用户名: 密码: 验证码:
S30432奥氏体不锈钢喷丸强化及其表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
S30432奥氏体不锈钢是一种在传统奥氏体不锈钢TP304H基础上应用多元合金强化以及弥散强化理论开发出的一种新型奥氏体不锈钢,该种材质由于具有优异的性能已在国内外超超临界发电设备中得到了广泛应用。喷丸强化是材料表面强化的重要方法之一,可以显著提高材料表面力学性能。为了进一步挖掘S30432奥氏体不锈钢的优良性能,本文优化了S30432奥氏体不锈钢的喷丸工艺,研究了不同喷丸工艺下残余应力分布、组织结构变化、以及残余应力松弛和组织结构的回复与再结晶行为,并且通过表征喷丸层表面力学性能,探讨了其喷丸强化机理。
     采用不同的喷丸工艺对S30432奥氏体不锈钢进行喷丸强化处理,结果表明,传统一次喷丸后残余应力在表面呈现各向同性;多步复合喷丸工艺下材料表面残余压应力值以及最大残余压应力值均随喷丸次数增加而增大,当采用优化的三次复合喷丸工艺处理时,S30432奥氏体不锈钢表面残余压应力达到-778MPa,最大残余压应力值及其层深分别为-865MPa和10μm;同时,采用多步复合喷丸工艺不仅可以提高S30432奥氏体不锈钢残余应力值,而且可以提高喷丸表层残余应力的均匀性。应力喷丸残余应力随预应力增加而增大,优化后残余压应力最大值达到-993MPa。
     利用X射线应力分析技术研究了S30432奥氏体不锈钢喷丸残余应力在外载荷条件下的松弛行为,结果表明,外载荷越大,松弛越明显,当外载荷接近材料屈服强度时松弛速率最大,且加载方向松弛速率高于垂直加载方向。在不同外加循环载荷作用下,残余应力松弛均发生在循环初始阶段,随着循环次数的增加,残余应力逐渐趋于稳定,外载荷越大,最终残余应力稳定值越小。当外加循环载荷为200,250,300MPa时,分别经过5次,2次,2次循环之后,残余应力即发生剧烈松弛,经过多次循环后,最终喷丸残余应力分别松弛了30%,40%,65%。
     S30432喷丸残余应力热松弛行为研究表明,在高温条件下,残余应力热松弛主要发生在退火初期,温度越高残余应力松弛速率越大。利用Zener-Wert-Avrami方程,对残余应力高温松弛随温度与时间的变化规律进行了总结,并计算出其残余应力热松弛激活能为159kJ/mol。
     利用X射线衍射线形分析方法分析了S30432奥氏体不锈钢喷丸层的组织结构变化,对各种常用线形分析方法得到的结果进行了对比。将Rietveld全谱拟合分析方法引入喷丸层组织结构的分析中,采用PoPa各向异性模型表征了喷丸层在不同晶向上微观组织结构的变化,并获得了喷丸层晶块尺寸的对数正态分布。对S30432奥氏体不锈钢三次复合喷丸表层组织结构进行表征,结果表明通过喷丸处理后,表层晶块尺寸大小趋于均匀,<111>方向最大为16.3nm。晶块尺寸分布中值随着层深的增加而逐渐增加。预应力喷丸层组织强化效果随着外加载荷增加逐渐增强。
     在等温加热过程中,S30432奥氏体不锈钢喷丸组织发生了回复与再结晶行为,显微畸变以及位错密度随着保温温度的提高和保温时间的增加而降低,晶块尺寸随之增大。通过计算S30432奥氏体不锈钢的晶界迁移激活能为259kJ/mol,显微畸变松弛激活能为171kJ/mol。
     利用原位X射线应力分析方法表征了S30432奥氏体不锈钢未喷丸试样的表面屈服强度,结果与常规拉伸试验基本一致,其表层屈服强度为268MPa。S30432奥氏体不锈钢经过一次以及二次复合喷丸处理后,其表面σ0.2条件屈服强度分别约为830MPa,940MPa,喷丸强化处理显著提高了S30432奥氏体不锈钢的表层屈服强度。微观结果分析显示喷丸后表层晶块细化与显微畸变增加是其表层屈服强度提高的重要原因。
     S30432奥氏体不锈钢喷丸强化机制主要分为残余压应力强化和组织结构强化。残余应力强化主要在于降低材料表面承受的拉应力水平,利用局部疲劳极限模型分析了S30432奥氏体不锈钢喷丸后残余压应力对疲劳极限的影响,发现喷丸后表层材料疲劳极限显著提高。组织结构强化主要在于喷丸使形变层内晶块细化,显微畸变增大,位错密度增加,从而提高了材料表面屈服强度。
S30432austenitic stainless steel, which was developed on the TP304H stainless steel bythe alloying strengthen and dispersion strengthen theories, is widely used in ultra supercritical power plants due to its superior properties. Shot peening is an important surfacetreatment approach to improve the surface properties of metallic materials. In order tooptimize the properties of S30432austenitic stainless steel, in this dissertation the steelwas treated by the optimized shot peening process. The residual stress distribution andmicrostructure change were investigated, the residual stress relaxation and thermalstability of microstructure were also analyzed, furthermore, the shot peening strengthenmechanism was discussed through the characterization of surface mechanical properties ofshot peened surface of S30432austenitic stainless steel.
     The results of shot peening experiments on S30432austenitic stainless steel revealedthat the residual stress distribution in the deformed layer was isotropic. The compressiveresidual stress on the surface and the maximum compressive residual stress aftermulti-step shot peening method was increased by adding the step of shot peening. Whenthe sample was treated by triple shot peening process, the compressive residual stress was-778MPa, the maximum value was-865MPa at the depth of10μm. besides, themulti-step shot peening method can not only increase the residual stress value but alsomake the stress distribution more uniform on the surface. The residual stress values wereincreased as increasing the pre-stress in stress peening. A maximum residual stress of-993MPa was observed with the optimized stress peening parameters.
     The residual stress relaxation of S30432austenitic stainless steel after shot peeningunder the static loading showed that the larger the applied loading was, the more obviousthe relaxation was, and when the applied loading reached the yield strength of the steel, the rate of relaxation was the largest, and it was larger in the direction of applied loadingthan that in the direction vertical to the applied loading. Under cyclic loading conditions,with the cycling number increased, it began to relax and the fast rate of compressiveresidual stress relaxation took place in the initial stage, gradually, the residual stressbecome stable. The larger of the applied loading, the lower of the stable stress value.When under the applied cyclic loading of200,250and300MPa, the drastic relaxationtook place during the first5times,2times,2times cycling. Then the residual stress wererelaxed about30%,40%and65%, respectively.
     The results of thermal relaxation of residual stress showed that the relaxation took placein the initial period of annealing. the higher temperature resulted faster relaxation rate. Theeffect of annealing time and temperature on the relaxation was described byZener-Wert-Avrami function, and the activation energy of the residual stress relaxationwas159kJ/mol.
     X-ray diffraction line profile analysis methods were used for the microstructure analysis,and the results were discussed. The Rietveld method was introduced to analyze of themicrostructure after shot peening. the PoPa anisotropic model can not only characterizethe change of microstructure in different crystalline direction but also the lognormaldistribution of domain size. the results of S30432austenitic stainless steel after three stepshot peening showed the domain size on the surface was trend to isotropic. In <111>direction, it was16.3nm which was the largest. The average domain size was increased asthe depth increasing. For stress peening, with the applied stress increased, themicrostructure refinement was more obvious.
     In the isothermal annealing process, the domain size increased, while micro-strain anddislocation density reduced. The activation energy of grain boundary migration of S30432austenitic stainless steel is259kJ/mol, the activation energy of microstrain is171kJ/mol.
     The surface yield strength of S30432austenitic stainless steel without shotpeening,which was characterized by X-ray stress analyzing method, is268MPa thesame as the tensile testing experiment. The yield strength σ0.2of S30432austenitic stainless steel after traditional and dual shot peening were about830MPa,940MPa,respectively. Shot peening treatment can greatly improve the yield strength of S30432austenitic stainless steel. The microstructure refinement was the main reason for theimproved surface yield strength.
     The strength mechanism of shot peening can ascribe to compressive residual stressstrength and microstructure strength. The compressive residual stress can weaken thetensile stress of the surface. The local fatigue limit model was applied to analyze theinfluence of compressive residual stress to fatigue limit of S30432shot peening sample.The result revealed that the compressive residual stress can enhance the fatigue limit. themicrostructure strength mechanism was that the refined domain size and highermicro-strain and dislocation density after shot peening improved the surface yieldstrength.
引文
[1].刘锁,金属材料的疲劳性能与喷丸强化工艺.国防工业出版社:北京,1977; p63.
    [2].王仁智,金属材料的喷丸强化与表面完整性论文集.中国宇航出版社:北京,2011.
    [3]. Zhang, P.; Lindemann, J., Influence of shot peening on high cycle fatigue propertiesof the high-strength wrought magnesium alloy AZ80[J]. Scripta Materialia2005,52(6),485-490.
    [4]. Farrahi, G.; Lebrijn, J.; Couratin, D., Effect of shot peening on residual stress andfatigue life of a spring steel[J]. Fatigue&Fracture of Engineering Materials&Structures2007,18(2),211-220.
    [5]. Tekeli, S., Enhancement of fatigue strength of SAE9245steel by shot peening[J].Materials letters2002,57(3),604-608.
    [6]. Ochi, Y.; Masaki, K.; Matsumura, T., et al., Effect of shot-peening treatment on highcycle fatigue property of ductile cast iron[J]. International Journal of Fatigue2001,23(5),441-448.
    [7]. Drechsler, A.; D rr, T.; Wagner, L., Mechanical surface treatments onTi–10V–2Fe–3Al for improved fatigue resistance[J]. Materials Science and Engineering:A1998,243(1),217-220.
    [8]. Wagner, L.; Luetjering, G. In Influence of shot peening on the fatigue behavior oftitanium alloys,1981;1981.
    [9]. Peyre, P.; Scherpereel, X.; Berthe, L., et al., Surface modifications induced in316Lsteel by laser peening and shot-peening. Influence on pitting corrosion resistance[J].Materials Science and Engineering: A2000,280(2),294-302.
    [10].Wang, T.; Yu, J.; Dong, B., Surface nanocrystallization induced by shot peening andits effect on corrosion resistance of1Cr18Ni9Ti stainless steel[J]. Surface and CoatingsTechnology2006,200(16),4777-4781.
    [11].Ren, X.; Sridharan, K.; Allen, T., Effect of Shot Peening on the Oxidation ofFerritic-Martensitic Steels in Supercritical Water[J]. CORROSION20082008.
    [12].Zengwu, Y.; Min, F.; Xuegang, W., et al., Effect of Shot Peening on the OxidationResistance of TP304H and HR3C Steels in Water Vapor[J]. Oxidation of metals2012,77(1),17-26.
    [13].Grabke, H.; Muller-Lorenz, E.; Strauss, S., et al., Effects of grain size, cold working,and surface finish on the metal-dusting resistance of steels[J]. Oxidation of metals1998,50(3),241-254.
    [14].Sawaragi, Y.; Ogawa, K.; Kato, S., et al., Development of the Economical18-8Stainless Steel(SUPER304H) Having High Elevated Temperature Strength for FossilFired Boilers[J]. Sumitomo Search(Japan)1992,(48),50-58.
    [15].Sawaragi, Y.; Otsuka, N.; Senba, H., et al., Properties of a new18-8austenitic steeltube(SUPER304H) for fossil fired boilers after service exposure with high elevatedtemperature strength[J]. Y. Sawaragi, N. Otsuka, H. Senba, and S. Yamamoto, TheSumitomo Search1994,(56),34-43.
    [16].Withers, P.; Bhadeshia, H., Residual stress. Part1–measurement techniques[J].Materials Science and Technology2001,17(4),355-365.
    [17].Scardi, P.; Leoni, M.; Delhez, R., Line broadening analysis using integral breadthmethods: a critical review[J]. Journal of applied crystallography2004,37(3),381-390.
    [18].Delhez, R.; Keijser, T. H.; Mittemeijer, E., Determination of crystallite size and latticedistortions through X-ray diffraction line profile analysis[J]. Fresenius' Journal ofAnalytical Chemistry1982,312(1),1-16.
    [19].Lou r, D.; Auffrédic, J.; Langford, J., et al., A precise determination of the shape, sizeand distribution of size of crystallites in zinc oxide by X-ray line-broadening analysis[J].Journal of applied crystallography1983,16(2),183-191.
    [20].Sahu, P., Lattice imperfections in intermetallic Ti–Al alloys: an X-ray diffractionstudy of the microstructure by the Rietveld method[J]. Intermetallics2006,14(2),180-188.
    [21].Dutta, H.; Pradhan, S.; De, M., Microstructural evolution on ball-milling elementalblends of Ni, Al and Ti by Rietveld’s method[J]. Materials chemistry and physics2002,74(2),167-176.
    [22].Pal, H.; Chanda, A.; De, M., Characterisation of microstructure of isothermalmartensite in Fe–23Ni–3.8Mn by Rietveld method[J]. Journal of alloys and compounds1998,278(1),209-215.
    [23].Sahu, P.; De, M., Microstructural characterization of Fe–Mn–C martensitesathermally transformed at low temperature by Rietveld method[J]. Materials Science andEngineering: A2002,333(1),10-23.
    [24].李家宝,利用X射线衍射方法确定金属工艺表面的应力-应变关系[J].材料研究学报1998,12(3),4.
    [25].Li, J.; Lin, F.; Ji, V., Influence of shot peening on superficial yield strength of springsteel in hard state[J]. Surface engineering1998,14(6),469-472.
    [26].Nobre, J.; Batista, A.; Coelho, L., et al., Two experimental methods to determiningstress–strain behavior of work-hardened surface layers of metallic components[J]. Journalof Materials Processing Technology2010,210(15),2285-2291.
    [27].Luan, W.; Jiang, C.; Ji, V., et al., Effect of shot peening on surface mechanicalproperties of TiB2/Al composite[J]. Journal of materials science2009,44(10),2454-2458.
    [28].SA, A.,213/SA-213M-02a Specification for seamless ferritic and austenitic alloysteel boiler, superheater, and heat—exchanger tubes. In收稿日期:2004—11-22.
    [29].方旭东;王辉绵;田晓青;李长毅,1000MW超超临界电站锅炉用S30432耐热不锈钢管的开发[J].太钢科技2007,(2),22-27.
    [30].LIU, Z.; CHENG, S.; YANG, G., et al., Research and Development of S30432SteelTubes in ChinaUsed for Ultra Supercritical (USC) Power Plants [J][J]. Iron&Steel2010,6,002.
    [31].贾建民;王彩侠;赵慧传;陈吉刚;唐丽英,国产S30432喷丸管的喷丸形变层组织与硬度对比研究[J]. Electric Power Construction2011,32(4).
    [32].张玉洁;杨函;朱丽慧, S30432耐热钢650℃时效的组织和力学性能[J].材料热处理学报2011,32(3),90-94.
    [33].谭舒平.成分和工艺对S30432钢性能的影响及强化机理研究[D].哈尔滨工业大学,2009.
    [34].郭富强;程世长;刘正东;包汉生;张代明,碳,铌对ASME S30432奥氏体耐热钢晶间腐蚀性能的影响[J].机械工程材料2007,31(8),11-14.
    [35].包汉生;程世长;刘正东;谭舒平,热处理对ASTMS30432奥氏体耐热钢性能的影响[J].金属热处理2009,(008),77-82.
    [36].李荣斌;王相虎;尚海龙;张勇,复合喷丸工艺对S30432钢表面应力与组织的影响[J].热加工工艺2012,41(004),148-149.
    [37].Champaigne, J., Shot peening overview[J]. Electronics Inc, Mishawaka, USA2001.
    [38].Fridrici, V.; Fouvry, S.; Kapsa, P., Effect of shot peening on the fretting wear ofTi–6Al–4V[J]. Wear2001,250(1),642-649.
    [39].Sabelkin, V.; Martinez, S.; Mall, S., et al., Effects of shot‐peening intensity onfretting fatigue crack‐initiation behaviour of Ti–6Al–4V[J]. Fatigue&Fracture ofEngineering Materials&Structures2005,28(3),321-332.
    [40].Hur, D. H.; Choi, M. S.; Lee, D. H., et al., Effect of shot peening on primary waterstress corrosion cracking of Alloy600steam generator tubes in an operating PWR plant[J].Nuclear engineering and design2004,227(2),155-160.
    [41].Park, I. G., Primary water stress corrosion cracking behaviors in the shot-peenedAlloy600TT steam generator tubings[J]. Nuclear engineering and design2002,212(1),395-399.
    [42].Soyama, H.; Macodiyo, D., Fatigue strength improvement of gears using cavitationshotless peening[J]. Tribology Letters2005,18(2),181-184.
    [43].张恒华;许珞萍;邵光杰,王诗言,喷丸强化对轿车用新型齿轮钢表面应力状态影响的研究[J].机械工程材料2001,25(2).
    [44].Townsend, D. P.; Zaretsky, E. V., Effect of shot peening on surface fatigue life ofcarburized and hardened AISI9310spur gears[M]. National Aeronautics and SpaceAdministration, Scientific and Technical Branch:1982; Vol.2047.
    [45].李亚兰;饶振坤,3Cr2W8V钢热压模喷丸强化[J].金属热处理1989,(5),29-34.
    [46].王江洪;齐琰;苏辉;李劲松,电站汽轮机叶片疲劳断裂失效综述-多[J].汽轮机技术1999,999,12.
    [47].董星;段雄,高压水射流喷丸强化技术[J].表面技术2005,34(1),48-49.
    [48].曾元松;黄遐;李志强,先进喷丸成形技术及其应用与发展[J].塑性工程学报2006,13(3),23-29.
    [49].曾元松;尚建勤;许春林;乔明杰;王俊彪;董锦亮, ARJ21飞机大型超临界机翼整体壁板喷丸成形技术[J].航空制造技术2007,3,38-41.
    [50].Asquith, D.; Yerokhin, A.; Yates, J., et al., Effect of combined shot-peening and PEOtreatment on fatigue life of2024Al alloy[J]. Thin solid films2006,515(3),1187-1191.
    [51].Group, S. I., Aerospace material specification-shot peening,Automatic. In SAE:Warrendale PA,2003.
    [52].栾伟玲;涂善东,喷丸表面改性技术的研究进展[J].中国机械工程2005,16(15),1405-1409.
    [53].倪敏雄;周建忠;杜建钧;曹向广,激光喷丸技术及其应用[J].新技术新工艺2006,(11),49-52.
    [54].Clauer, A. H., Laser shock peening for fatigue resistance[J]. Surface Performance ofTitanium, JK Gregory, et al, Editors, TMS Warrendale, PA1996,217-230.
    [55].杨磊;赵秀娟;陈春焕;陈婷婷;徐祥来;任瑞铭,纯钛高能喷丸表面纳米化后粗糙度的分析[J].中国表面工程2006,19(004),43-46.
    [56].Jian, L., Surface nanocrystallization (SNC) of metallic materials-presentation of theconcept behind a new approach[J]. J. Mater. Sci. Technol1999,15(3),193.
    [57].Liu, G.; Lu, J.; Lu, K., Surface nanocrystallization of316L stainless steel induced byultrasonic shot peening[J]. Materials Science and Engineering: A2000,286(1),91-95.
    [58].Zeller, R. In Influence of stress peening on residual stresses and fatigue limit,1992;1992; pp907-916.
    [59].Krobb, J.; Weiss, H., Stress peening of ultra high strength steels[J]. SurfaceModification Technologies XI1997,423-429.
    [60].张定铨,残余应力对金属疲劳强度的影响[J].理化检验:物理分册2002,38(6),231-235.
    [61].Zhuang, W. Z.; Halford, G. R., Investigation of residual stress relaxation under cyclicload[J]. International Journal of Fatigue2001,23,31-37.
    [62].Lee, H.; Mall, S., Stress relaxation behavior of shot-peened Ti–6Al–4V under frettingfatigue at elevated temperature[J]. Materials Science and Engineering: A2004,366(2),412-420.
    [63].Wang, Z.; Luan, W.; Huang, J., et al., XRD investigation of microstructurestrengthening mechanism of shot peening on laser hardened17-4PH[J]. Materials Scienceand Engineering: A2011,528(21),6417-6425.
    [64].张定铨,何家文,材料中残余应力的X射线衍射分析与作用[J].1999.
    [65].Macherauch, E.; Wohlfahrt, H.; Wolfstieg, U., Practical Definition of InternalStresses[J]. Hart. Techn. Mitt.1973,28(3),201-211.
    [66].Macherauch, E.; Kloos, K., Origin, measurement and evaluation of residualstresses[J]. Residual Stresses in Science and Technology.1986,1,3-26.
    [67].Wohlfahrt, H. In The influence of peening conditions on the resulting distribution ofresidual stress,1984;1984; pp316-331.
    [68].Al-Obaid, Y., Three-dimensional dynamic finite element analysis for shot-peeningmechanics[J]. Computers&Structures1990,36(4),681-689.
    [69].Kobayashi, M.; Matsui, T.; Murakami, Y., Mechanism of creation of compressiveresidual stress by shot peening[J]. International Journal of Fatigue1998,20(5),351-357.
    [70].Al-Obaid, A rudimentary analysis of improving fatigu life of metals byshot-peening[J]. J. Appl. Mech. ASME Trans.1990,(57),307-312.
    [71].Al-Hassani, The shot-peening of metals-mechanics and structures. SAE821452,[J].Soc. Automotive Engineers1982,45,4513–4525.
    [72].Mori, K., Osakada, K., Shiomi, M. and Okada, T.,, Three dimensional finitesimulation of plastic deformation and residual stress in shot-peening.[J]. Trans. Jpn Soc.Mech. Eng., Ser. A1993,59,2420-2426.
    [73].Mori, K., Osakada, K. and Matsuoka, K.,, Rigid-plastic finite simulation of peeningprocess with plastically deforming shot[J]. Trans. Jpn. Soc. Mech. Eng., Ser. A,1995,61,1337-1342.
    [74].Meo, M.; Vignjevic, R., Finite element analysis of residual stress induced by shotpeening process[J]. Advances in Engineering Software2003,34(9),569-575.
    [75].Levers, A.; Prior, A., Finite element analysis of shot peening[J]. Journal of MaterialsProcessing Technology1998,80,304-308.
    [76].Frija, M.; Hassine, T.; Fathallah, R., et al., Finite element modelling of shot peeningprocess: Prediction of the compressive residual stresses, the plastic deformations and thesurface integrity[J]. Materials Science and Engineering: A2006,426(1),173-180.
    [77].Schiffner, K.; Droste gen Helling, C., Simulation of residual stresses by shotpeening[J]. Computers&Structures1999,72(1),329-340.
    [78].Gao, Y. K.; Yao, M.; Li, J. K., An analysis of residual stress fields caused by shotpeening[J]. Metallurgical and Materials Transactions A2002,33(6),1775-1778.
    [79].Schulze, V., Characteristics of surface layers produced by shot peening[J]. ShotPeening2002,143-160.
    [80].Wohlfahrt, H., Shot peening and residual stresses[J]. Residual stress and stressrelaxation1981,71-92.
    [81].Nikitin, I.; Besel, M., Residual stress relaxation of deep-rolled austenitic steel[J].Scripta Materialia2008,58(3),239-242.
    [82].Vohringer, O., Relaxation of residual stresses by annealing or mechanical treatment[J].Pergamon Press, Advances in Surface Treatments. Technology--Applications--Effects.1987,4,367-396.
    [83].Gai, X.; Li, J.; Kang, Z., et al., Surface Yielding of Metals of X-Ray Diffraction[J].Journal of Materials Science&Technology(China)(USA)1993,9(3),205-209.
    [84].Dattoma, V.; De Giorgi, M.; Nobile, R., Numerical evaluation of residual stressrelaxation by cyclic load[J]. The Journal of Strain Analysis for Engineering Design2004,39(6),663-672.
    [85].Mano, H.; Kondo, S.; Matsumuro, A. In Microstructured surface layer induced byshot peening and its effect on fatigue strength,2006; IEEE:2006; pp1-4.
    [86].Syrett, B. C.; Viswanathan, R. Effect of microstructure on pitting and corrosionfatigue of17-4PH turbine blade steel in chloride environments; Electric Power ResearchInst., Palo Alto, CA (USA):1982.
    [87].Lucks, I.; Lamparter, P.; Mittemeijer, E., An evaluation of methods of diffraction-linebroadening analysis applied to ball-milled molybdenum[J]. Journal of appliedcrystallography2004,37(2),300-311.
    [88].Scherrer, P., Determination of size and structure of colloidal particles by x-raydiffraction[J]. G tt. Nachr1918,2,98.
    [89].Warren, B.; Averbach, B., The Effect of Cold‐Work Distortion on X‐RayPatterns[J]. Journal of Applied Physics1950,21(6),595-599.
    [90].Ungár, T.; Dragomir, I.; Révész, á., et al., The contrast factors of dislocations incubic crystals: the dislocation model of strain anisotropy in practice[J]. Journal of appliedcrystallography1999,32(5),992-1002.
    [91].Ungár, T.; Borbély, A., The effect of dislocation contrast on x‐ray line broadening: Anew approach to line profile analysis[J]. Applied Physics Letters1996,69(21),3173-3175.
    [92].Hill, R.; Madsen, I., Data collection strategies for constant wavelength Rietveldanalysis[J]. Powder diffraction1987,2(3),146-162.
    [93].Young, R.; Wiles, D., Profile shape functions in Rietveld refinements[J]. Journal ofapplied crystallography1982,15(4),430-438.
    [94].梁敬魁,粉末衍射法测定晶体结构.科学出版社:北京,2003; p776.
    [95].Caglioti, G.; Paoletti, A.; Ricci, F., Choice of collimators for a crystal spectrometer forneutron diffraction[J]. Nuclear Instruments1958,3(4),223-228.
    [96].De Keijser, T.; Mittemeijer, E.; Rozendaal, H., The determination of crystallite-sizeand lattice-strain parameters in conjunction with the profile-refinement method for thedetermination of crystal structures[J]. Journal of applied crystallography1983,16(3),309-316.
    [97].Lutterotti, L.; Scardi, P., Simultaneous structure and size-strain refinement by theRietveld method[J]. Journal of applied crystallography1990,23(4),246-252.
    [98].Le Bail, A.; Jouanneaux, A., A qualitative account for anisotropic broadening inwhole-powder-diffraction-pattern fitting by second-rank tensors[J]. Journal of appliedcrystallography1997,30(3),265-271.
    [99].Stokes, A.; Wilson, A. In A method of calculating the integral breadths ofDebye-Scherrer lines: generalization to non-cubic crystals,1944; Cambridge Univ Press:1944; pp197-198.
    [100].Stephens, P. W., Phenomenological model of anisotropic peak broadening in powderdiffraction[J]. Journal of applied crystallography1999,32(2),281-289.
    [101].Thompson, P.; Cox, D.; Hastings, J., Rietveld refinement of Debye-Scherrersynchrotron X-ray data from Al2O3[J]. Journal of applied crystallography1987,20(2),79-83.
    [102].Rodríguez-Carvajal, J., Recent advances in magnetic structure determination byneutron powder diffraction[J]. Physica B: Condensed Matter1993,192(1),55-69.
    [103].Shintani, T.; Murata, Y., Evaluation of the dislocation density and dislocationcharacter in cold rolled Type304steel determined by profile analysis of X-raydiffraction[J]. Acta Materialia2011.
    [1]. Azar, V.; Hashemi, B.; Rezaee Yazdi, M., The effect of shot peening on fatigue andcorrosion behavior of316L stainless steel in Ringer's solution[J]. Surface and CoatingsTechnology2010,204(21),3546-3551.
    [2]. Barry, N.; Hainsworth, S. V.; Fitzpatrick, M., Effect of shot peening on the fatiguebehaviour of cast magnesium A8[J]. Materials Science and Engineering: A2009,507(1-2),50-57.
    [3]. Lee, H.; Kim, D.; Jung, J., et al., Influence of peening on the corrosion properties ofAISI304stainless steel[J]. Corrosion Science2009,51(12),2826-2830.
    [4]. Hong, T.; Ooi, J.; Shaw, B., A numerical simulation to relate the shot peeningparameters to the induced residual stresses[J]. Engineering Failure Analysis2008,15(8),1097-1110.
    [5]. Franchim, A. S.; Campos, V. S.; Travessa, D. N., et al., Analytical modelling forresidual stresses produced by shot peening[J]. Materials&Design2009,30(5),1556-1560.
    [6].刘锁,金属材料的疲劳性能与喷丸强化工艺.国防工业出版社:北京,1977; p63.
    [7]. Zhang, X.; Wang, J.; Levers, A., et al. In Modeling and simulation of shot peeningprocess, Proceedings of the37th International Matador Conference[C],2012; SpringerVerlag:2012; p169.
    [8]. Zimmermann, M.; Klemenz, M.; Schulze, V., Literature review on shot peeningsimulation[J]. International Journal of Computational Materials Science and SurfaceEngineering2010,3(4),289-310.
    [9]. Xie, L.; Jiang, C.; Ji, V., Thermal relaxation of residual stresses in shot peened surfacelayer of (TiB+TiC)/Ti–6Al–4V composite at elevated temperatures[J]. Materials Scienceand Engineering: A2011,528(21),6478-6483.
    [10].Zeller, R. In Influence of stress peening on residual stresses and fatigue limit,3rdEuropean Conference on Residual Stresses[C],1992;1992; pp907-916.
    [11].Luan, W.; Jiang, C.; Ji, V., Surface Layer Characteristics of TiB2/Al Composite byStress Peening[J]. Materials transactions2009,50(4),837.
    [12].Medvedeva, A.; Bergstr m, J.; Gunnarsson, S., et al., Thermally activated relaxationbehaviour of shot-peened tool steels for cutting tool body applications[J]. MaterialsScience and Engineering: A2011,528(3),1773-1779.
    [13].Vohringer, O., Relaxation of residual stresses by annealing or mechanical treatment[J].Pergamon Press, Advances in Surface Treatments. Technology--Applications--Effects.1987,4,367-396.
    [14].Torres, M.; Voorwald, H., An evaluation of shot peening, residual stress and stressrelaxation on the fatigue life of AISI4340steel[J]. International Journal of Fatigue2002,24(8),877-886.
    [15].何涛,杨竞,金鑫,非线性有限元分析实例指导教程.机械工业出版社:北京,2007; p45.
    [16].Wang, S.; Li, Y.; Yao, M., et al., Compressive residual stress introduced by shotpeening[J]. Journal of Materials Processing Technology1998,73(1),64-73.
    [17].张定铨,何家文,材料中残余应力的X射线衍射分析与作用[J].1999.
    [18].Ejiri, S.; Sasaki, T.; Hirose, Y. In Residual Stress Analysis of Textured Materials byX-Ray Diffraction Method, Materials Science Forum[C],2012; Trans Tech Publ:2012; pp1673-1678.
    [19].Schiffner, K.; Droste gen Helling, C., Simulation of residual stresses by shotpeening[J]. Computers&Structures1999,72(1),329-340.
    [20].Wohlfahrt, H. In The influence of peening conditions on the resulting distribution ofresidual stress, Proceedings of the Second International Conference on Shot Peening[C],1984;1984; pp316-331.
    [21].Gao, Y. K.; Yin, Y. F.; Yao, M., Effects of shot peening on fatigue properties of0Cr13Ni8Mo2Al steel[J]. Materials Science and Technology2003,19(3),372-374.
    [22].Mutoh, Y.; Fair, G.; Noble, B., et al., the effect of residual stresses induced by shot‐peening on fatigue crack propagation in two high strength aluminium alloys[J]. Fatigue&Fracture of Engineering Materials&Structures2007,10(4),261-272.
    [23].Maiya, P.; Busch, D., Effect of surface roughness on low-cycle fatigue behavior oftype304stainless steel[J]. Metallurgical and Materials Transactions A1975,6(9),1761-1766.
    [24].Farrahi, G.; Lebrijn, J.; Couratin, D., Effect of shot peening on residual stress andfatigue life of a spring steel[J]. Fatigue&Fracture of Engineering Materials&Structures2007,18(2),211-220.
    [25].Ishigami, H.; Matsui, K.; Jin, Y., et al., Technical note A study on stress, reflectionand double shot peening to inrease compressive residual stress[J]. Fatigue&Fracture ofEngineering Materials&Structures2000,23(11),959-963.
    [26].Gao, Y. K., Influence of shot peening on tension–tension fatigue property of two highstrength Ti alloys[J]. Surface engineering2006,22(4),299-303.
    [27].Miao, H.; Zuo, D. W.; Wang, H. F., et al., Effect of Optimization of Shot PeeningParameters on Surface Integrity of NAK80[J]. Key Engineering Materials2010,426,537-539.
    [28].Straub, J.; May, D., Stress peening[J]. Iron Age1949,21,66-70.
    [29].Zhuang, W. Z.; Halford, G. R., Investigation of residual stress relaxation under cyclicload[J]. International Journal of Fatigue2001,23,31-37.
    [30].Wang, Z.; Jiang, C.; Gan, X., et al., Influence of shot peening on the fatigue life oflaser hardened17-4PH steel[J]. International Journal of Fatigue2011,33(4),549-556.
    [31].Webster, G.; Ezeilo, A., Residual stress distributions and their influence on fatiguelifetimes[J]. International Journal of Fatigue2001,23,375-383.
    [32].Harada, Y.; Fukauara, K.; Kohamada, S., Effects of microshot peening on surfacecharacteristics of high-speed tool steel[J]. Journal of Materials Processing Technology2008,201(1),319-324.
    [33].Farrahi, G., side effects of shot peening on fatigue crack initiation life[J].International Journal of Engineering-Transactions A: Basics2011,24(3),275.
    [34].Lohe, D.; Vohringe, O., Stability of residual stresses[J]. ASM International,Member/Customer Service Center, Materials Park, OH44073-0002, USA,2002.2002,54-69.
    [35].Landgraf, R. W.; Chernenkoff, R., Residual stress effects on fatigue of surfaceprocessed steels[J]. Analytical and experimental methods for residual stress effects infatigue1986,1-12.
    [36].Lee, H.; Mall, S., Stress relaxation behavior of shot-peened Ti–6Al–4V under frettingfatigue at elevated temperature[J]. Materials Science and Engineering: A2004,366(2),412-420.
    [37].Luan, W.; Jiang, C.; Ji, V., Residual Stress Relaxation in Shot Peened Surface Layeron TiB2/Al Composite under Applied Loading[J]. Materials transactions2009,50(1),158.
    [38].Holzapfel, H.; Schulze, V.; V hringer, O., et al., Residual stress relaxation in an AISI4140steel due to quasistatic and cyclic loading at higher temperatures[J]. MaterialsScience and Engineering: A1998,248(1),9-18.
    [39].Hanus, E.; Ericsson, T., Influence of four-point bending fatigue on the residual stressstate of a pressure-rolled, particulate-reinforced metal matrix composite[J]. MaterialsScience and Engineering: A1995,194(2),147-156.
    [40].Kodama, S. In The behavior of residual stress during fatigue stress cycles, Proceedingof the International Conference on Mechanical Behavior of Metals (ICMBM'72)[C],1972;Society of Material Science Press:1972; pp111-18.
    [41].Wang, Z.; Chen, Y.; Jiang, C., Thermal relaxation behavior of residual stress in laserhardened17-4PH steel after shot peening treatment[J]. Applied Surface Science2011,257(23),9830-9835.
    [42].Nikitin, I.; Besel, M., Residual stress relaxation of deep-rolled austenitic steel[J].Scripta Materialia2008,58(3),239-242.
    [43].潘金生,仝健民,田民波,材料科学基础.清华大学出版社:北京,1998; p513.
    [1]. Matsuo, H., Steel tube with excellent steam oxidation resistance and method forproducing the steel tube. In Google Patents:2010.
    [2]. Caplan, D.; Graham, M.; Cohen, M., Effect of cold work on the oxidation of nickel athigh temperature[J]. Journal of the Electrochemical Society1972,119(9),1205-1215.
    [3]. Thomas, M.; Lindley, T.; Rugg, D., et al., The effect of shot peening on themicrostructure and properties of a near-alpha titanium alloy following high temperatureexposure[J]. Acta Materialia2012,60(13),5040-5048.
    [4]. Luan, W.; Jiang, C.; Wang, H., et al., XRD investigation of thermostability of TiB2/Al deformation layer introduced by shot peening[J]. Materials Science andEngineering: A2008,480(1),1-4.
    [5]. Ferrari, M.; Lutterotti, L., Method for the simultaneous determination of anisotropicresidual stresses and texture by x‐ray diffraction[J]. Journal of Applied Physics1994,76(11),7246-7255.
    [6]. Hall, W., X-ray line broadening in metals[J]. Proceedings of the Physical Society.Section A2002,62(11),741.
    [7]. De Keijser, T. H.; Langford, J.; Mittemeijer, E., et al., Use of the Voigt function in asingle-line method for the analysis of X-ray diffraction line broadening[J]. Journal ofapplied crystallography1982,15(3),308-314.
    [8]. Stokes, A. R., A numerical Fourier-analysis method for the correction of widths andshapes of lines on X-ray powder photographs[J]. Proceedings of the Physical Society2002,61(4),382.
    [9]. Manik, S.; Bose, P.; Pradhan, S., Microstructure characterization and phasetransformation kinetics of ball-milled prepared nanocrystalline Zn2 TiO4 by Rietveld method[J]. Materials chemistry and physics2003,82(3),837-847.
    [10].Balzar, D.; Popa, N. C., Analyzing Microstructure by Rietveld Refinement[J]. TheRigaku Journal2005,22(1),16.
    [11].Lutterotti, L.; Chateigner, D.; Ferrari, S., et al., Texture, residual stress and structuralanalysis of thin films using a combined X-ray analysis[J]. Thin solid films2004,450(1),34-41.
    [12].潘金生,仝健民,田民波,材料科学基础.清华大学出版社:北京,1998; p636.
    [13].Rachinger, W. A., A Correction for the α1α2Doublet in the Measurement of Widthsof X-ray Diffraction Lines[J]. Journal of scientific instruments2002,25(7),254.
    [14].滕凤恩,王煜明,姜小龙, X射线结构分析与材料性能表征[M].科学出版社:北京,1997.
    [15].栾卫志. TiB2/Al复合材料喷丸强化及其表征研究[D].上海:上海交通大学,2009.
    [16].Vives, S.; Gaffet, E.; Meunier, C., X-ray diffraction line profile analysis of iron ballmilled powders[J]. Materials Science and Engineering: A2004,366(2),229-238.
    [17].Enzo, S.; Polizzi, S.; Benedetti, A., Applications of fitting techniques to theWarren-Averbach method for X-ray line broadening analysis[J]. Zeitschrift fürKristallographie1985,170(1-4),275-287.
    [18].Ungár, T., Dislocation densities, arrangements and character from X-ray diffractionexperiments[J]. Materials Science and Engineering: A2001,309,14-22.
    [19].Ungár, T.; Dragomir, I.; Révész, á., et al., The contrast factors of dislocations incubic crystals: the dislocation model of strain anisotropy in practice[J]. Journal of appliedcrystallography1999,32(5),992-1002.
    [20].Wang, Y. D.; Tian, H.; Stoica, A. D., et al., The development ofgrain-orientation-dependent residual stressess in a cyclically deformed alloy[J]. NatureMaterials2003,2(2),101-106.
    [21].Kril, C.; Birringer, R., Estimating grain-size distributions in nanocrystalline materialsfrom X-ray diffraction profile analysis[J]. Philosophical Magazine A1998,77(3),621-640.
    [22].Langford, J.; Lou r, D.; Scardi, P., Effect of a crystallite size distribution on X-raydiffraction line profiles and whole-powder-pattern fitting[J]. Journal of appliedcrystallography2000,33(3),964-974.
    [23].Wang, Z.; Luan, W.; Huang, J., et al., XRD investigation of microstructurestrengthening mechanism of shot peening on laser hardened17-4PH[J]. Materials Scienceand Engineering: A2011,528(21),6417-6425.
    [24].Altenberger, I.; Scholtes, B.; Martin, U., et al., Cyclic deformation and near surfacemicrostructures of shot peened or deep rolled austenitic stainless steel AISI304[J].Materials Science and Engineering: A1999,264(1),1-16.
    [25].Zeller, R., Shot peening under-prestressing-testing of improved fatigue properties ofcomponents[J]. Materialprufung1993,35,218-221.
    [26].Fry, A.; Osgerby, S.; Wright, M., Oxidation of alloys in steam environments–areview[J]. NPL Report MATC (A)2002,90.
    [27].Wright, I. G.; Dooley, R., A review of the oxidation behaviour of structural alloys insteam[J]. International Materials Reviews2010,55(3),129-167.
    [28].李新梅;邹勇;张忠文;邹增大,新型耐热钢Super304H高温时效后的组织与性能[J].材料工程2009,(5),38-42.
    [29].Jiang, C.; Wu, J., Dimensional stability and thermal stress of6061Al/SiC wcomposite during thermal cycles[J]. Materials Science and Technology2002,18(12),1458-1460.
    [30].Xie, L.; Jiang, C.; Lu, W., et al., The recrystallization behavior of surface deformationlayer of (TiB+TiC)/Ti-6Al-4V composite during isothermal annealing[J]. MaterialsScience and Engineering: A2011.
    [31].毛卫民,金属材料的晶体学织构与各向异性.科学出版社:北京,2002; p47.
    [1].师昌绪;徐滨士;张平;刘世参,21世纪表面工程的发展趋势[J].中国表面工程2004,14(1),2-7.
    [2]. Tsuji, N.; Tanaka, S.; Takasugi, T., Effects of combined plasma-carburizing andshot-peening on fatigue and wear properties of Ti–6Al–4V alloy[J]. Surface and CoatingsTechnology2009,203(10),1400-1405.
    [3]. Majzoobi, G.; Nemati, J.; Novin Rooz, A., et al., Modification of fretting fatiguebehavior of AL7075–T6alloy by the application of titanium coating using IBEDtechnique and shot peening[J]. Tribology International2009,42(1),121-129.
    [4]. Gao, Y., Improvement of fatigue property in7050–T7451aluminum alloy by laserpeening and shot peening[J]. Materials Science and Engineering: A2011,528(10),3823-3828.
    [5]. Cao, W.; Castex, L., Determination of Stress-Strain Relation of the Shot-PeenedSurface Layers with the help of X-Ray Diffraction Half-Width[J]. Metal Behaviour andSurface Engineering, B. Curioni et aL, editors, Technology Transfer Series,1,llTT-lnternational,3091989,314.
    [6].刘凤智.结构金属材料工艺表面屈服特性的表征和研究[D].沈阳:中国科学院金属研究所,1995.
    [7]. V hringer, O.; Niku-Lari, A., Advances in Surface Treatments, vol. In4PergamonPress:1987.
    [8].王宏伟;马晋生;南俊马;何家文,表面微观屈服强度与疲劳极限的关系[J].金属学报1991,27(5),A365-369.
    [9].姚枚;王声平;李金魁;王仁智;李向斌,表面强化件的疲劳强度分析及金属的内部疲劳极限[J].金属学报1993,29(11),511-519.
    [10].Tabor, D., A simple theory of static and dynamic hardness[J]. Proceedings of theRoyal Society of London. Series A. Mathematical and Physical Sciences1948,192(1029),247-274.
    [11].Nobre, J.; Dias, A.; Kornmeier, M., An empirical methodlogy to estimate a local yieldstress in work-hardened surface layers[J]. Experimental mechanics2004,44(1),76-84.
    [12].Nobre, J.; Batista, A.; Coelho, L., et al., Two experimental methods to determiningstress–strain behavior of work-hardened surface layers of metallic components[J]. Journalof Materials Processing Technology2010,210(15),2285-2291.
    [13].Coelho, L.; Batista, A.; Nobre, J., et al., Evaluation of stress-strain behavior ofsurface treated steels by X-ray diffraction[J]. Central European Journal of Engineering2011,1-5.
    [14].Flour, L., Contact fatigue of automotive gears: evolution and effects of residualstresses introduced by surface treatments[J]. Fatigue&Fracture of Engineering Materials&Structures2000,23(3),217-228.
    [15].Li, J.; Gai, X.; Kang, Z., et al., Effect of shot peening on superficial yield strength ofannealed medium carbon alloy steel[J]. Materials Science and Technology1996,12(1),59-63.
    [16].李家宝,利用X射线衍射方法确定金属工艺表面的应力-应变关系[J].材料研究学报1998,12(3),4.
    [17].SA, A.,213/SA-213M-02a Specification for seamless ferritic and austenitic alloysteel boiler, superheater, and heat-exchanger tubes. In收稿日期:2004,11-22.
    [18]Hansen, N., Hall–Petch relation and boundary strengthening[J]. Scripta Materialia2004,51(8),801-806.
    [19].张定铨,何家文,材料中残余应力的X射线衍射分析与作用[J].1999.
    [20].Nicholas, T.; Zuiker, J., On the use of the Goodman diagram for high cycle fatiguedesign[J]. International journal of fracture1989,80(2),219-235.
    [21].张定铨,残余应力对金属疲劳强度的影响[J].理化检验:物理分册2002,38(6),231-235.
    [22].Kloos, K.; Velten, E., Berechnung der Dauerschwingfestigkeit von plasmanitriertenbauteil hnlichen Proben unter Berücksichtigung des H rte und Eigenspannungsverlaufs[J].Konstruktion1984,36(5),181-188.
    [23].黄明志,石德珂,金志浩,金属力学性能.西安交通大学出版社:西安,1986.
    [24].Starker, P.; Wohlfahrt, H.; Macherauch, E., Der AmplitudeneinfluB auf die Bildungvon Ermlidungsanrissen in geharteten und kugelgestrahlten Biegeproben aus Stahl Ck45[J]. Arch. Eisenhiittenwes1980,51,439.
    [25].刘锁,金属材料的疲劳性能与喷丸强化工艺.国防工业出版社:北京,1977; p63.
    [26].Nakashima, K.; Suzuki, M.; Futamura, Y., et al. In Limit of Dislocation Density andDislocation Strengthening in Iron, Materials Science Forum[C],2006; Trans Tech Publ:2006; pp627-632.
    [27].Takaki, S.; Tsuchiyama, T.; Nakashima, K., et al., Microstructure development ofsteel during severe plastic deformation[J]. Metals and Materials International2004,10(6),533-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700