thin film [J]. Appl. Phys. Lett.,2006,89:113509.
    [11] Goldberg Y A. Semiconductor near-ultraviolet photoelectronics [J]. Semicond. Sci. Technol.,1999,14:41.
    [12] Ohta H, Hosono H. Transparent oxide optoelectronics [J]. Mater. Today,2004,7,42-51.
    [13] Moon T H, Jeong M C, Lee W, Myoung J M, The fabrication and characterization of ZnO UV detector[J]. Appl. Surf. Sci.,2005,240:280-285.
    [14] Wang J J, Hu J S, Guo Y G, et al. Eco-friendly visible-wavelength photodetectors based on bandgapengineerable nanomaterials [J]. J. Mater. Chem.,2011,21:17582-17589.
    [15] Jin W, Ye Y, Gan L,et al. Self-powered high performance photodetectors based on CdSenanobelt/graphene Schottky junctions [J]. J. Mater. Chem.,2012,22:2863-2867.
    [16] Jose R, Thavasi V, Ramakrishna S. Metal Oxides for Dye-Sensitized Solar Cells[J].J. Am. Ceram. Soc.,2009,92:289-301;
    [17]Chitara B, Panchakarla L S, Krupanidhi S B, et al.UV Photodetectors Based on ZnO Nanorods: Roleof Defect-Concentration [J]. Jpn. J. Appl. Phys.,2011,50:100206.
    [18] Helgesen M, S ndergaard R, Krebs F C. Advanced materials and processes for polymer solar celldevices [J]. J. Mater. Chem.,2010,20:36-60.
    [19] Lin H, Liu H, Qian X, et al. Constructing a Blue Light Photodetector on Inorganic/Organic p–nHeterojunction Nanowire Arrays [J]. Inorg. Chem.,2011,50:7749-7753.
    [20] Li Y, Gong J, McCune M, et al. I–V characteristics of the p–n junction between vertically alignedZnO nanorods and polyaniline thin film [J]. Synth. Met.,2010,160:499-503.
    [21] Bie Y Q, Liao Z M, Zhang H Z,et al.Self‐Powered, Ultrafast, Visible‐Blind UV Detection andOptical Logical Operation based on ZnO/GaN Nanoscale p‐n Junctions [J]. Adv. Mater.,2011,23:649-653.
    [22] Huang J X, Virji S, Weiller B H, et al. Polyaniline nanofibers: facile synthesis and chemical sensors [J].J. Am. Chem. Soc.,2003,125:314-315.
    [23] Wang M L, Wang Y, Li J B. ZnO nanowire arrays coating on TiO2nanoparticles as a compositephotoanode for a high efficiency DSSC [J]. Chem. Commun.,2011,47:11246-11248.
    [24] Téazéa A, Hervéa G, Finke R G, et al.-, β-, and-Dodecatungstosilicic Acids: Isomers and RelatedLacunary Compounds[M]. Inorg. Synth.2007,27:85–496.
    [25] Rogalski A. Recent progress in infrared detector technologies [J]. Infrared Phys. Technol.,2011,54:136-154.
    [26] Gong J, Li Y H, Hu Z S, et al. Ultrasensitive NH3Gas Sensor from Polyaniline Nanograin EnchasedTiO2Fibers [J]. J. Phys. Chem. C,2010,114:9970-9974.
    [27] Fu D C, Zhang X L, Barber R L, et al. Dye-sensitized back-contact solar cells [J]. Adv. Mater.,2010,22:4270.
    [28] Guerin V M, Magne C, Pauporte T,et al. Electrodeposited Nanoporous versus Nanoparticulate ZnOFilms of Similar Roughness for Dye-Sensitized Solar Cell Applications [J]. ACS Appl. Mater. Interfaces,2010,2:3677-3685.
    [29] Yang M, Jha D, Kim H, et al. Nb doping of TiO2nanotubes for an enhanced efficiency of dye-sensitized solar cells [J]. Chem. Commun.,2011,47:2032-2034.
    [1] Oaki Y, Oki T, Imai H. Enhanced photoconductive properties of a simple composite coaxialnanostructure of zinc oxide and polypyrrole [J]. J. Mater. Chem.,2012,22:21195-21200.
    [2] Briseno A L, Holcombe T W, Boukai A I, et al. Oligo-and Poly-thiophene/ZnO Hybrid Nanowire SolarCells [J]. Nano Lett.,2010,10:334.
    [3] Li J, Tang S, Lu L, et al. Preparation of Nanocomposites of Metals, Metal Oxides, and CarbonNanotubes via Self-Assembly [J]. J. Am. Chem. Soc.,2007,129:9401-9409.
    [4] Song J, Wang X, Liu J, et al.Piezoelectric Potential Output from ZnO Nanowire Functionalized withp-Type Oligomer [J]. Nano Lett.,2008,8:203-207.
    [5] Munoz-Rojas D, Oro-Sole J, Gomez-Romero P. Spontaneous self-assembly of Cu2O@PPy nanowiresand anisotropic crystals [J]. Chem. Commun.,2009:5913-5915.
    [6] Zhu W, Wang G, Hong X,et al.One-Step Fabrication of Ni/TiO2Core/Shell Nanorod Arrays in AnodicAluminum Oxide Membranes [J]. J. Phys. Chem. C2009,113:5450-5454.
    [7] Goswami B, Pal S, Sarkar P.A Theoretical Study on the Electronic Structure of ZnSe/ZnS and ZnS/ZnSeCore/Shell Nanoparticles [J]. J. Phys. Chem. C2008,112:11630-11636.
    [8] Chen B, Deng J, Tong L,et al. Optically Active Helical Polyacetylene@silica Hybrid Organicinorganic Core/Shell Nanoparticles: Preparation and Application for Enantioselective Crystallization [J].Macromolecules2010,43:9613-9619.
    [9] Chen Y, Zhang F, Zhao G,et al.Synthesis, Multi-Nonlinear Dielectric Resonance, and ExcellentElectromagnetic Absorption Characteristics of Fe3O4/ZnO Core/Shell Nanorods [J]. J. Phys. Chem. C2010,114:9239-9244.
    [10] Wang A, Peng Q, Li Y. Rod-Shaped Au–Pd Core–Shell Nanostructures [J]. Chem. Mater.,2011,23:3217-3222.
    [11] Lee J, Lee D, Lee S, et al. One-Step Synthetic Route for Conducting Core Shell Poly(styrene/pyrrole)Nanoparticles [J]. Macromolecules2009,42:4511-4519.
    [12] Kang W, Li H, Yan Y, et al. Worm-Like Palladium/Carbon Core Shell Nanocomposites: One-StepHydrothermal Reduction Carbonization Synthesis and Electrocatalytic Activity [J]. J. Phys. Chem. C2011,115:6250-6256.
    [13] Zhang D, Luo L, Liao Q, et al. Polypyrrole/ZnS Core/Shell Coaxial Nanowires Prepared by AnodicAluminum Oxide Template Methods [J]. J. Phys. Chem. C2011,115:2360-2365.
    [14] Marinakos S M, Brousseau L C, Jones A,et al. Template Synthesis of One-Dimensional Au, AuPoly(pyrrole), and Poly(pyrrole) Nanoparticle Arrays [J]. Chem. Mater.,1998,10:1214-1219.
    [15] Kovtyukhova N L, Mallouk T E. Nanowire p–n Heterojunction Diodes Made by TemplatedAssembly of Multilayer Carbon-Nanotube/Polymer/Semiconductor-Particle Shells around MetalNanowires [J]. Adv. Mater.,2005,17:187-192.
    [16] Cui Q, Jiang L, Zhang C, et al. Coaxial Organic p-n Heterojunction Nanowire Arrays: One-StepSynthesis and Photoelectric Properties [J]. Adv. Mater.,2012,24:2332-2336.
    [17] Yang S, Yang H, Ma H,et al. Manganese oxide nanocomposite fabricated by a simple solid-statereaction and its ultraviolet photoresponse property [J]. Chem. Comm.,2011,47:2619-2621.
    [18] Yang S, Ma H, Luo Y, et al. Photocurrent Response of Surface-Functionalized Metal Oxides withWell-Matched Energy Levels: From Nothing to Something [J]. ChemPhysChem2012,13:2289-2292.
    [19] Yang S, Gong J, Deng Y. A sandwich-structured ultraviolet photodetector driven only by oppositeHeterojunctions [J]. J. Mater. Chem.,2012,22:13899.
    [20] Yang S, Gong J, Deng Y. Opposite photocurrent response to ultraviolet and visible light [J]. J. Mater.Chem.,2012,22:24522.
    [21] Gong J, Li Y, Deng Y. UV and visible light controllable depletion zone of ZnO-polyaniline p–njunction and its application in a photoresponsive sensor [J]. Phys. Chem. Chem. Phys.,2010,12:14864-14867.
    [22] Bao Q, Li C, Liao L, et al. Electrical transport and photovoltaic effects of core–shell CuO/C60nanowire heterostructure [J]. Nanotechnology2009,20:065203.
    [23] Kim J, Watanabe A, Chung J, et al. All-organic coaxial nanocables with interfacial charge-transferlayers: electrical conductivity and light-emitting-transistor behavior [J]. J. Mater. Chem.,2010,20:1062-1064.
    [24] Xu J, Luan C, Tang Y, et al.Low-Temperature Synthesis of CuInSe2Nanotube Array on ConductingGlass Substrates for Solar Cell Application [J]. ACS Nano2010,4:6064-6070.
    [25] Lao C S, Park M C, Kuang Q,et al. Giant enhancement in UV response of ZnO nanobelts by polymersurface-functionalization [J]. J. Am. Chem. Soc.,2007,129:12096-12097.
    [26] Liu J, Li Y, Ding R, et al. Carbon/ZnO Nanorod Array Electrode with Significantly Improved LithiumStorage Capability [J]. J. Phys. Chem. C2009,113:5336-5339.
    [27] Liu J, Jiang J, Bosman M, et al. Three-dimensional tubular arrays of MnO2–NiO nanoflakes withhigh areal pseudocapacitance [J]. J. Mater. Chem.,2012,22:2419.
    [28] Gurlo A, Riedel R. In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing [J].Angew. Chem. Int. Ed.,2007,46:3826-3848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700