用户名: 密码: 验证码:
基于双位置环反馈的悬浮控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮控制是磁浮列车的一项关键技术,目前采用的基于相对间隙反馈的单位置环控制系统在克服轨道扰动的性能方面有待进一步的提高和改进。本文围绕双位置反馈在悬浮控制中的应用展开研究,采用理论分析与仿真实验相结合的方法,主要完成了以下工作:
     首先,建立了单铁悬浮控制系统的数学模型,在此基础上对悬浮控制系统设计中常用的几种反馈进行了对比和分析,介绍了目前应用较为广泛的单位置环串级控制系统。
     其次,根据互补滤波器的思想讨论了基于双位置环的单铁悬浮控制系统的模型、滤波器的设计、闭环系统的稳定性分析等问题;从对给定信号的响应能力、抗轨道扰动性能和抗负载扰动能力等几个方面对双位置反馈和单位置反馈两种控制方案进行了对比和分析;从系统的稳定性角度分析了高通滤波器和低通滤波器参数的变化对系统的影响。
     然后,将双位置反馈控制的原理推广应用于速度环,详细讨论了基于双速度环的悬浮控制系统。从抗轨道随机扰动能力、对坡道的跟踪能力、弹性轨道上抑制车轨共振能力等几个方面与常规的单速度环系统作了对比分析,比较了频率加权求和与代数求和两种双速度环方法的特点。
     最后,搭建了以DSP为运算核心、FPGA为数字逻辑核心的数字控制器硬件平台,编制了基于DSP内部的定时器中断机制运行的悬浮控制程序,进行了单铁和单转向架的悬浮控制实验,比较了两种控制方案的实验效果,验证了理论分析结果的正确性。
Suspension control is the key technology of the maglev train research. The single position loop control system based on the gap feedback has some aspects to improve. The dissertation concentrate on the dual position feedback control in maglev suspension applaction, Adopting the way of analysis in theory togethered with the simulation experiment. The main contents are as follows:
     Firstly, the mathematical modal of the suspension system is built. And based on this, some kind of feedback in common use is analyzed and the cascade control method used abroadly is introduced.
     Secondly, based on the idea of the complementary filters, the modal of the single-electrical magnetic suspension control system using the dual position feedback, the design of the filters and the closed-loop stability and so on are discussed. The dual position feedback and the single position feedback control schemes are discussed in the way of the response to the given signal, the ability to restrain the disturbance from the track, the performance of reducing the influence of the load changes and so on. The influence due to changes of high pass filter and the low pass filter's parameters are analyzed from the system's stability angle.
     Then, the principle of the dual position feedback control is used in the dual velocity loop and the suspension control system based on the dual velocity feedback is discussed in detail. This control scheme is compared with the single velocity system in the way of considering the random disturbance of the roadway and when the train running on the transition curve as well as considering the elasticity of the track and so on. The characteristic between the two methods of frequency weight sum and the algebra sum are compared.
     Finally, the hardware of a digital controller is designed with DSP as the calculating core and FPGA as logical core. The program of the system is developed based on the inner interrupt function of the DSP. single magnet and bogie suspension experiments have been carried out. Also two kinds of control algorithms effect has been compared. The experiments confirmed that the analysis in theory is correct.
引文
[1]程建峰,苏晓峰.磁悬浮列车的发展及应用[J].铁道车辆,2003,41(11):14-17.
    [2]吴详明.磁浮列车[M].上海:上海科学技术出版社,2003.
    [3]孙秋明.基于磁通反馈的悬浮控制研究.国防科技大学硕士学位论文[D],2005.
    [4]梅竹.基于虚拟样机的磁浮列车建模及仿真[D].国防科技大学硕士学位论文,2006.
    [5]张锟.磁浮列车悬浮系统的数字控制技术研究[D].国防科学技术大学工学博士学位论文,2004.12.
    [6]E.Gottzein,R.Meisinger,L.miller.The "magnetic Wheel" in the Suspension of high-speed ground transportation vehicles[J].IEEE Trans.on V.T.,Vol.VT-29,No.1,Feb.1980:17-22.
    [7]郑永斌.EMS型中低速磁浮列车悬浮模块的解耦控制研究[D].国防科技大学硕士学位论文,2006.
    [8]Jonathan E Paddison,Hiroyuki Ohsaki,E.Masada.Control Strategies for Maglev Electromagnetic Suspension Bogies[J].Proceedings of the 35th Conference on Decision and Control,Kobe,1996:2976-2797.
    [9]E.Gottzein,B.Lange.Magnetic Suspension Control System for The MBB High Speed Train[J].Automatica,1975,11:271-284.
    [10]E.Gottzein,Karl-Heinz Brock,et al.Control Aspects of a Tracked Magnetic Levitation High Speed Test Vehicle[J].Automatica,1977,13:205-223.
    [11]E.Gottzein,Reinhold Meisinger,Luttpold Miller.The Magnetic Wheel in the Suspension of High Speed Ground Transportation Vehicles[J].IEEE Trans.on Vehicular Technology,1980,29(2):17-23
    [12]B.V.Jayawant,P.K.Sinha.Feedback Control Systems for D.C.Electromagnetics in Passenger-Carrying Vehicles[J].International Journal of Control,1976,24:627-639.
    [13]刘德生.EMS型低速磁浮列车模块悬浮控制问题研究[D].国防科技大学博士学位论文,2006.
    [14]T.Seki.The Development of HSST-100L.MAGLEV'95[C],14~(th) Int.Conf.on Maglev Systems.
    [15]P.K.Sinha,A.N.Pechev.Model reference adaptive control ofa maglev system with stable maximum descent criterion[J].Automatica 35(1999) 1457-1465.
    [16]周晓兵,龙志强,李云钢,杨泉林.磁悬浮列车滑模变结构控制器设计及其实现[J].国防科技大学学报,1997,Vol.19,No.4
    [17]T.Mizutani,H.Katayama,A.Ichikawa.Tracking Control of a Magnetic Levitation System by Feedback Linearization[J].SICE Annual Conference in Sapporo(2004),Japan.
    [18]李云钢,常文森.磁浮列车悬浮系统的串级控制[J].自动化学报,1999,Vol.25,No.2
    [19]Shinichi Kusagawa,Jumpei Baba,Katsuhiko Shutoh,Eisuke Masada.Comparison of total performances for high-speed EMS-type magnetically levitated railway vehicle[J].Maglev'2004 proceedings,Shanghai,China,2004,pp942-952.
    [20]J E Paddison,C Macleod,R M Goodall.State Variable Constraints on the Performance of Optimal Maglev Suspension Controllers[J].
    [21]Roger Goodall.Dynamics and control requirements for EMS Maglev suspensions[C].Maglev 2004 proceedings,Shanghai,2004,925-934.
    [22]Hong Li,Roger M.Goodall.Linear and non-linear skyhook damping control laws for active railway suspensions[J].Control Engineering Pratice 7(1999) 843-850.
    [23]R M Goodall and C J Macleod.CONTROL CONSIDERATIONS RELATION TO THE USE OF SUPERCONDUCTING COILS FOR MAGLEV[J].IEE Conf.Publication pp 261-266,1994.
    [24]J E Paddison,and R M Goodall.Multi-objective design study for a Maglev Suspension Controller using the databased ANDES-MATLAB environment[J]CACSD'94,Vol.1,pp.239-246,Tucson,March 1994.
    [25]王洪波,李杰,常文森.磁悬浮系统抗轨道扰动算法.Proceedings of the 24th Chinese Control Conference Guangzhou,RR.China,July 14-18,2005
    [26]龙志强,郝阿明.考虑轨道周期性不平顺的磁浮列车悬浮控制系统设计[J].国防科技大学学报,2003,25(2):84-89.
    [27]P.K.Sinha.Electromagnetic Suspension Dynamics & Control[M].London:Short Run Press Ltd.,1987.
    [28]Hong Li,Roger M.Goodall.Linear and non-linear skyhook damping control laws for active railway suspensions[J].Control Engineering Pratice 7(1999) 843-850.
    [29]李云钢.EMS型磁浮列车悬浮控制技术研究[D].湖南长沙:国防科技大学博士论文,1997.4.
    [30]周丹峰.EMS型磁悬浮列车车轨共振机理研究[D].湖南长沙:国防科学技术大学硕士论文,2006.
    [31]洪华杰.EMS型低速磁浮车轨耦合振动研究[D].国防科技大学博士论文,2005.10.
    [32]谢云德.EMS型磁浮列车系统动力学建模与仿真的研究[D].国防科技大学博士论文,1998.
    [33]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,13(1):19-23.
    [34]郑大钟编著.线性系统理论[M].北京:清华大学出版社,1990.
    [35]Richard C.Dorf,Robert H.Bishop著,谢红卫等译.现代控制系统(第八版)[M].北京: 高等教育出版社,2001.
    [36]江浩,连级三.单磁铁悬浮系统的动态模型与控制[J].西南交通大学学报,1992,83:59-67.
    [37]陈贵荣,常文森.磁悬浮列车发展综述[J].国外铁道车辆.1993,1:17-20.
    [38]杨泉林.磁悬浮实验列车模型的解耦控制系统[J].自动化学报,1989,15(1):23-29.[3
    [39]Weiheng Zhu,Dao-Yi Zhu.Future Maglevs in China and Beyond[A].Maglev'2004Proceedings[C],2004,Vol.1:256-268.
    [40]张锟,李杰,常文森.磁悬浮列车转向架的结构解耦分析[J].机车电传动,2005,1:22-23,39.
    [41]刘德生,李杰,常文森.EMS型磁浮列车模块的运动耦合研究[J].铁道学报,2006,28(3):22-26.
    [42]In-Kun Kim,Hyun-Kap Chung,Moon-Hwan Yoo.Status of Maglev Development in Korea[A].Maglev'1995 Proceedings[C],1995,Vol.1:57-62.
    [43]C.K.Kim,K.H.Kim,J.M.Kim,H.K.Sung,J.S.Lee.Levitation & Guidance Control Design and Its Application to UTM-01[A].Maglev'1998 Proceedings[C],1998,Vol.1:312-317.
    [44]B.S.Kim,H.K.Chung,M.W.Yoo,B.G.Kang.An Experimental Study to Improve the Magnet Performance for Korean Maglev Test Vehicle(UTM)[A].Maglev'1998Proceedings[C],1998,Vol.1:318-323.
    [45]李云钢,常文森,龙志强.EMS型磁浮列车的轨道共振和悬浮控制系统设计[J].国防科技大学学报,1999,21(2):93-96.
    [46]Liu Desheng,Li Jie,Chang Wensen.Design of Nonlinear Decoupling Controller for Double-Electromagnet Suspension System[J].Acta Automatica Sinca,2006,32(3):321-328.
    [47]谢云德,常文森.电磁型磁浮列车单铁力的计算及运动稳定性和可控性研究[J].铁道学报,1995,17(1):41-47.
    [48]赵春发.磁悬浮车辆系统动力学研究[D].四川成都:西南交通大学博士论文,2002.
    [49]磁悬浮列车二次悬挂系统特性测试报告[R].国防科技大学磁悬浮中心内部报告,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700