用户名: 密码: 验证码:
模拟电路故障诊断的特征提取及支持向量机集成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模拟电路故障诊断的研究是电路测试领域中极具挑战性的前沿和热点研究课题。由于模拟电路响应的连续性、非线性性和元件参数的容差性等固有的特点以及模拟电路故障的多样性和复杂性,使得传统的故障诊断理论和方法在实际的模拟电路故障诊断中难以达到预期的效果。因此研究高效的、适应模拟电路发展的故障诊断理论和方法尤为重要。近年来迅速发展并在模式识别等领域得到成功应用的集成学习和多重分形分析方法为模拟电路故障诊断提供了好的思路。模拟电路故障诊断的主要任务是首先提取和选择有效的故障特征,然后采用有效方法对故障进行识别和定位。结合现代测试技术、信号处理和模式识别等理论和技术,本文深入研究了模拟电路的故障特征提取及基于支持向量机(SVM)集成和多重分形分析的模拟电路故障诊断方法。论文的主要研究工作及成果如下:
     (1)模拟电路故障诊断的特征提取方法研究。快速有效地提取反映电路状态的故障特征,是模拟电路故障诊断的重要环节。针对有效采样点特征提取方法、离散小波变换特征提取方法和小波包分解特征提取方法等常用方法的不足,提出了联合时频域(JTFD)和双树复小波分形(DTCWTF)两种特征提取方法。JTFD方法通过提取信号在时域和频域内的高阶统计特征作为特征向量,很好地反映电路在各种状态下的不同特性,有利于区分不同种类的故障且计算方法简单。DTCWTF方法充分利用了小波和分形两种方法具有自相似性和认识事物由粗到细的过程一致性本质及双树复小波能够同时提取信号的幅值信息和相位信息的优点。DTCWTF方法提取的故障特征具有一定抗噪声能力,具有分类器设计简单,故障分类率较高等优点。
     (2)模拟电路故障诊断的多重分形分析研究。非线性元件的参数不仅随着元件本身的伏安特性变化,而且还随着工作点的变化而变化等原因,使非线性电路的故障诊断比线性电路的故障诊断更加复杂和困难。本文研究了基于多重分形分析的非线性模拟电路故障诊断方法,提出了多重分形消除趋势波动分析和小波领袖多重分形分析两种方法,并将其应用于非线性模拟电路的故障分析与诊断。以( ) ( )??αmin ,αmax ,Δα, fαmin , fαmax,Δf??向量作为故障特征进行非线性模拟电路故障诊断,并与基于小波包特征、JTFD特征和DTCWTF特征的故障诊断方法的结果进行比较,实验结果表明基于多重分形特征的故障诊断方法获得更高的故障诊断率。其中,Δα=αmax ?αmin, ( ) ( )Δf = fαmax ? fαmin,α是奇异性指数, f是奇异谱函数。
     (3)基于特征选择和SVM参数优化的模拟电路故障诊断方法研究。在实际的故障诊断中,采集的故障数据往往包含很多与故障信息不相关或冗余的变量,严重影响SVM的分类性能,同时过多的变量也增加了计算代价,导致实时性变差;SVM参数选择合适与否也会严重影响分类的效果。本文提出了用混合粒子群优化算法和交叉熵方法解决模拟电路故障诊断中的特征选择和SVM参数优化问题。对模拟电路进行故障诊断实验,结果显示两种方法都可以较好地选择最优特征子集和优化SVM参数;使用优化的特征子集和SVM参数进行故障诊断,获得较高的故障诊断正确率。交叉熵方法比混合粒子群优化算法有更高的效率和故障诊断正确率。
     (4)基于SVM集成的模拟电路故障诊断方法研究。简单采用一对多(OAA)等策略构造的多分类SVM不能满足模拟电路故障诊断的要求。为提高多分类SVM的故障诊断正确率,提出了三种基于SVM集成的故障诊断方法:融合层次支持向量机(HSVM)和Dempster-Shafer(D-S)理论方法、融合支持向量数据描述(SVDD)和D-S理论方法及改进的AdaBoost-SVM方法。在融合HSVM和D-S理论的故障诊断方法中,通过D-S理论融合多个不同决策消除HSVM各层次节点的累积误差,提高预测精度,改善了HSVM的分类性能。在实际故障诊断中经常遇到正常状态下的样本容易获得而故障状态下的样本不易获得的状况,融合SVDD和D-S理论的故障诊断方法利用SVDD只需使用正常状态下的样本进行训练就能够对测试样本进行预测的优点;同时应用D-S证据理论消除SVDD构造的多分类器产生判决的混叠问题,提高了故障诊断正确率。改进的AdaBoost-SVM故障诊断方法利用故障诊断正确率和差异度共同作用的度量函数来评价SVM集成分类器的泛化能力;采用具有随机性和遍历性的Logistic混沌映射改变SVM的核参数和正则化参数,构造出大差异度的成员SVM,使集成的分类器不仅有较高的分类正确率而且有较好的泛化能力。对模拟电路进行故障诊断,实验结果证明提出的三种SVM集成故障诊断方法能够获得比OAA-SVM和HSVM等多分类方法更好的故障诊断性能。
Fault diagnosis for analog circuit is still a challenging subject in the circuit test research field. Due to the inherent characteristics of analog circuit, such as its nonlinearity, continuous response and tolerance on component parameters, etc, inducing the diversity and complexity of fault types of the circuit, it is difficult for the conventional fault diagnosis theories and methods to achieve the expected results in practical engineering. Hence, it is very important to explore some efficient fault diagnosis theories and methods to meet the development of analog circuit. Ensemble learning and multi-fractal analysis, which have been successfully applied in pattern identification, provide a promising solution for fault diagnosis for analog circuit. Combined with the modern test theory, signal processing and pattern identification theory, the fault diagnosis method for analog circuit based on support vector machine (SVM) ensemble learning and multi-fractal analysis is deeply researched in this dissertation. The main research contents and achievements of the dissertation are as follows:
     (1) The study on feature extraction for analog circuit fault diagnosis. How to quickly and efficiently extract the fault features, which reflect the state of analog circuit, is difficult and critical in fault diagnosis for analog circuit. Considering that the imperfect of feature extraction method commonly used in fault diagnosis for analog circuit, the joint time-frequency domain (JTFD) and dual-tree complex wavelet transform fractal (DTCWTF) feature extraction methods are proposed. The feature vectors, extracted by the JTFD method, represent the high order statistical characteristics of signal in time domain and frequency domain. They can reflect the different circuit state which helps to identify different fault types, and computing complexity of the JTFD method is low. The DTCWTF method, based on dual-tree complex wavelet transform and fractal analysis, makes full use of the consistency process in understanding things from coarse-to-fine and the same nature of self-similarity, and it can extract both the amplitude and phase information. The feature extracted by DTCWTF method has a certain anti-noise capability which makes it easy to design classifier.
     (2) The research on fault diagnosis for analog circuit based on multi-fractal analysis. Due to the bias shifting of nonlinear device and lacking generally fault model of the nonlinear circuit, fault diagnosis for nonlinear analog circuit is more difficult than that for linear analog circuit. The traditional theories and methods are not capable of solving the complex fault diagnosis for nonlinear analog circuit, but the recent development of multi-fractal theory provides a good idea to this problem. In the dissertation, the multi-fractal detrended fluctuation analysis (MF-DFA) method and the wavelet leader multi-fractal analysis (WL-MFA) method for fault diagnosis for nonlinear analog circuit are proposed. Multi-fractal attributes are estimated from each fault types of the nonlinear circuit and used as classification features within SVM classification procedure. Experiment results show that the multi-fractal features has higher fault diagnosis accuracy than other features do, such as the WP features, the JTFD features and the DTCWTF features, etc.
     (3) The study on fault diagnosis for analog circuit based on feature selection and SVM parameters optimization. The irrelevant and redundant features variables in actual fault diagnosis system for analog circuit spoil SVM's classification performance seriously. Too many variables increase computing times and result in real-time performance degradation. The appropriateness of selecting SVM parameters also affects the classification result. In this dissertation, two methods based on the hybrid particle swarm optimization (HPSO) and the cross entropy methods (CEM) have been proposed to choose the effective feature and to optimize SVM parameters. The two methods can perform feature selection and optimize SVM parameters concurrently. Analog circuit fault diagnosis experiments verify the effectiveness of the proposed two optimization method.
     (4) The study on fault diagnosis for analog circuit based on SVM ensemble method. Multi-class support machine classifier by combining of multiple binary SVMs using One-Against-All (OAA) or One-Against-One (OAO) strategy can not meet classification performance requirement in fault diagnosis for analog circuit. In the dissertation, three kinds of fault diagnosis method for analog circuit based on SVM ensemble are proposed. The first method combines hierarchical support vector machine (HSVM) with Dempster-shafer (D-S) theory to improve classification results compared to the simple decision-tree-like method. The second method combines support vector data description (SVDD) with D-S theory, which describe each class only need one class data and can deal with outlier sensitivity problem. The third method is based on improved AdaBoost-SVM, which solves the accuracy/diversity dilemma in AdaBoost algorithm by selecting more diverse weak learners, meanwhile overcomes the difficulty of selection of weak learners’parameters by logistic chaotic mapping. Fault diagnosis experiments on analog circuit show that the proposed three kinds of method have competitively learning ability and acquire better fault diagnosis accuracy than traditional fault diagnosis method based on multi-class SVM do.
引文
[1] Kabisatpathy P, Barua A, Sinha S. Fault diagnosis of analog integrated circuits. Springer, 2005.
    [2] Vinnakota B. Analog and mixed-signal test. Prentce Hall, 1998.
    [3]杨士元.模拟系统的故障诊断与可靠性设计.北京:清华大学出版社, 1993.
    [4] Li F, Woo P-Y. Fault detection for linear analog IC-the method of short-circuit admittance parameters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(1): 105-108.
    [5] Roy A, Sunter S, Fudoli A, et al. High accuracy stimulus generation for A/D converter BIST. Proceedings of International Conference onTest, 2002, 1031-1039.
    [6] Variyam P N, Chatterjee A. Enhancing test effectiveness for analog circuits using synthesized measurements. Proceedings of 16th IEEE Symposium on VLSI Test , 1998, 132-137.
    [7] Wang L T, Wu C W, Wen X. VLSI test principles and architectures design for testability. Morgan Kaufmann Publishers, 2006.
    [8] Berkowitz R. Conditions for network-element-value solvability. IRE Transactions on Circuit Theory, 1962, 9(1): 24-29.
    [9] Navid N, Willson A, Jr. A theory and an algorithm for analog circuit fault diagnosis. IEEE Transactions on Circuits and Systems, 1979, 26(7): 440-457.
    [10] Wu C C, Nakajima K, Wey C L, et al. Analog fault diagnosis with failure bounds. IEEE Transaction on Circuits and Systems, 1982, 29(5): 277-284.
    [11] Huang Z, Lin C, Liu R. Node-fault diagnosis and a design of testability. IEEE Transactions on Circuits and Systems, 1983, 30(5): 257-265.
    [12] Bandler J W, Salama A E. Fault diagnosis of analog circuits. Proceedings of the IEEE, 1985, 73(8): 1279-1325.
    [13] Satyanarayana T, Subramanyam G, Rao K V R. Implementing an expert system for fault diagnosis of electronic equipment. engineering applications of artificial intelligence, 1995, 8(3): 355-364.
    [14] Starzyk J A, Pang J, Manetti S, et al. Finding ambiguity groups in low testability analog circuits. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2000, 47(8): 1125-1137.
    [15] Aminian F, Aminian M. Fault diagnosis of analog circuits using bayesian neural networks with wavelet transform as preprocessor. Journal of Electronic Testing, 2001, 17(1): 29-36.
    [16] Catelani M, Fort A, Alippi C. A fuzzy approach for soft fault detection in analog circuits. Measurement, 2002, 32(1): 73-83.
    [17] El-Gamal M A, Abdulghafour M. Fault isolation in analog circuits using a fuzzy inference system. Computers & Electrical Engineering, 2003, 29(1): 213-229.
    [18] El-Gamal M A, El-Yazeed M F A. A combined clustering and neural network approach for analog multiple hard fault classification. Journal of Electronic Testing: theory and applications, 1999, 14(3): 207-217.
    [19] Aminian F, Aminian M, Collins H W, Jr. Analog fault diagnosis of actual circuits using neural networks. IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 544-550.
    [20] Aminian M, Aminian F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor. IEEE Transactions onCircuits and Systems II: Analog and Digital Signal Processing, 2000, 47(2): 151-156.
    [21] Yang Z R, Zwolinski M, Chalk C D, et al. Applying a robust heteroscedastic probabilistic neural network to analog fault detection and classification. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2000, 19(1): 142-151.
    [22] Catelani M, Fort A. Fault diagnosis of electronic analog circuits using a radial basis function network classifier. Measurement, 2000, 28(3): 147-158.
    [23] Cannas B, Fanni A, Manetti S, et al. Neural network-based analog fault diagnosis using testability analysis. Neural Computing & Applications, 2004, 13(4): 288-298.
    [24] El-Gamal M, Mohamed M. Ensembles of neural networks for fault diagnosis in analog circuits. Journal of Electronic Testing, 2007, 23(4): 323-339.
    [25] Worsman M, Wong M W T. Nonlinear circuit fault diagnosis with large change sensitivity. Electronics, Circuits and Systems, IEEE International Conference on, Lisboa, Portugal, 1998, 225-228.
    [26] Toczek W, Zielonko R, Adamczyk A. A method for fault diagnosis of nonlinear electronic circuits. Measurement, 1998, 24(2): 79-86.
    [27] Aminian F, Aminian M. Fault diagnosis of nonlinear analog circuits using neural networks with wavelet and fourier transforms as preprocessors. J. Electron. Test., 2001, 17(6): 471-481.
    [28]唐人亨.模拟电子系统的自动故障诊断.北京:高等教育出版社, 1991.
    [29]林争辉,刘美仅,王海雄.模拟电路的故障激励论.上海交通大学学报, 1995, 29(1): 71-78.
    [30]张维强,徐晨,宋国乡.模拟电路故障诊断的小波包预处理神经网络改进算法.信号处理, 2007, 23(2): 204-209.
    [31]谭阳红.基于小波和神经网络的大规模模拟电路故障诊断研究[博士学位论文].长沙:湖南大学, 2005.
    [32]殷时蓉.基于Volterra级数和神经网络的非线性电路故障诊断研究[博士学位论文].成都:电子科技大学, 2007.
    [33]袁海英.基于时频分析和神经网络的模拟电路故障诊断及可测性研究[博士学位论文].电子科技大学, 2007.
    [34]陈圣俭,洪炳熔,王月芳, et al.可诊断容差模拟电路软故障的新故障字典法.电子学报, 2000, 28(2): 127-129.
    [35]彭敏放,何怡刚.容差模拟电路的模糊软故障字典法诊断.湖南大学学报(自然科学版), 2005, 32(1): 25-28.
    [36]何怡刚,梁戈超.模拟电路故障诊断的BP神经网络方法.湖南大学学报(自然科学版), 2003, 30(5): 35-39.
    [37]王承,陈光礻禹,谢永乐.多层感知机在模拟/混合电路故障诊断中的应用.仪器仪表学报, 2005, 26(6): 578-581.
    [38]彭敏放,何怡刚,王耀南, et al.模拟电路的融合智能故障诊断.中国电机工程学报, 2006, 26(3): 19-24.
    [39] Wang P, Yang S. Soft fault test and diagnosis for analog circuits. IEEE International Symposium on Circuits and Systems, 2005, 2188-2191.
    [40] Wang P, Yang S. A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2005, 52(10): 2118-2127.
    [41]万九卿,李行善.基于串行支持向量分类器的模拟电路故障诊断.北京航空航天大学学报, 2003, 29(9): 789-792.
    [42]吴洪兴,彭宇,彭喜元.基于支持向量机多分类方法的模拟电路故障诊断研究.电子测量与仪器学报, 2007, 21(4): 27-31.
    [43] Wang A, Liu J, Li H, et al. A novel algorithm for fault diagnosis of analog circuit with tolerances using improved binary-tree SVMs based on SOMNN clustering. Third International Conference on Natural Computation, 2007, 491-496.
    [44] Wang A, Liu J, Wang H, et al. A novel fault diagnosis of analog circuit algorithm based on incomplete wavelet packet transform and improved balanced binary-tree SVMs. Bio-InspiredComputational Intelligence and Applications, 2007, 4688: 482-493.
    [45]孙永奎,陈光礻禹,李辉.支持向量机在模拟电路故障诊断中应用.电子测量与仪器学报, 2008, 22(2): 72-75.
    [46]孙永奎,陈光礻禹,李辉.基于可测性分析和支持向量机的模拟电路故障诊断.仪器仪表学报, 2008, 29(6): 1182-1186.
    [47]孙永奎,陈光礻禹,李辉.模糊聚类与SVM诊断模拟电路单软故障的方法.计算机辅助设计与图形学学报, 2008, 20(5): 612-616.
    [48]林争辉,武强.非线性电路故障诊断的理论和算法.上海交通大学学报, 1995, 29(1): 16-22.
    [49]赵建,林争辉.非线性电阻电路的单故障诊断的一种方法.上海交通大学学报, 1997, 31(5): 52-57.
    [50]谢宏,何怡刚.非线性模拟动态电路故障诊断的频域方法.仪器仪表学报, 2006, 27(5): 512-514.
    [51]殷时容,陈光礻禹,谢永乐. Volterra核的测量及在非线性模拟电路测试中的应用.控制与决策, 2006, 25(10): 1134-1138.
    [52]袁海英,王铁流,陈光踽.基于Volterra频域核和神经网络的非线性模拟电路故障诊断方法.仪器仪表学报, 2007, 28(5): 807-811.
    [53] Shirong Y, Guangju C, Rongle X. Wavelet neural network based fault diagnosis in nonlinear analog circuits. Journal of Systems Engineering and Electronics, 2006, 17(3): 521-526.
    [54] He Y, Sun Y. Neural network-based L1-norm optimisation approach for fault diagnosis of nonlinear circuits with tolerance. IEE Proceedings of Circuits, Devices and Systems, 2001, 148(4): 223-228.
    [55]马红光,韩崇昭,孔祥玉, et al.基于Lyapunov指数的非线性模拟电路故障诊断.电路与系统学报, 2004, 9(24): 71-75.
    [56]彭敏放.容差模拟电路故障诊断屏蔽理论与信息融合方法研究[博士学位论文].长沙:湖南大学, 2006.
    [57] Vapnik V N. The nature of statistical learning theory.张学工译.统计学习理论的本质.北京:清华大学出版社, 2000.
    [58] Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London, 1909, 209:415-446.
    [59] Lin C F, Wan S D. Fuzzy support vector machines. IEEE Transactions on Neural Networks,2002, 13(2): 464-471.
    [60] Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54:45-66.
    [61] Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
    [62] Krebel U H G. Pairwise classification and support vector machines. Advances in kernel methods: support vector learning, Sch?lkopf B, Ed. Cambridge, MA, MIT Press, 1999, 255-268.
    [63] Bennett K P, Cristianini N, Shawe-Taylor J, et al. Enlarging the margins in perceptron decision trees. Mach. Learn., 2000, 41(3): 295-313.
    [64] Platt J C. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods: support vector learning MIT Press, 1999, 185-208.
    [65] Sollich P, Krogh A. Learning with ensembles: how over-fitting can be useful. Advances in Neural Information Processing Systems, Touretzky D S, Ed. Cambridge, MA, MIT Press, 1996, 190-196.
    [66] Opitz D, Maclin R. Popular ensemble methods: an empirical study. Artificial Intelligence Research, 1999, 11:169-198.
    [67] Hansen L K, Salamon P. Neural network ensembles. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
    [68] Dietterich T G. Machine learning research: four current directions. AI Magazine, 1997, 18(4): 97-136.
    [69] Kim H C, Pang S, Je H M, et al. Constructing support vector machine ensemble. Pattern Recognition, 2003, 36(12): 2757-2767.
    [70] Kim H C, Pang S, Je H M, et al. Support vector machine ensemble with bagging. Pattern Recognition with Support Vector Machines, 2002, 131-141.
    [71] Dong Y-S, Han K-S. A comparison of several ensemble methods for text categorization. 2004 IEEE International Conference on Services Computing(SCC’04), 2004, 419-422.
    [72] Dong Y-S, Han K-S. Boosting SVM classifiers by ensemble. 14th International Conference on World wide Web, 2005, 1072-1073.
    [73] Frossyniotis D, Stafylopatis A. A multi-SVM classification system. Multiple Classifier Systems, 2001, 2096: 198-207.
    [74] Li X, Wang L, Sung E. AdaBoost with SVM-based component classifiers. Eng. Appl. Artif. Intell., 2008, 21(5): 785-795.
    [75] Valentini G. An experimental bias-variance analysis of SVM ensembles based on resampling techniques. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2005, 35(6): 1252-1271.
    [76] Kaminska B, Arabi K, Bell I, et al. Analog and mixed-signal benchmark circuits-first release. Proceedings of the IEEE International Conference on Test, Washington, DC, 1997, 183-190.
    [77]唐静远,师奕兵.采用模糊支持向量机的模拟电路故障诊断新方法.电子测量与仪器学报, 2009, 23(6): 7-12.
    [78] Kingsbury N. The dual-tree complex wavelet transform:A new eficient tool for image restoration and enhancement. Proceedings of European Signal Processing Conference, 1998, 319-322.
    [79] Selesnick I W, Baraniuk R G, Kingsbury N C. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 2005, 22(6): 123-151.
    [80] Falconer K. Fractal geometry- mathematical foundation and applications.曾文曲译.分形几何-数学基础及其应用.北京:人民邮电出版社, 2007.
    [81] Catelani M, Fort A. Soft faults detection and isolation in analog circuits: some results and ac comparison between a fuzzy approach and radial basis function networks. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2): 196-202.
    [82] Arneodo A, Bacry E, Muzy J F. The thermodynamics of fractal revisited with wavelets. Physica A, 1995, 213(1): 232-275.
    [83] Lyra M L, Tsallis C. Nonextensivity and multifractality in low-dimensional dissipative systems. Phsical Review Letters, 1998, 80(1): 53-56.
    [84] Yamaguti M, Prado C P C. A direct calculation of the spectum of singularities f(alpha) of multifractals. Physics Letters A, 1995, 206(5): 318-322.
    [85] Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities: The characterization of strange sets. Phsical Review A, 1986, 33(2): 1141-1151.
    [86] Cheng Q. Multifractal distribution of eigenvalues and eignvectors from 2d multiplicative cascade multifractal fields. Mathematical Geology, 2005, 37(8): 915-927.
    [87] Telesca L, Lapenna V, Macchiato M, et al. Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences. Solitons and Fractal, 2004, 18:1-15.
    [88] Chhabra A, Arneodo A, et.al. Direct determination of the sigularity spectrum and its application to fully developed turbulence. Phys. Rev. A,Gen. phys., 1989, 40(9): 5284-5294.
    [89] Chhabra A, Jensen R V. Direct determination of the f(alpha) singularity spectrum. PhsicalReview Letters, 1989, 62(12): 1327-1330.
    [90] Chhabra A B, Jensen R V, Sreenivasan K R. Extraction of underlying multiplicative processes from multifractals via the thermodynamic formalism. Phsical Review A, 1989, 40(8): 4593-4611.
    [91] Mallat S G, Hwang W L. Singularity detection a processing with wavelets. IEEE Tansaction on Information Theory, 1992, 38(2): 617-643.
    [92] Oswiecimka P, Kwapien J, Drozdz S. Wavelet vrsus detrended fluctuation analysis of multifractal structures. Physical review. E, Statistical, nonlinear, and soft matter physics, 2006, 74(1): 8-17.
    [93]罗世华,曾九孙.基于多分辨分析的高炉铁水含硅量波动多重分形辨识.物理学报, 2009, 58(1): 150-157.
    [94] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series. Physical A, Theoretical and Statistical Physics, 2002, 316: 87-114.
    [95]王永生,肖子才,孙瑾, et al. Duffing混沌系统电路仿真研究.电路与系统学报, 2008, 13(1): 132-135.
    [96] Jaffard S. Wavelet techniques in multifractal analysis,in Fractal Geometry and applications: A Jubilee of Beenoit Mandelbrot. M Lapidus and M Van Frankenhuijsen, Eds., in Proc. Symposia Pure Mathemtics. 2004, 72(2): 91-142.
    [97] Jaffard S, Lashermes B, Abry P. Wavelet leaders in multifractal analysis. In Wavelet Analysis and Applications,T Qian, M I Vai,X Yuesheng, Eds, Cambridge, MA: Birkhauser, 2006, 219-264.
    [98] Halgas S. Multiple soft fault diagnosis of nonlinear circuits using the fault dictionary approach. Bulletin of the polish academy of science technical sciences, 2008, 56(1): 53-58.
    [99] Langley P. Selection of relevant features in machine learning. Proceedings of the AAAI Fall Symposium on Relevance, New Orleans, 1994, 127-131.
    [100] Guyon I, Elisseeff A. An Introduction to Variable and Feature Selection. Journal of machine learning research, 2003, 3: 1157-1182.
    [101] Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2004, 34(1): 60-67.
    [102] Tahir M A, Bouridane A, Kurugollu F. Simultaneous feature selection and feature weightingusing Hybrid Tabu Search/K-nearest neighbor classifier. Pattern Recogn. Lett., 2007, 28(4): 438-446.
    [103] Uncua ?, Türk?enb I B. A novel feature selection approach: Combining feature wrappers and filters. Information Sciences, 2007, 177(2): 449-466.
    [104] Duan K, Keerthi S S, Poo A N. Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 2003, 51: 41-59.
    [105] Jaakkola T S, Haussler D. Probabilistic kernel regression models. In Proceedings of the Conference on AI and Statistics, 1999.
    [106] Wahba G, Zhang H, Lin Y. Generalized approximate cross-validation for support vector machines:another way to look at margin-like quantities. Advances in Large Margin Classifiers, 2000, 297-309.
    [107] Opper M, Winther O. Gaussian processes and SVM: mean field results and leave-one-out. Advances in large margin classifiers, Massachusetts Institute of Technology Press (MIT Press), Cambridge, 2000, 43-65.
    [108] Vapnik V N. Statistical learning theory.许建华,张学工译.统计学习理论.北京:电子工业出版社, 2004.
    [109] Kennedy J, Eberhart R C. Particle swarm optimization. in Proceeding of IEEE International Conference on Neural Network(ICNN), Perth, Australia, 1995, 1942-1948.
    [110] Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particleswarm optimization. Proceedings of the Congress on Evolutionary Computation, La Jolla, CA, USA, 2000, 84-88
    [111] Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
    [112] Kennedy J, Ebethart R C. A discrete binary version of the particle swarm algorithm. proceedings of the world Multi-conference on Systemics, Cybernetics and Informatics, piscataway, NJ, 1997, 4104-4109.
    [113] Marandi A, Afshinmanesh F, Shahabadi M, et al. Boolean particle swarm optimization and its application to the design of a dual-band dual-polarized planar antenna. IEEE Congr, Evolutionary Computation, 2006, 3212-3218.
    [114] Tan K C, Goh C K, Mamun A A, et al. An evolutionary artificial immune system for multi-objective optimization. European Journal of Operational Resear, 2008, 187(2): 371-392.
    [115] Ling S, Leung F. An improved genetic algorithm with average-bound crossover and wavelet mutation operations. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2007, 11(1): 7-31.
    [116] Jeongjin R, Abraham J A. Subband filtering for time and frequency analysis of mixed-signal circuit testing. Instrumentation and Measurement, IEEE Transactions on, 2004, 53(2): 602-611.
    [117] Tang J, Shi Y, Jiang D. Analog circuit fault diagnosis with hybrid PSO-SVM. Testing and Diagnosis, IEEE Circuits and Systems International Conference on, 2009, 1-5.
    [118] Rubinstein R Y, Kroese D P. The cross-entropy method: a unified approach to combinatorial optimization , Monte-Carlo simulation and machine learning. New York: Springer, 2004.
    [119] Boer d, Kroese P T, Mannor D P, et al. A tutorial on the cross-entropy method. Annals of Operations Research, 2005, 134(1): 19-67.
    [120] Alon G, Kroese D P, Raviv T. Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Annals of Operations Research, 2005, 134(1): 137-151.
    [121] Kroese D, Rubinstein R Y, Taimre T. Application of the cross-entropy method to clustering and vector quantization. Journal of Global Optimization, 2006, 37:137-157.
    [122] Rubinstein R Y. The stochastic minimum cross-entropy method for combinatorial optimization and rare-event estimation. Methodology and Computing in Applied Probability, 2005, 75-50.
    [123] Rubinstein R Y. The cross-entropy method and rare events for maximal cut and bipartition problems. ACM Transactions on Modeling and Computer Simulation, 2002, 12(1): 27-53.
    [124]刘淳安.几类动态与静态优化问题的进化算法[博士学位论文].西安:西安电子科技大学, 2008.
    [125] Dempster A. A generalization of bayesian inference. Classic Works of the Dempster-Shafer Theory of Belief Functions, 2008, 73-104.
    [126] Shafer G. A mathematical theory of evidence. Princeton University Press, 1976.
    [127]罗志增,叶明.用证据理论实现相关信息的融合.电子信息学报, 2001, 23(10): 970-974.
    [128] Yager R. Decision making under dempster–shafer uncertainties. Classic Works of the Dempster-Shafer Theory of Belief Functions, 2008, 619-632.
    [129] Yen J. GERTIS: a dempster-shafer approach to diagnosing hierarchical hypotheses. Commun. ACM, 1989, 32(5): 573-585.
    [130] Wang Y-M, Yang J-B, Xu D-L. A preference aggregation method through the estimation of utility intervals. Computers & Operations Research 2005, 32(8): 2027-2049.
    [131] Krishnapuram R, Keller J M. A possibilistic approach to clustering. IEEE Trans on Fuzzy Systems, 1993, 1(2): 98-110.
    [132] Girolami M. Mercer kernel-based clustering in feature space. IEEE Trans on Neural Networks, 2002, 13(3): 780-784.
    [133] Fay R, Schwenker F, Thiel C, et al. Hierarchical neural networks utilising dempster-shafer evidence theory. Artificial Neural Networks in Pattern Recognition, 2006, 198-209.
    [134] Platt J C. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. Advances in Large Margin Classifiers, Smolar A, P Bartlett, B Scholkopf, et al., Eds. MA, Cambridge, 2000.
    [135]张文生,王珏,戴国忠.支持向量机中引入后验概率的理论和方法研究.计算机研究与发展, 2002, 39(4): 392-397.
    [136] Tang J, Shi Y, Zhang W. Analogue electronic circuit fault diagnosis based on hierarchical support vector machine and dempster-shafer theory. Electronic Measurement and Instruments, 8th International Conference on, 2007, 3-565-3-570.
    [137] He Y, Tan Y, Sun Y. Fault diagnosis of analog circuits based on wavelet packets. TENCON, IEEE Region 10 Conference, 2004, 267-270.
    [138]唐静远,师奕兵,姜丁, et al.基于SVDD和D-S理论的模拟电路故障诊断.测控技术, 2008, 27(9): 65-68.
    [139] Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 1997, 55(1): 119-139.
    [140] Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn., 2003, 51(2): 181-207.
    [141] Windeatt T. Diversity measures for multiple classifier system analysis and design. Information Fusion, 2005, 6(1): 21-36.
    [142]唐静远,师奕兵,张伟.基于支持向量机集成的模拟电路故障诊断.仪器仪表学报, 2008, 29(6): 1216-1220.
    [143]万柏坤,薛召军,李佳,王瑞平.应用ROC曲线优选模式分类算法.自然科学进展, 2006, 16(11): 1511-1516.
    [144] Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters, special issue on ROC analysis, 2005, 27(8):861-874.
    [145] Landgrebe T, Duin R. Approximating the multiclass ROC by pairwise analysis. Pattern Recognition Letters, 2007, 28(13):1747-1758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700