用户名: 密码: 验证码:
超级马氏体不锈钢组织性能及逆变奥氏体机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级马氏体不锈钢的成分特点是在传统马氏体不锈钢的基础上,降低C含量至≤0.02%,增加Ni含量为4-6%,Mo含量为0.5-2.5%。超级马氏体不锈钢的成分特点就决定了它是一种具有高强度、高韧性以及良好的耐蚀等性能的不锈钢材料,该材料优异的综合性能与其回火显微组织中具有逆变奥氏体这一韧性相有关。因此,控制回火过程中逆变奥氏体的形成对和发展具有良好强韧性的超级马氏体不锈钢具有重要的意义。本文采用多种实验方法对三种不同成分的超级马氏体不锈钢展开基础性研究工作,研究了热处理制度对不同Cr含量试验钢组织性能的影响并对比了两试验钢中逆变奥氏体形成规律及机制的异同,还探索研究了合金元素(Ni和Cu)的添加对逆变奥氏体形成的作用。
     13Cr和15Cr两种超级马氏体不锈钢经900-℃温度淬火后其显微基体组织都为淬火马氏体,而15Cr钢中由于添加有较多的Cr含量导致其淬火组织中还含有少量的残余奥氏体和δ-铁素体。两试验钢的奥氏体晶粒尺寸均随着淬火温度的升高不断增大,当淬火温度小于1050℃时,13Cr钢中奥氏体晶粒长大速度较快,而淬火温度高于1050℃时,15Cr钢由于解除碳化物及第二相的钉扎作用更明显,使其奥氏体晶粒长大速度迅速增加。在整个淬火温度范围内两试验钢的洛氏硬度变化趋势相似,但15Cr钢具有更高的硬度且变化趋势相对平缓。两试验钢经1050℃淬火,400-750℃回火后,回火显微组织都为回火马氏体、逆变奥氏体和ε-Cu。两试验钢中逆变奥氏体含量随着回火温度的升高都是先增加再减少,并在650-700℃时达到最大值,但15Cr钢中逆变奥氏体的含量多于13Cr钢,在基体中的分布也更密集。由于15Cr钢中具有较高的合金总量及较多的逆变奥氏体,因此它的硬度、强度和延伸率都高于13Cr钢,并且随着回火温度的升高各项性能的变化相对平缓。
     超级马氏体不锈钢中逆变奥氏体的形成机制为扩散机制,Ni元素的扩散对逆变奥氏体的形核长大起到重要作用。但13Cr钢和15Cr钢中逆变奥氏体的形成规律较相似,但仍存在差异。两者的相同之处包括:(1)逆变奥氏体含量和尺寸变化趋势相同,即随着回火温度的升高,两试验中逆变奥氏体的含量和尺寸均先增加再减小,并在650-700℃达到最大值。(2)两试验钢中逆变奥氏体的形成规律相同:即在低温回火时,逆变奥氏体开始形核;随着回火温度的升高,Ni元素在逆变奥氏体内的富集程度不断提高,导致逆变奥氏体尺寸逐渐长大;当回火温度继续升高后,逆变奥氏体由于稳定性下降而导致回溶,其尺寸逐渐变小,而马氏体板条内部的逆变奥氏体在回溶过程中,变细的逆变奥氏体会将原来较宽的马氏体板条分割成两条或是若干条,从而导致对基体组织的细化。(3)随着逆变奥氏体含量的变化,两试验钢回火后力学性能变化趋势相同,即两钢的抗拉强度随着回火温度的升高均先减小再增加,与逆变奥氏体含量变化趋势相反,而延伸率随着回火温度的升高先增加再减小,与逆变奥氏体含量变化趋势基本相同。
     13Cr钢和15Cr钢中逆变奥氏体的形成规律存在的不同之处包括:(1)形成温度不同。经测试分现,13Cr钢中逆变奥氏体在550℃回火时开始形成,15Cr钢在450℃回火时逆变奥氏体开始形核。(2)形核位置存在差异:13Cr钢中逆变奥氏体的主要形核位置主要集中在马氏体板条边界处和马氏体板条内部,而15Cr钢除了以上两个形核位置外,其逆变奥氏体还会附着在碳化物M23C6处形核。(3)含量与尺寸不同:15Cr钢中由于含有较高的Cr和Ni,其回火组织中逆变奥氏体的含量和尺寸明显大于13Cr钢。(4)Ni元素富集程度不同:在逆变奥氏体形核长大过程中,15Cr钢中逆变奥氏体内的Ni的富集程度大于13Cr钢,从而导致15Cr钢中逆变奥氏体更稳定。(5)细化基体的程度不同:当回火温度超过650-700℃时,逆变奥氏体将重新转变为马氏体,15Cr钢在回溶过程中对基体组织的细化作用更明显。
     经过对逆变奥氏体的形成过程分析发现,Cu与Ni对促进其形核长大具有一定的协同作用。对比1.5Cu钢和3Cu钢逆变奥氏体的形成发现:当Cu添加量较多时,会增加逆变奥氏体中Ni的富集程度和富集区域,从而促进逆变奥氏体含量;此外,在逆变奥氏中Ni浓度高的区域,Cu元素的富集程度也较大,并且此区域附近ε-Cu析出的也较多。即Cu和Ni在促进逆变奥氏体形核长大方面具有协同作用。这一协同作用使钢中逆变奥氏体含量增加,从而对改善超级马氏体不锈钢的力学性能起到促进作用。
On the basis of traditional martensitic stainless steel, super martensitic stainless steel (SMSS) decreases the content of carbon (wt.%≤0.02%) and increases the content of Ni (4%~6%) and Mo (0.5%~2.5%). Because of the feature of composition and application, super martensitic stainless steel has high strength, high toughness and good corrosion resistance and other properties.The excellent of properties of this steel is related with the reversed austenite. In this thesis, three kinds of SMSS are designed. The effect of heat treatment processing on the microstructures and mechanical properties of different content of Cr tested steels have been researched. The formation rules and transformation mechanism of reversed austenite in tested steels have been focused. The influence of alloying elements (Ni and Cr) on formation of reversed austenite have been studied.
     The matrix microstructure of13Cr and15Cr tested steels is lath martensite after900-1100℃quenching, while there are retained austenite and δ-ferrite in15Cr because of higher Cr content. The sizes of austenite grain increases with quenching temperature increasing. When the quenching temperature is below1050℃, the growth of austenite grain13Cr is faster. However, when the quenching temperature is above1050℃, the growth of austenite grain in15Cr increases rapidly due to dissolution of the carbide and the second phase. The variation of HRC in two tested steels is similar after quenching. HRC of15Cr is bigger and more gently than13Cr. The microstructures are tempered martensite, reversed austenite and ε-Cu after tempering at400-750℃in two tested steels. The volume fraction of reversed austenite increases first, and then decreases with the increasing tempering temperature and reaches the maximum value at650-700℃. Reversed austenite in15Cr is more than that in13Cr and distributes more dense in the matrix. Since there are more amount of alloying element and reversed austenite, so HRC, tensile strength and elongation are higher than those in13Cr steel. Moreover, the variation of the mechanical properties in15Cr is more smooth with the increasing tempering temperature.
     The formation mechanism of reversed austenite is diffusion in super martensitic stainless steel. Ni diffusion plays an important role in nucleation and growth of reversed austenite. The formation of reversed austenite in13Cr and15Cr steels is similar, but there are still some difference. The sameness:(1) Both the quantity and the size of reversed austenite increases first, and then decreases with the increasing tempering temperature and reacher the maximum value at650-700℃(2) The formation rule of reversed austenite in two tested steels in the same. Reversed austenite nucleates at low tempering temperature; With the increasing tempering temperature, the degree of Ni enrichment in reversed austenite increases constantly, so that the reversed austenite size becomes bigger; When the tempering temperature continues to rise, reversed austenite dissolved back and its size becomes smaller. The dissolution of reversed austenite in the martensitic lath will separate the lath into two or several, which leading to refinement of matrix.(3) The variation trend of mechanical properties is the same. The tensile decreases first, and then increases with the tempering temperature, which is opposite with the variation of the reversed austenite quantity. However, elongation and the amount of reversed austenite are both increase first, and then decrease with the increasing tempering temperature
     The formation of reversed austenite in13Cr and15Cr steels still exist some differents:(1) The reversed austenite in13Cr forms at550℃, while forms at450℃in15Cr.(2) The nucleation site of reversed austenite are at the boundary of martensitic lath of in the lath in both13Cr and15Cr. In addition, reversed austenite in15Cr also can attach to the M23C6and nucleate.(3) Due to the more content of Cr and Ni, the amount and size of reversed austenite in15Cr are bigger than those in13Cr.(4) The degree of Ni enrichment in15Cr reversed austienite is bigger than that in13Cr.(5) When the reversed austenite dissolve, the refinement effect on matrix in15Cr is more obvious than that in13Cr.
     This paper compares two tested steel with1.5Cu and3Cu. The results show that there is a synergistic effect between Ni and Cu on formation of the reversed austenite. When Cu content is higher, it can increase the degree of Ni enrichment in reversed austenite and the quantity of enrichment areas. Thus it also can promote the increasing of amount of reversed austenite. Moreover, in the area of high Ni concentration, there also is the high degree enrichment of Cu and ε-Cu precipitation. This synergy can make reversed austenite content increased and the mechanical properties of super martensitic stainless steel improved.
引文
[1]Lula R A. Stainles steels [M]. Metals Park:American Society of Metals,1986:221-225
    [2]薄鑫涛.不锈钢钢种发展的一些动向[J].热处理,2007,22(4):5-9
    [3]陆世英,张廷凯,康喜范.不锈钢[M].北京:原子能出版,1988:2-5
    [4]B. I. M. Peckner D. Handbook of Stainless Steels[M]. New York:McGraw-Hill Book Co,1977:89-91
    [5]K.H. Lo, C.H. Shek, J. K. L. Lai. Recent developments in stainless steels[J]. Materials Science and Engineering R,2009,65 (4-6):39-104
    [6]B. I. M. Peckner D. Handbook of Stainless Steels[M]. New York:McGraw-Hill Book Co,1977:101-103
    [7]张小彬,刘常升,朱杰,郑玉贵.大型水轮机叶片马氏体不锈钢的超声空蚀行为[J].东北大学学报,2006,27(12):1335-1338
    [8]Masahiko Natsume, Hiroyuki Akebono, Masahiko Kato, Atsushi Sugeta. Fatigue properties and crack propagation behavior of stainless cast steel for turbine runner of hydraulic power generation[J]. Procedia Engineering,2009,2: 1273-1281
    [9]方旭东,张寿禄,杨常春,夏焱,赵建伟.TGOG13Cr-1超级马氏体不锈钢的组织和性能[J].钢铁,2007,42(8):74-77
    [10]Zou Dening, Han Ying, Zhang Wei, Fang Xu-dong. Influence of tempering process on mechanical properties of 00Cr13Ni4Mo supermartensitic stainless steel[J]. Journal of Iron and Wexl Research, International,2010,17(8):50-54
    [11]刘建华,赵亮,马党参,陈再枝,康爱军.碳含量对Crl7Mo型耐蚀塑料模具钢组织和性能的影响[J].特殊钢,2006,27(4):22-24
    [12]Orhan Oztqrka, Ortac Onmus, D.L. Williamson. Microstructural, mechanical, and corrosion characterization of nitrogen-implanted plastic injection mould steel[J]. Surface & Coatings Technology,2005,196:333-340
    [13]Fan Ruicheng, Gao Ming, Ma Yingche, Zha Xiangdong, Hao Xianchao and Liu Kui. Effects of heat treatment and nitrogen on microstructure and mechanical properties of 1Cr12NiMo martensitic stainless steel[J]. Journal Materials Science and Technology,2012,28(11),1059-1066.
    [14]李驹,杜巧连,王小祥.00Cr12Ni9Mo4Cu2马氏体时效不锈钢的时效硬化行为及其影响因素[J].稀有金属材料与工程,2007,36(3):273-276
    [15]J.-O. Nilsson, A. Hultin Stigenberg and P. Liu. Isothermal Formation of Quasicrystalline Precipitates and Their Effect on Strength in a 12Cr-9Ni-4Mo Maraging Stainless Steel [J]. Metallurgical and Materials Transactions A,1994, 25(10):2225-2233
    [16]白鹤,王伯健.马氏体不锈钢成分、工艺和耐蚀性的进展[J].特殊钢,2009,30(2):30-33
    [17]O. Kubaschewshi. Iron-binary phase diagrams[M]. New York:Springer-Verlag, 1982:32-33
    [18]王晓敏.工程材料学[M].北京:机械工业出版社,1999:38-40
    [19]Lyman, Taylor, ASM International, Handbook Committee, American Society for Metals. Metallography, structures and phase diagram[M]. Metals Park: American Society for Metals,1973:75-77
    [20]陆世英.不锈钢概论(5)[J].不锈:市场与信息.2010,11:15-16
    [21]陆世英.不锈钢概论[M].北京:中国科学技术出版社,2007:54-62
    [22]O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden. The role of laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels[J]. Intermetallics,2013,32:362-372
    [23]P. P. Koistinen, R. E. Marburger. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgic,1959, (7):59-60
    [24]张孝福.超级马氏体不锈钢[J].不锈钢,1999,5:16-19
    [25]王斌,栗卓新,李国栋.超级马氏体不锈钢焊接的研究进展[J].新技术新工艺,2008,5:57-61
    [26]N. Anselmo, J.E. May, N.A. Mariano, et al. Corrosion behavior of supermartensitic stainless steel in aerated and CO2-saturated synthetic seawater[J]. Materials Science and Engineering A,2006,428:73-79
    [27]Duisberg J, Niedethoff K A, Popperiing R.13%Cr steels for flowline and pipeline applications[J]. Stainless Steel World,1996,8(6):29-33
    [28]Wbollin P, Kostrivas A.Use of supermartensitie stainless steel Pipe for offshore fiowline applications[A]. In:25th International Conference on Offshore Mechanics and Arctic Engineering[C]. Hamburg:ASME,2006:565-572
    [29]赵晨旭.超级马氏体不锈钢性能评价方法的最新进展[J].不锈钢世界,2004,10:31-34
    [30]陈超,韩怀月.超级马氏体不锈钢环焊缝的耐蚀性[J].不锈钢世界,2005,9:35-39
    [31]Y. Iwabuchi. Toughness deterioration ofl3Cr-3.8Ni cast steel in the process of tempering[J]. Tetsu-to-Hagane,1984,70:701-707
    [32]K.H.Lo, C.H.Shek, J.K.L.Lai. Recent developments in stainless steels[J]. Materials science and Engineering R,2009,65(4-6):39-104
    [33]J.R.Davis. ASM Speciality Handbook-Stainless Steels[M]. Metal Park:ASM International,1996:122-125
    [34]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999:146-150
    [35]P. G. Winchell, M. Cohen. The strength of martensite[J]. Transactions of the American Society for Metals,1962,55:347-360
    [36]T. Swarr, G. Krauss. The effect of structure on the deformation of as-quenched and tempered martensite in an Fe-0.2 pct C alloy[J]. Metallurgical and Materials Transactions A,1976,7:41-48
    [37]R. H. Abron. Low carbon martensite[J]. Transactions of the American Society for Metals,1956,48:51-55
    [38]M. Abareshi, E. Emadoddin. Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel[J]. Materials and Design,2011,32:5099-5105
    [39]Gareth Thomas. Retained austenite and tempered martensite embrittlement[J]. Metallurgical and Materials Transactions A,1978,9(3):439-450
    [40]R. Castro and J. J. De cadeney. Welding metallurgy of stainless and heat-resisting steels[M]. Cambridge:Cambridge University Press,1974:476-479
    [41]S. Hashizume. A new 15%Cr martensitic stainless steel developed for OCTG[J]. In corrosion,1991,28,24-32
    [42]Li Xin-mei, Zou Yong, Zhang Zhong-wen and Zeng-da. Microstructure evolution of a novel super304H steel aged at high temperatures[J]. Materials Transactions,2010,51(2):305-309
    [43]柳青.高铬铸铁中碳化物的变质处理[D].济南:山东大学,2011:1-81
    [44]李新梅.Super304H奥氏体钢焊接接头组织与性能研究[D].济南:山东大学,2010:4-146
    [45]赵建顺,孙俊生,冯勇.超级钢铁材料及其焊接研究进展[J].山东交通学院学报,2004,12(1):28-32
    [46]M Goldschmitz, L Karlsson, R Pedersen, S Rigdal and J Van Den Broek. Developments in the welding of supermartensitic stainless steels:recent developments and applications [J]. Welding Internation 1,2004,18(7):543-549
    [47]Eli Kondo K, Ogawa K,Amaya H, et al. Development of weldable super 13Cr martensitic stainless steel for flowline[J]. International Society of Offshore and Polar Engineering,2002.
    [48]Xie Wei, Cheng Hai-Feng, Chu Zeng-Yong, Liu Hai-Tao and Chen Zhao-Hui. Effect of FSS on microwave absorbing properties of hollow-porous carbon fiber composites[J]. Materials and Design,2009,30(4):1201-1204
    [49]Shen Guo-Zhu, Xu Zheng, Li Yi. Absorbing properties and structural design of microwave absorbers based on W-type La- doped ferrite and carbon fiber composites[J]. Journal of Magnetism and Magnetic Materials,2006,301(2) 325-330
    [50]Brezina, P. Martensitic Cr--Ni-steel with low C content. I.--Development of material type[J]. Metallurgical Understanding and Manufacture, Harterei-Tech. Mitt.1980,38(5):197-214
    [51]杜荣耀,乔元绩,大型Ni4铸钢叶片逆变奥氏体组织对裂纹的影响[J].铸造技术,1996,(5):3-5
    [52]P. P. Sinha, D. Sivakumar, N. S. Babu, T. Tharian, A. Natarajan. Austenite reversion in 18NiCo-free maraging steel[J]. Steel Research.1995(66):490-494.
    [53]Dong-Seok Leem, Yong-Deuk Lee, Joong-Hwan Jun, Chong-Sool Choi. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3% Si martensitic stainless steel [J]. Scripta Materialia,2001,45:767-772
    [54]H. Shirazi, G. Miyamotoa, S. Hossein Nedjadc, H. Ghasemi-Nanesab, M. Nili Ahmadabadi, T. Furuhara. Microstructural evaluation of austenite reversion during intercritical annealing of Fe-Ni-Mn martensitic steel[J]. Journal of Alloys and Compounds,2013,577(1):572-577
    [55]Wang Pei, Xiao Na-min, Lu Shan-ping, Li Dian-zhong, Li Yi-yi. Investigation of the mechanical stability of reversed austenite in 13%Cr-4%Ni martensitic stainless steel during the uniaxial tensile test[J].Materials Science & Engineering A,2013,586:292-300
    [56]S.H. Chen, M.J. Zhao, X.Y. Li, L.J. Rong. Compression stability of reversed austenite in 9Ni steel [J]. Journal of Materials Science and Technology,2012, 28(6):558-561
    [57]李小宇,王亚,杜兵等,逆变奥氏体对0Crl3Ni5Mo钢热处理恢复断裂韧性的作用[J].焊接,2007,10:47-49
    [58]Eun Seo Park, Dae Kyoung Yoo, Jee Hyun Sung, Chan g Yong Kang,. Formation of reversed austenite during tempering of 14Cr-7Ni-0.3Nb-0.7Mo-0.03C super martensitic stainless steel[J]. Metals and Materials Intenational,2004,10(6):521-525
    [59]Ronald Schnitzer, Gerald A. Zickler, Erhardt Lach. Influence of reverted austenite on static and dynamic mechanical properties of a PH 13-8 Mo maraging steel[J]. Materials Science and Engineering,2010, A527:2065-2070
    [60]Darrel Frear, J. W. Morris, Jr. A Study of the effect of precipitated austenite on the fracture of a ferritic cryogenic steel[J]. Metallurgical Transactions A,1986, 17A(2):243-252.
    [61]Lee Tae-Ho, Kim Sung-Joon. Phase identification in an isothermally aged austenitic 22Cr-21Ni-6Mo-N stainless steel[J]. Scripta Materialia,1998,39(7): 951-956.
    [62]R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani, L.P. Karjalainen. Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe-16Cr-10Ni alloy:The effect of interstitial alloying elements and degree of austenite stability on phase reversion[J]. Materials Science and Engineering A, 2010,52:7779-7792
    [63]Zhang Yi. ON a'-y transformation in a maraging stainless steel 00Crl3Ni6MoNb[J]. Acta Metallurgica Sinica,1982,18:395-401.
    [64]宋元元.0Cr13Ni4Mo不锈钢中逆变奥氏体的相变机制[D].沈阳:中国科学院金属研究所,2011:59-79
    [65]Y.Y. Song, X.Y. Li, L.J. Rong,Y.Y.Li, T. Nagai. Reversed austenite in 0Crl3Ni4Mo martensitic stainless steels[J]. Materials Chemistry and Physics, 2014,143:728-734
    [66]H. SMITH, D. R. F. WEST. The reversion of martensite to austenite in certain stainless steels[J]. Journal of Materials Science,1973,8:1413-1420.
    [67]P. D. Bilmes, M. Solari, C. L. Llorente. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo ma rtensitic steel weld metals [J]. Materials Characterization,2001,46:285-296.
    [68]Hubackova J, Cihal V, Mazanec K. Two-Stage Tempering of steel 13%Cr6%Ni[J]. Material wissenschaft und Werkstofftechnik,1984,15:411-415
    [69]Kouki Tomimura. Setsuo Takaki, Youichi Tokuna. Reversion mechanism from deformation induced martensite to austenite in metastable austenitic stainless steels[J]. Iron and Steel Institute of Japan, International,1991,31(12):1431-1437
    [70]Y.-K.Lee, H.-C.Shin, D.-S.Leem,J.-Y.Choi, W. Jin, C.-S.Choi. Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13C r-7Ni(wt-%) martensitic stainless steel[J]. Materials Science and Technology,19(3):393-398
    [71]V.F Zackay etc.The enhancement of ductility in high-strength steels[J].Alloy and Microstructural Design.1967:40-46.
    [72]W.W. Gerberich. Fracture mechanics of a composite with ductile fibers[J]. Journal of the Mechanics and Physics of Solids,1971,19(2):71-87
    [73]朱家琛,李德臣.马氏体逆变与顺变黄铜季裂与锌“哭”[J].铸造技术,2004,25(2):145-147
    [74]YD Park, IS Maroef, A Landau, DL Olson. Retained austenite as a hydrogen trap in steel welds[J]. Welding Journal,2002,81(2):27-35
    [75]Srinivasan B, Sharkawy S W, Dietzel W. Hydrogen assisted stress-cracking behaviour of electron beam welded supermartensitic stainless steel weldments[J]. Materials Science and Engineering A,2004,385(2):6-12
    [76]周倩倩,雍兴平,翟玉春.时效处理对FV520B马氏体时效钢的氢脆敏感性的影响[J].腐蚀科学与防护技术,2008,20(6):416-419
    [77]魏葆春.逆变奥氏体对OCrl3NiMo马氏体不锈钢抗汽蚀性能的影响[J].热加工工艺,1989,5:21-2
    [78]姜越.马氏体时效不锈钢合金化设计与组织性能[M].哈尔滨:哈尔滨工业大学出版社,2007:93-105
    [79]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社,1998:98-104
    [80]G.克拉斯.钢的热处理原理[M].李崇谟,谢希文,刘韧馥译.北京:冶金工业出版社,1987:10-13
    [81]U.K. Viswanathan, G.K. Dey, V. Sethumadhavan. Effects of austenite reversion during overageing on the mechanical properties of 18 Ni (350) maraging steel[J]. Materials Science and Engineering A,2005,398:367-372
    [82]罗素娟.00Cr15Ni6Mo2AlNb钢中逆转变奥氏体的测定[J].宇航材料工艺,1982,6:34-36
    [83]Y. Tomota, Y. Morioka, W. Nakagawara. Epsilon martensite to austenite reversion and related phenomena in Fe-24Mn and Fe-24Mn-6Si alloys[J]. Acta Materials,1998,46(4):1419-1426
    [84]Wang P, Lu SP, Xiao NM, Li DZ, Li YY. Effect of delta ferrite on impact properties of low carbon 13Cr-4Ni martensitic stainless steel [J]. Materials Science and Engineering A,2010,527:3210-3216
    [85]Carrouge D, Bhadeshia HKDH, Woollin P. Effect of d ferrite on impact properties of super martensitic stainless steel heat affected zones[J]. Science and Technology of Welding and Joining,2004,9:377-89.
    [86]Takano K, Sakakibara M, Matsui T, Takaki S. Effect of alloying elements and microstructure on corrosion resistance and hardness of martensitic stainless steel[J]. Journal of Iron and Steel Inst Japan,2008,86:123-30.
    [87]桂运平,郭安吉.0Cr13Ni4Mo马氏体不锈钢热处理对性能的影响[J].物理测试,1992,1:27-36
    [88]Steel Castings Handbook, Supplement 8, High Alloy Data Sheet, Corroison Series. Steel Founders'Society of America 2004
    [89]耿承伟.ZGOCr13Ni4Mo钢正火终冷温度的确定[J].物理测试,1992(5):4-8
    [90]耿承伟.ZGOCr13Ni4Mo钢二次回火中逆转变奥氏体量的控制[J].物理测试,1992(5):8-13
    [91]耿承伟,何树生,于波.ZG0Crl3Ni4Mo马氏体不锈钢研制[J].物理测试,1992(4):13-25
    [92]Tihe Zhou, Hatem S. Zurob, Elachmi Essadiqi, Benoit Voyzelle. Kinetics of Delta-Ferrite to Austenite Phase Transformation in a Two-Phase Fe-Al-C Alloy[J]. Metallurgical and Materials Transactions A,2011,42A:2011-3349
    [93]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2003:256-282
    [94]Indrani Sen, E Amankwah, N. S. Kumar, E. Fleury, K. Oh-ishi, K. Hono, U. Ramamurty. Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with cooper[J]. Materials Science and Engineering A, 2011,528(13):4491-4499.
    [95]Tan Shu-ping, Wang Zhen-hua, Cheng Shi-chang, Liu Zheng-dong, Han Jie-cai, Fu Wan-tang. Effect of Cu content on aging precipitation behaviors of Cu-rich phase in Fe-Cr-Ni alloy[J]. Jouranl of Iron and Steel Research, International, 2012,17:63-68.
    [96]J. Singh, G.R. Purdy, G. C. Weatherly. Microstructural and microchemical aspects of the solid-state decomposition of delta ferrite in austenitic stainless steels[J]. Metallurgical Transactions A,16A(8):1985-1363
    [97]K. S. Chandravathi, K. Laha, K. Bhanu Sankara Rao, S. L. Mannan. Microstructure and tensile properties of modified 9Cr-1Mo steel (grade 91)[J]. Materials Science and Technology,2001,17(5):559-565
    [98]M. Asuncion valiente Bermejo. Predictive and Measurement Methods for Delta Ferrite Determination in Stainless Steels[J]. Welding Journal,2012,4(91): 113-121
    [99]D. J. Dyson, B. Holmes. Effect of alloying additions on the lattice parameter of austenite. Iron and Steel Institute of Japan.1970(208):469-474
    [100]P.D. Bilmes, M. Solari, C.L. Llorente. Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals[J]. Materials Characterization,2001,46:285-296
    [101]H. Nakagawa, T. Miyazaki. Effect of retained austenite on the microstructure and mechanical properties of martensitic precipitation hardening stainless steel [J]. Journal of materials science,1999(34):3901-3908
    [102]D. H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, K. Hono. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensiticprecipitation-hardened stainless steel[J], Materials Science and Engineering A,2005,394:285-295
    [103]I. Timokhina, P. Hodgson, E. Pereloma. Effect of microstructureon the stability of retained austenite in transformation-induced-plasticity steels[J]. Metallurgical and Materials Transactions A,2004,35:2331-2341
    [104]S. H. Kim, C. Y. Kang, K. S. Bang. Weld metal impact toughness of electron beam welded 9% Ni steel[J]. Journal of Materials Science,2001,36:1197-120
    [105]雍岐龙.钢铁结构材料中的第二相[M].北京:冶金工业出版社,2006:24-26
    [106]郝士明.材料热力学[M].北京:化学工业出版社,2004:5-34
    [107]S. Takaki, S.Tanimoto, K. Tomimura and Y. Tokunaga. Strengthening of metastable 16-10 austenitic stainless steel by ultra grain refining[J]. Tetsu-to-Hagane,1988,74,1058-1062
    [109]T. Maki and I.Tamura. Morphology and Substructure of Lath Martensite in Steels[J]. Tetsu-to-Hagane,1981,67:852-866.
    [110]Kouki. Tomimura, Setsuo. Takaki, Seiji. Tanimoto, Youichi. Tokunaga. Optimal chemical composition in Fe-Cr-Ni alloys for ultra grain refining by reversion from deformation induced martensite[J]. Journal of Iron and Steel, International,1991,31:721-727
    [111]R.D.K. Misra, Z. Zhang, P.K.C. Venkatasurya, M.C. Somani, L.P. Karjalainen. The effect of nitrogen on the formation of phase reversion-induced nanograined/ultrafine-grained structure and mechanical behavior of a Cr-Ni-N steel[J]. Materials Science and Engineering A,2011,528:1889-1896
    [112]Y.Y. Song, D. H. Ping, F. X.Yin, X.Y. Li, Y. Y. Li. Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel[J]. Materials Science and Engineering A,2010,527:614-618
    [113]X.P. Ma, L.J. Wang, B. Qin, C.M. Liu, S.V. Subramanian. Effect of N on microstructure and mechanical properties of 16Cr5NilMo martensitic stainless steel[J]. Materials and Design,2012,34:74-81
    [114]HU Wen-quan, HU Shi-ju, ZHANG Wei-qiang. Influence of Copper on Antibacterial Property and Mechanical Property of Low-carbon Martensite Stainless Steel[J]. Hot Working Technolygy,2009,38(2):32-34.
    [115]Othen P. J., Jenkins M. L., Smith G. D. W. High-resolution electron microscopy studies of the structure of Cu precipitates in a-Fe[J]. Philosophical Magazine A,1994,70(1),:1-24
    [116]冷文秀,田文怀.Fe-Cu二元合金中的B2析出相及时效硬化[J].材料热处理学报,2009,30(3):80-83
    [117]Hardouin Duparc H A, Doole R C, Jenkins M L. High-resolution electron microscopy study of copper precipitation in Fe-1.5 wt% Cu under electron irradiation[J]. Philosophical Magazine Letters,1995, (6):325-333
    [118]Wang Li-jun, Cai Qing-wu, Wu Hui-bin,Yu Wei. Effects of Si on the stability of retained austenite and temper embrittlement of ultrahigh strength steels[J]. International Journal of Minerals, Metallurgy and Materials,2011,18(5): 543-550
    [119]Ren Ling, Zhu Jinming, Nan Li, Yang Ke. Differential scanning calorimetry analysis on Cuprecipitation in a high Cu austenitic stainless steel[J]. Materials & Design,2011,32:3980-3985
    [120]Gaber A, Mossad Ali A, Matsuda K, Kawabata T. Yamazaki, T. Lkena. S. Study of the developed precipitates in Al-0.63Mg-0.37Si-0.5Cu (wt.%) alloy by using DSC and TEM techniques[J]. Journal of Alloys Compound,2007,432:149-155
    [121]朱丽慧,赵钦新,顾海澄,陆燕荪.关于钢中用铜合金化的再认识[J].钢铁,1 999,34(3):71-78。
    [122]刘宗昌,安治国,任慧平.含铜高纯低碳钢及其沉淀强化[J].国外金属热处理,2005,26(4):11-16.
    [123]Yokio T, Takahashi M, Maruyama N, Sugiyama M. Cycliestress response and fatigue behavior of Cu added ferritic steels[J]. Journal of Materials Science., 2001,26:5757-5765.
    [124]Ppark T W, Kang C Y. The effects of PWHT on the toughness of weld HAZ in Containing HSLA-100 steel [J]. Journal of Iron and Steel, Internationgal,2000, 40:49-53.
    [125]梁基谢夫[俄].金属二系相图手册[M].郭青蔚.北京:化学工业出版社,2012,209-210
    [126]陈景榕,李承基.金属与合金的固态相变[M].北京:冶金工业出版社,1997,156-162
    [127]B. Soylu and R. W. K. Honeycombe. Microstructural refinement of duplex stainless steels[J]. Materials Science and Technology,1991,7:137-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700