用户名: 密码: 验证码:
缸体感应式集成相对位移自传感磁流变阻尼器的设计及实验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变(Magnetorheological, MR)阻尼器被认为具有广阔的应用前景。要充分发挥采用MR阻尼器构成的半主动悬架系统的特长,实现反馈控制是必不可少的,其前提是能够采用传感器获取应用对象的动态信息。现有的基于MR阻尼器的半主动悬架系统通常采用与MR阻尼器分离的动态传感器实现振动测量,由此引起的明显问题是使系统更复杂,导致需要更大的安装空间、增加重量、提高系统成本。同时,与MR阻尼器分离配置的动态传感器直接暴露于外部工作环境之中,易受到外界环境碰撞、渗水、渗油、电磁干扰等影响,导致系统可靠性降低。所以,简化基于MR阻尼器的半主动悬架系统的结构、降低系统成本、提高系统可靠性是实现MR阻尼器大规模工业化应用急待解决的问题。
     可以想象,如果将传感器和MR阻尼器进行结构集成和功能复用则可有效降低系统的结构复杂性、提高系统的整体可靠性和降低应用成本。本文在已实现的MR阻尼器相对位移自传感的集成相对位移传感器( Integrated Relative Displacement Sensor, IRDS)技术的基础上,提出并研究了一种基于该技术的缸体感应式集成相对位移自传感磁流变阻尼器( Integrated Relative Displacement Self-Sensing MR Damper, IRDSMRD)的原理。在此基础上设计了一种缸体感应式集成相对位移自传感磁流变阻尼器,实现了相对位移传感器与MR阻尼器的结构集成和功能复用。采用本文提出并研究的IRDSMRD构成半主动悬架系统不再需要另外配置传感器及连接线缆,可以简化系统结构、降低系统成本、提高系统可靠性。
     本文的主要研究工作和成果包括:
     1.针对MR阻尼器的反馈控制问题并结合线性磁流变阻尼器的集成传感技术,进一步完善了IRDS的相对位移测量的理论模型。
     2.在已实现的IRDS原理的基础上,提出并研究了IRDS和MR阻尼器在交直流共同励磁情况下的IRDSMRD的工作原理。
     3.在建立IRDSMRD初步参数模型的基础上,利用Ansoft/Maxwell 2D提供的电磁场有限元建模(Finite Element Model, FEM)和有限元分析(Finite Element Analysis, FEA)工具分别对本文提出并实现的IRDSMRD的IRDS瞬态磁场和MR阻尼器静磁场进行了有限元建模和初步仿真分析。
     4.在初步仿真结果的基础上,进一步分析了阻尼器的关键结构参数、集成相对位移传感器的载波信号频率以及交直流共同励磁情况下对IRDSMRD的阻尼性能和传感性能(灵敏度和线性度)的影响,确定了一套性能综合最优的IRDSMRD优化参数模型,并在此基础上对其可控阻尼特性与集成传感特性进行了预估。研究结果表明,通过本文提出的集成相对位移传感器技术能够将相对位移传感功能集成到MR阻尼器上,而且本文设计的IRDSMRD模型具有较大的可控阻尼比和较好的相对位移自传感功能。
     5.在IRDSMRD原理研究和仿真验证的基础上,设计并试制了IRDSMRD原型,基于MATLAB/SIMULINK/RTW软件、PLS-10振动试验系统和dSPACE快速原型系统搭建了IRDSMRD的快速原型实验测试系统,重点测试了传感励磁载波信号频率、外界振动频率以及交直流共同励磁时对IRDS的影响,并给出了IRDSMRD的示功特性测试数据。实验测试结果验证了IRDSMRD原理模型和仿真验证的正确性。
     本文的研究工作为简化基于MR阻尼器的半主动悬架系统的结构、降低MR阻尼器的应用成本和提高基于MR阻尼器的半主动悬架系统的可靠性奠定了理论基础。同时,本文中实现的IRDSMRD的原型系统具有明显的工程应用前景。
Magnetorheological (MR) dampers are considered to be useful in many fields. However, in order to make full use of the advantages of the semiactive suspension system based on MR dampers, it is inevitable to realize the feedback control with the dynamic responses of the plant. One of the presuppositions to realize the feedback control is that the dynamic responces of the plant can be accessed, which are realized through the dynamic sensors. Up to now, the dynamic sensors aligned with the MR dampers in parallel are used to access the dynamic responces of the plant and/or across the MR dampers in the MR damper based semiactive suspension system, which will reslut in the following problems: (1) complicating the system, (2) enlarging the installation space, (3) increasing the cost, and (4) increasing the mass. In the meantime, the separated sensors that are exposed directly into the harmful working environments will be prone to be injured by collisions, water, oil, and electromagnetic field, which will decrease the reliability to some extent. In this case, in order to realize the massive production and application of MR dampers in industry, it is urgent to simplify the structure, improve the reliability, and decrease the cost of the semiactive suspension system based on MR dampers.
     We can image that it is a good idea to integrate the dynamic sensor into the MR damper to compose an MR damper with self-sensing ability of the dynamic responses, which can not only decrease the cost but also improve the reliability with elimination the separate sensors and its connectors from the conventional systems. In this dissertation, an integrated relative displacement sensor (IRDS) technology to make MR dampers self-sensing based on the electromagnetic induction and the working principle of an integrated relative displacement self-sensing MR Damper (IRDSMRD) based on the IRDS technology are proposed and realized. On this condition, an IRDSMRD is designed. The semiactive suspension system based on IRDSMRDs can exclude the separated sensors, which can simplify the structure, decrease the cost, and improve the realiability.
     The major research works completed in this dissertation include:
     1. According to the integrated sensory technology for linear MR dampers, the mathematic model of the IRDS based on electromagnetic induction is established for the feedback control of MR dampers.
     2. On the basis of the mathematic model of IRDS based on electromagnetic induction, the principle of the IRDSMRD are proposed and realized and the method to realize the semiactive suspension system based on IRDSMRDs also explored.
     3. On the basis of a preliminary parameter model of the IRDSMRD, the transient magnetic field of the IRDS and the static magnetic field of the MR damper are modeled and analyzed through the FEM (finite element modeling) and FEA (finite element analyzing) using the software package of Ansoft/Maxwell 2D. The influences of the key structural parameters, the frequency of the carrier of the IRDS, and the magnetization of AC and DC supplies on the damping and sensory performance of the IRDSMRD are analyzed and a set of the optimum parameters of the IRDSMRD is obtained.
     4. Based on the optimized parameters of the IRDSMRD, the damping and sensory performance of the IRDSMRD are predicted. The research results indicate that the function of the relative displacement sensing property can be integrated into MR dampers. Furthermore, the IRDSMRD designed in this dissertation possesses the large controllable damping ratio and the good relative displacement sensing performance utilizing the IRDS technology proposed in this dissertation.
     5. An IRDSMRD prototype is developed and a testing setup for the IRDSMRD is build using PLS-10 vibration test system and the dSPACE prototyping system. The influences of the frequency of the carrier of the IRDS, the frequency of the external vibration and the magnetization of AC and DC supplies on the sensory performance of the IRDS are tested and a set of the values of the IRDSMRD damping force is obtained. The experimental results validate the principle of the IRDSMRD and the simulation results.
     The research works in this dissertation establish the theoretical foundation to simplify the structure, decrease the cost, and improve the reliability of the semiactive suspension system based on MR dampers. Furthermore, the IRDSMRD proposed and realized in the dissertation possesses a cheerful prospect in industry.
引文
[1] Nagai M, Shioneri T, and Hayass M. Analysis of Vibration Suppression Control System of Semi-Active Secondry Suspension[J]. SICE, 1989, 929-932.
    [2] Nagai M. Recent Researches on Active Suspension for Ground Vehicle[J]. JSME, Int. J. Series C , 1993, Vol.36(2), 167-170.
    [3] Hrovat D. Application of Optimal Control to Advanced Automotive Suspension Design[J]. Trans. ASME, J. Dyn. Sys. Meas. Cont, 1993, Vol.115, 328-342.
    [4] Tomizuka M. Advanced control methods for automotive applications[J]. VSD, 1995, 24, 449-468.
    [5] Lieh J. The Effect of Bandwidth of Semi-Active Damper on Vehicle Ride[C]. Trans. ASME, J. Dyn.Sys. Meas. Cont, 1993, Vol.115, 571-575.
    [6] Rabinow J. The Magnetic Fluid Clutch[C]. AIEE Trans., 1948, 67,1308-1315.
    [7] Rabinow J. Magnetic Fluid Clutch[J]. National Bureau of Standards Technical News Bulletin, 1948, 32(4), 54-60.
    [8] Rabinow J. Magnetic Fluid Torque and Force Transmitting Device[J]. US Patent, 1951, No. 2,575,360.
    [9] Winslow W M. Method and Means for Translating Electrical Impulses into Mechanical Force[J]. US Patent, 1947, No. 2417850.
    [10] Winslow W M. Induced Fibration of Suspensions[J]. Journal of Applied Physics, 1949, 1137-1140.
    [11] Shulman Z P. Structure Physical Properties and Dynamics of Magnetorheological Suspensions[J]. Int. J. Mutiphase Flow, 1986, Vol. 12(6), 935-955.
    [12] Shulman Z P. Devices for the Diagnosis of Transfer Processes in Magnetorheological Suspensions[J]. Heat Transfer, 1987, Vol. 19(5).
    [13] Kordonsky W I. Magnetorheological Effect As a Base of New devices and Technologies[J]. J. of Magnetism and Magnetic Materials, 1993, Vol.122, 395-398.
    [14] Kordonsky W I. Magnetorheological Fluids and Their Applications[J]. Materials Technology, 1993, Vol. 8(11), 240-242.
    [15] http://www.mrfluid.com.
    [16] Standrud H T. Electric-field Valves inside Cylinder Vibrator[J]. Hydraulics Pneumatics, 1966, Vol.9, 139-143.
    [17] http://www.delphiauto.com.
    [18] Coulter J P. Application of Electrorheological Materials in Vibration Control[C]. Proc. 2nd Int. Conf. On ER Fluid, (Raleigh, Nc), 1989.
    [19] Carlson J D, Catanzarite D M, St K A, and Clair. Commercial Magneto-Rheological Fluid Devices[C]. Proc. of the 5th International Conference on ER Fluids, MR Fluids and Associated Technology, U. Sheffield, UK. 1995.
    [20] Carlson J D, Weiss K D. A growing Attraction to Magnetic Fluids[J]. Machine Design, 1994, August 8. 61-64.
    [21] Carlson J D. The Promise of Controllable Fluids[C]. Proc. of Actuator 94 (H.Borgmann and K. Lenz, Eds.), AXON Technologies Consult GmbH, 266-270.
    [22] Carlson J D, Cary, Michael J, Chzan, Raleigh, N.C. Magnetorheological Fluid Dampers[J]. U.S. Patent, 1994, No 5,277,281.
    [23] Dyke S J, Spencer B F, Sain M K. An Experimental Study of MR Damper for Seismic Protection[J]. Smart Dampers for Seismic Protection of Structures: Special Issue on Large Civil Structures, 1998, 258-265.
    [24] Pinkos A, Shtarkman E, Fitzgerald T. Active Damper using ER/MR Fluids[J]. Automotive Engineering, 1993 (6), 19-23.
    [25] Spencer B F, Dyke S J, Sain M K and Carlson J D. Phenomenological Model of A Magneto-Rheological Damper[J]. ASCE, Journal of Engineering Mechanics, 1997, 123(3), 230-238,
    [26] Dyke S J, Spencer B F, Sain M K and Carlson J D. Seismic Response Reduction Using Magnetorheological Dampers[C]. Proc. of the IFAC World Congress, San Francisco, CAL, 1996.
    [27] Kabakov A M, and Pabat A I. Development and Investigation of Control Systems of Magnetorheological Dampers[J]. Soviet Electrical Engineering, 1990, Vol. 61, No. 4, 55.
    [28] Kordonsky W I. Elements and Devices Based on Magnetorheological Effect[J]. Journal of Intelligent Material Systems and Structures, 1993, Vol. 4, No. 1, 65.
    [29] Kordonsky W I. Magnetorheological Effect as a Base of New Devices and Technologies[J]. Journal of Magnetism and Magnetic Materials, 1993, Vol.122, No. 1/3, 395.
    [30] Minagawa K, Watanabe T, and Munakata M. A Novel Apparatus for Rheological Measurements of Electro-Magneto-Rheological Fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 1994, Vol, 52, No. 1, 59.
    [31] Gavin H, Hoagg J, and Debussy M. Workshop on Smart Structures for Improved Seismic Performance in Urban Regions[C]. Proc.U.S.-Japan, 2001.
    [32]赵晓鹏.楔行施力的自适应阻尼器[P].实用新型专利,专利号: ZL96236426.6, 1999.
    [33]赵晓鹏.电流变液与压电陶瓷复合的自适应阻尼器[P].实用新型专利,专利号: ZL 96236145.3, 1999.
    [34]丘玲.一种新型磁流变流体阻尼器组件[P].实用新型专利,专利号: ZL 00229771.X, 2000.
    [35]周刚毅.用于车辆的直线型MR阻尼器[P].实用新型专利,专利号: ZL 01113535.2, 2001.
    [36]陈吉安,赵晓昱.应用于汽车减振的MR阻尼器的设计原理[J].设计·计算·研究·, 2002.
    [37]廖昌荣,张玉麟,陈伟民,黄尚廉.汽车MR阻尼器的设计与试验研究[J].功能材料与器件学报, 2001.
    [38]王恩荣.车辆座椅减振系统中可控磁流液阻尼器的性能测试研究[J].工业控制计算机,2003.
    [39] Wang D H and Liao W H. Semi-active controllers for magnetorheological fluid dampers[J]. Journal of Intelligent Material Systems and Structures, 2005, 16, 983-993.
    [40] Christopher A Paré. Experimental Evaluation of Semiactive Magneto-Rheological Suspensions for Passenger Vehicles. Master thesis, Virginia Polytechnic Institute and State University, 1998.
    [41] Hib Halverson. Magnetic Ride - Star Wars Meets the 50th Car[E]. http://www.corvetteactioncenter.com/forums/showthread.php?t=35121, 2003.
    [42]董小闵.汽车磁流变半主动悬架仿人智能控制研究.博士学位论文[重庆大学], 2006.
    [43] Gravatt John W. Magneto-Rheological Dampers for Super-sport Motorcycle Applications. Master Thesis, Virginia Polytechnic Institute and State University, 2003.
    [44] Simon D E. Experimental Evaluation of Semiactive Magnetorheological Primary Suspensions for Heavy Truck Applications. Master Thesis, Virginia Polytechnic Institute and State Uiversity, 1998.
    [45] Nehl T W, Jeri B A. Vehicle Suspension Damper With Relative Velocity Sensor Having Controlled Flux Path[J]. US Patent1993, NO 5, 251,729.
    [46] Nehl T W, Jeri B A, Larry M S. An Integrated Relative Velocity Sensor for Real-Time Damping Applications[C]. IEEE Transactions on Industry Application, 1996, Vol 32, No 4.
    [47] http://www.mts.com.
    [48] Russell J L J. Magnetostrictive position sensors enter the automotive market Springfield[J]. Sensors Online (http://www.sensorsmag.com), vol. 18, no. 12, December, 2001.
    [49] Lai D K, Wang D H. Principle, Modeling, and Validation of A Relative Displacement Self-Sensing Magnetorheological Damper[C]. SPIE Conference on Smart Structures and Materials, Vol. 5764, 2005.
    [50]王代华,赖大坤.磁电式相对位移自传感磁流变阻尼器[P].实用新型专利,专利号: 200520010193.5, 2007.
    [51] Briz F, Diea A, Degner M W. Dynamic Operation of Carrier-Signal-Injection-Based Sensorless Direct Field-Oriented AC Drivers[C]. Industry Application, IEEE Transactions on, 2000, Vol 36, 1360-1368.
    [52] Phillips R W. Engineering Application of Fluids with A Variable Yield Stress[J]. Ph. D Thesis, University of California, Berkeley, CA, 1969.
    [53] Yang G Q. Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control[J]. Ph. D Thesis, University of Notre Dame, Indiana, 2001.
    [54] Wang D H and Lai D K. Integrated relative displacement sensory method and system for magnetorheological damper based on the electromagnetic effect of the cylinder[P]. Chinese Invention Patent, Patent No.: ZL200610070839.8, Application Date: 2006.03.14, Issued Date: 2007.11.14, 2007.
    [55] Jolly Mark R, Bender Jonathan W and Carlson J David. Properties and Applications of Commercial Magnetorheological Fluids[J]. Journal of Intelligent Material Systems and Structures 10, 1999, 5-13.
    [56] Yuan G, Wang D H and Li Y P. A Controllable Current Driver for Motorcycle Used Magnetorheological Fluid Dampers[J]. Journal of Functional Materials, 2006, 37, 736-738.
    [57]刘国强. Ansoft工程电磁场有限元分析[M].电子工业出版社, 2005.
    [58] Jolly M R, Bender J W and Carlson J D. Properties and Applications of MR Fluids[C]. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, San Diego, CA, 15 Mar, 1998.
    [59] Lord Materials Division. Designing with MR Fluids[J]. Engineering Note, Lord Corporation, Thomas Lord Research Certer, Cary, NC, Nov. 1999.
    [60]赖大坤.磁电式相对位移自传感磁流变阻尼器的研究.重庆大学硕士学位论文, 2005.
    [61] Chu C S. Dynamic performance of disk-type magnetorheological fluid damper under alternatingmagnetic field[J]. Journal of Zhengjiang University (Engineering Science), 2006, 40, 464-468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700