用户名: 密码: 验证码:
支持向量机及半监督学习中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的飞速发展,在信息收集和处理的过程中,人们面临的各种数据信息规模越来越大,构成也越来越复杂,这使得机器学习日益受到人们的关注,成为目前研究的热点问题之一.由Vapnik提出的统计学习理论为机器学习问题提供了理论基础,着重研究有限样本的统计规律及学习性质,使用结构风险最小化原则,有效地提高了算法的推广能力.支持向量机是统计学习理论的最新发展,它具有全局最优、适应性强、推广能力强以及解的稀疏性等优点,能较好地解决小样本、非线性、过学习、维数灾难和局部极小等实际应用中的难题,是机器学习领域的又一里程碑,从而广泛应用于模式识别、回归估计、函数逼近以及密度估计等领城.近年来,受支持向量机的这些优势的启发,有学者提出了一些支持向量机的推广算法,比如最小二乘支持向量机,中心支持向量机,超球支持向量机(也称为支持向量域描述),基于一个球的模式分类方法等,分别从不同的方面对支持向量机进行了完善和补充.许多机器学习问题中,大量可获得的数据中仅有一小部分容易获得类别标签,而另一相对大量的部分由于各种原因(不容易获得类别标签或者获得标签的代价较大)而未能获得标签,同时利用这些样本(包括已标签样本和未标签样本)进行学习的问题被称为半监督学习.本文主要研究支持向量机及其几种推广方法与半监督学习中存在的若干问题,主要工作如下:
     1.研究了大样本条件下,提高支持向量机学习速度和精度的问题.针对支持向量机中大规模样本集训练速度慢且分类精度易受野点影响的问题,提出基于壳向量和中心向量的支持向量机算法.其基本步骤是:首先分别求取每类样本点的壳向量和中心向量;然后将求出的壳向量作为新的训练集进行标准的支持向量机训练得到超平面的法向量;最后利用中心向量更新法向量以减少野点的影响得到最终的分类器.实验表明采用这种学习策略,不仅加快了训练速度同时提高了分类精度.
     2.研究了支持向量机的两种推广方法(最小二乘支持向量机和基于一个球的模式分类方法)对不平衡数据集的分类问题.针对最小二乘支持向量机对不平衡数据集的分类问题,同时考虑各类样本的数量和样本分散程度的不同,对分离超平面进行调整.该方法克服传统算法只考虑样本数量不平衡的不足,提高了最小二乘支持向量机的泛化能力.针对基于一个球的模式分类方法对不平衡数据的分类问题,通过引入两个参数来分别控制两类错分率的上界,不仅提高了不平衡数据集的分类和预测的性能,而且大大缩小了参数的选择范围.实验表明我们的方法可以有效提高不平衡数据的分类性能.
     3.本文从以下两条途径研究了半监督学习中的直推式学习方法,一是,针对Chen提出的渐进直推式支持向量机学习算法存在的诸如训练速度慢、回溯式学习多、学习性能不稳定等缺点,提出两种改进的渐进直推式支持向量机分类学习算法.它们继承渐进直推支持向量机渐进赋值和动态调整的规则,同时利用支持向量的信息或者可信度选择新标注的无标签样本点,结合增量支持向量机或支持向量预选取方法减少训练代价.实验结果表明所提算法不仅能较大幅度地提高算法的速度,而且在一般情况下能提高算法的精度.二是,针对支持向量机的一种推广算法—基于一个球的模式分类方法提出了其直推式学习策略,即通过一个超球面将两类数据以最大的分离比率分离,同时利用有标签样本点和无标签样本点来建立一个超球分类器的渐进直推式学习算法,这种算法在没有足够的有标签样本的信息时利用了无标签样本所提供的额外的信息,获得了更好的分类性能.实验结果表明该算法确实具有更好的性能.
     4.本文研究了在已知少量有标签样本点和大量无标签样本点条件下的半监督野点探测问题.野点(也称离群点)探测问题一直是机器学习的一个难题,在许多实际问题中,野点往往是人们更感兴趣的更重要的样本点,比如在网络的入侵检测、故障诊断、疾病诊断等领域中.本文将粗糙集和模糊集理论应用于半监督野点探测问题中,提出了模糊粗糙半监督野点探测方法.这个方法是在少量有标签的样本点和模糊粗糙C均值聚类算法的帮助下,通过一个目标函数,同时最小化聚类平方误差、有标签样本点的分类误差和野点的个数.每个聚类用一个中心、一个清晰的下近似和一个模糊边界来表示,只对位于边界的样本点进一步讨论其是否为野点的可能性.实验结果表明所提的方法能在一般意义下提高野点探测精度,减少误警率,还能减少需要进一步讨论的候选野点的个数.
With the flying development of information technologies, during the course of collecting and processing information, the size of data sets confronting human becomes larger and larger, and the constitution of data samples also becomes more and more complicated. These facts have made machine learning received more and more attention and become one of the hot topics of research. Statistical Learning Theory (SLT) proposed by Vapnik provides a theoretical basis for machine learning. SLT concerns mainly the statistical laws and learning properties when samples are limited and can effectively improve the generalization ability of algorithm with using the principle of Structural Risk Minimization (SRM). As the latest development of SLT,Support Vector Machine (SVM) has many advantages such as global optimization, excellent adaptability and generalization ability, and sparsity solution. It can solve many practical appication problems such as small samples, nonlinear learning, over fitting, curse of dimentionality, and local minima and is a new milestone in the field of machine learning. So SVM has been widely used in pattern recognition, regression estimation, function approximation, density estimation, etc. Recently, inspired by the above advantages of SVM, some researchers proposed extend algorithms of SVM, which include Least Squares Support Vector Machines (LSSVM), Center Support Vector Machine (CSVM), Hypersphere Support Vector Machines (also called Support Vector Domain Description (SVDD), Sphere Sphere-based Pattern Classification (SSPC), etc. These algorithms improve and complement SVM from different aspects. In many machine learning problems, a large amount of data is available, but only a few of them can be labeled easily and others relative large amount of data can not be labeled because of all kinds of reasons (not easy or fairly expensive to obtain). The problem, combining unlabeled and labeled data together to learning the labels of unlabeled ones, is called semi-supervised learning. This thesis focuses on some problems existed in SVM, several extensions of SVM, and semi-supervised learning. The main works of the thesis is as folows:
     1. Study how to improve the learning speeds and classification accuracies of SVM under the condition of large scale sample sets. SVM takes very long time when the size of training data is large and the precision of classification is easily influenced by outliers, and we propose an SVM algorithm based on hull vectors and central vectors. Firstly, we find out convex hull vectors and center vectors for each class. Secondly, the obtained convex hull vectors are used as the new training samples to train standard SVM and the normal vector of hyperplane is obtained. Finally, in order to weaken the influence of the outlier, we utilize center vectors to update the normal vector and obtain final classifier. Experiments show that the learning strategy not only quickens the training speed, but also improves the classification accuracy.
     2. Study imbalance dataset classification problem for two variations of SVM, i.e., LSSVM and SSPC. For the problem of LSSVM on imbalance dataset classification problem, we take the number of samples and the dispersed degree of each class into consideration and adjust separation hyperplane in standard LSSVM. It overcomes disadvantages of traditional designing methods which only consider the imbalance of samples size and improves the generalization ability of LSSVM. As for SSPC, we provide the facility to control the upper bounds of two classes error rates respectively with two parameters. As such, the performance of classification and prediction of imbalance data sets can be improved, and the range of selection of parameters can be greatly narrowed. Experimental results show that the method can effectively enhance the classification performance on imbalance data sets.
     3. In this paper, We study the transductive learning in the field of semi-supervised learning via the following two ways. Firstly, progerssive transductive support vector machines (PTSVM) proposed by Chen have obvious deficiencies such as slower training speed, more back learning steps, and unstable learning performance. In order to overcome these shortcomings, we give two improved progressive transductive support vector machine algorithms. They inherit the PTSVM’s progressive labeling and dynamic adjusting and utilize the information of support vectors or reliability values to select new unlabeled samples to label, and also combine with incremental support vector machines or pre-extracting support vector algorithm to reduce the calculation complexity. Exiperimental resuls show the above proposed learning algorithms can obtained satisfactory learning performance. Secondly, we proposed transductive learning strategies for a extend algorithm of SVM—SSPC. The proposed algorithms seek a hypersphere to separate data with the maximum separation ratio and construct the classifier using both the labeled and unlabeled data. This method utilizes the additional information of the unlabeled samples and obtain better classification performance when insufficient labeled data information is available. Experiment results show the proposed algorithm can yield better performance.
     4. In this paper, we study semi-supervised outlier detection (SSOD) under the situation of the few labeled data and a wealth of available unlabeled data. The problem of outlier detection has always been a difficult task. In many applications, such as, network intrusion detection, fraud detection, medical diagnosis, outliers that deviate significantly from majority samples are more interesting and useful than the common samples. Fuzzy rough based semi-supervised outlier detection (FRSSOD) is proposed, which applies the theory of rough and fuzzy sets to SSOD. With the help of few labeled samples and fuzzy rough C-means clustering algorithm, this method introduces an objective function, which minimizes the sum squared error of clustering results and the deviation from known labeled examples as well as the number of outliers. Each cluster is represented by a center, a crisp lower approximation and a fuzzy boundary and only those points located in boundary can be further discussed the possibility to be reassigned as outliers. Experiment results show that the proposed method, on average, keep, or improve the detection precision and reduce false alarm rate as well as reduce the number of candidate outliers to be further discussed.
引文
[1] Vapnik V. The nature of statistical learning theory. Springer, New York, 1995.
    [2]蔡自兴,徐光.人工智能及其应用(第2版).北京:清华大学出版社, 1996.
    [3]魏宗舒等.概率论与数理统计教程.北京:高等教育出版社, 1998.
    [4] Cherkassky V, Mulier F. Vapnik-Chervonenkis (VC) learning theory and its applications. IEEE Transactions on Neural Networks, 1999, 10 (5): 985-987.
    [5] Rosenblatt F. Principles of neurodynamics: perception and theory of brain mechanisms. Spartan Book, Washington DC, 1962: 1-5.
    [6] Novikofr A. On convergence proofs on perceptions. Symposium on the Mathematical Theory of Automata, Polytechnic Institute of Brooklyn, 1962, 12: 515-622.
    [7]黄德双.神经网络模式识别系统理论.北京:电子工业出版社, 1996.
    [8] Mculloch W, Pitts W. A logic calculus of the ideas imminent in neurons activity. Bulletin of Mathematical Biophysics, 1943, 5:115-133.
    [9] Hopfield JJ. Neural networks and physical systems with emergent collective computational abilities. In Proceedings of the National Academy of Sciences, USA, 1982, 79: 2554-2558.
    [10] Rumelhart OE, Hinton GE and Williams RJ. Learning representations by back-propagating errors. Nature, 1986, 323: 533-535.
    [11] Vapnik V. The support vector method, In Proceedings of the 7th International Conference Artificial Neural Networks, 1997: 263-271.
    [12] Boser BE, Guyon LM and Vapnik V. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computation Learning Theory, ACM Press, 1992: 144-152.
    [13] Cortes C, Vapnik V. Support vector networks. Machine Learning, 1995, 20: 273-295.
    [14] Vapnik V. Statistical learning theory. Wiley, New York, 1998.
    [15]边肇祺,张学工.模式识别.北京:清华大学出版社, 2000.
    [16] Vapnik V, Chapelle O. Bounds on error expectation for support vector machine. Advances in Large Margin Classifiers, Cambridge, MA, MIT Press, 2000: 5-26.
    [17]邓乃杨,田英杰.数据挖掘中的新方法-支持向量机.北京:科学出版社, 2005.
    [18] Vapnik V. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
    [19] Lunts A, Brailovskiy V. Evaluation of attributes obtained in statistical decision rules. Engineering Cybenretics, 1967, 3 (l): 98-109.
    [20]范明,柴玉梅,咎红英等译.统计学习基础一教据挖掘、推理与预测.北京:电子工业出版社, 2004.
    [21] Jaakkola T, Haussler D. Probabilistic kernel regression models. In Proceedings of the 7th Workshop on AI and Statistics, San Francisco, 1999:26-34.
    [22] Wahba G, LinY and Zhang H. Generalized approximate cross-validation for support vector machines: another way to look at margin-like quantities. Advances in Large Marge Classifiers, Cambridge, MA, MIT Press, 2000: 397-309.
    [23]王国胜,钟义信.支持向量机的若干新进展.电子学报, 2001, 29 (10): 1397-1400.
    [24] Amari S, Wu S. Improving support vector machine classifier by modifying kernel function, Neural Networks, 1999, 12: 783-789.
    [25] Gustavo CV, Luis GC, Jordi MM, et al. Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 2006, 3 (l): 93-98.
    [26] Lodhi H, Saunders C, Shawe-Taylor J, et al. Text classification using string kernels. Journal of Machine Learning Research, 2002, 2 (2): 419-444.
    [27] Dietterich TG, Bakiri G. Solving multiclass learning problems via erorr-correcting output codes. Journal of Artificial Intelligence Research, 1995, 2: 263-286.
    [28] Jair C, Xiaoou L, Wen Y, et al. Multi-class support vector machines for large data sets via minimum enclosing ball clustering. IEEE 4th International Conference on Electrical and Electronics Engineering, Mexico, 2007: 146-149.
    [29] Hsu CW, Lin CJ. A comparison of methods for multiclass support vector machines. IEEE Transaction on Neural Networks, 2002, 13: 415-425.
    [30] Lingras P, Butz C. Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification. Information Sciences, 2007, 177 (18): 3782-3798.
    [31] Crammer K, Singer Y. On the learning ability and design of output codes for multiclass problems. Machine Learning, 2002, 47: 201-233.
    [32] Weston J, Watkins C. Support vector machines for multiclass pattern recognition. In Proceedings of 7th European Symposium on Artificial Neural Networks, 1999: 219-224.
    [33] Scholkopf B, Smola A and Bartlet P. New support vector algorithms. Neural Computation, 2000, 12: 1207-1245.
    [34] Suykens JAK, Vandewalle J. Least squares support vector machines classifiers. Neural Processing Leters, 1999, 19 (3): 293-300.
    [35] Mangasarian OL, Musicant D. Lagrangian support vector machines. Journal of Machine Learning Research, 2001, 1: 161-177.
    [36] Fung G, Mangasarian OL. Proximal support vector machine classifiers. In Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining, San Francisco, Association for Computing Machinery, New York, 2001: 77-86.
    [37] Lee YJ, Mangasarian OL. SSVM: A smooth support vector machines. Computational Optimization and Applications, 2001, 20 (l): 5-22.
    [38] Zhang X. Using class-center vector to build support vector machines. Neural Networks for Signal Processing IX, In Proceedings of the 1999 IEEE Workshop, Madison, WI, USA, 1999: 33-37.
    [39] Tax DMJ, Duin PRW. Support vector domain description. Pattern Recognition Letters, 1999,20: 1191-1199.
    [40] Wei XK, Huang GB and Li YH. Mahalanobis Ellipsoidal Learning Machine for One Class Claassification. In Proceedings of the 6th International Conference on Machine Learning and Cybernetics, 2007, 6: 3528-3533.
    [41] Wang J, Neskovic P and Cooper LN. Pattern classification via single spheres. In Proceedings of Discovery Science 2005 Conference, Berlin: Springer-Verlag, 2005, 3735: 241-252.
    [42] Dong JX, Krzyzak A and Suen CY. Fast SVM training algorithm with decomposition on very large data sets. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2005, 27 (4): 603-618.
    [43] Joachims T. Making large-scale SVM learning practical. In Burges C, Scholkopf B, editors, Advances in Kernel Methods: Support Vector Learning, Cambridge, MA, MIT press, 1998.
    [44] Downs T, Gates KE and Masters A. Exact simplification of support vector solutions. Journal of Machine Learning Research, 2001, 2: 293-297.
    [45] Lin CJ. On the convergence of the decomposition method for support vector solutions. Journal of Machine Learning Research, 2001, 2: 293-297.
    [46] Keerthi SS, Shevade SK, Bhattacharyya C, et al. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 2001, 1 (13): 637-649.
    [47] Platt JC. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods: Support Vector Learning, Cambridge, MA, MIT Press, 1999.
    [48] Runarsson TP, Sigurdsson S. Asynchronous parallel evolutionary model selection for support vector machines. Neural Information Processing-Letters and Reviews, 2004, 3: 59-67.
    [49] Cao LJ, Keerthi SS, Ong CJ, et al. Parallel sequential minimal optimization for the training of support vector machines. IEEE Transaction on Neural Networks, 2006, 17 (4): 1039-1049.
    [50] Xia YS, Wang J. A one-layer recurrent neural network for support vector machine learning. IEEE Transaction on System, Man, and Cybenretics-Part B, 2004, 34 (2): 1261-1269.
    [51] Mangasarian OL, Musicant D. Successive overrelaxation for support vector machines. IEEE transactions on Neural Network, 1999, 10 (5): 1032-1037.
    [52] Mangasarian OL. Generalized Support Vector Machine. Advances in Large Margin Classifiers, In Smola AJ, Bartlett P, Schokopf B and Schuurmans D, editors, MIT Press, 2000: 135-146.
    [53] Mangasarian OL, Musicant D. Data discrimination via nonlinear generalized support vector machines. In Ferris MC, Mangasarian OL and Pang JS, editors, Complementarity: Applications, Algorithms and Extensions, Kluwer Academic Publishers, 2001: 233-251.
    [54] Mangasarian OL, Musicant D. Active set support vector machine classification. Neural Information Processing Systems 2000 (NIPS 2000), MIT Press, 2001: 577-583.
    [55] Fung G, Mangasarian OL. Finite newton method for lagrangian support vector machine classification. Neurocomputing, 2003, 55: 39-55.
    [56] Fung G, Mangasarian OL and Smola A. Minimal kernel classifiers. Journal of Machine Learning Research, 2002, 3: 303-321.
    [57] Fung G, Mangasarian OL. Multicategory Proximal Support Vector Machine Classifiers. Machine Learning, 2005, 59: 77-97.
    [58] Chi HM, Ersoy OK. Recursive update algorithm for least squares support vector machines, Neural Processing Letters, 2003, 17 (2): 165-173.
    [59] Chua KS. Efficient computations for large least square support vector machine classifiers, Pattern Recognition Letters, 2003, 24: 75-80.
    [60] Tsujinishi D, Abe S. Fuzzy least squares support vector machines for multiclass problems, Neural Networks, 2003, 16 (6): 785-792.
    [61] Keerthi SS, Shevade SK. SMO algorithm for least-squares SVM formulations, Neural Computation, 2003, 15 (2): 487-507.
    [62] Gestel TV, Suykens JAK, Lanckriet G, et al. Multiclass LS-SVMs: moderated outputs and coding-decoding schemes, Neural Processing Letters, 2002, 15: 45-58.
    [63] Gestel TV, Suykens JAK, Lanckriet G, et al. Bayesian framework for least-squares support vector machine classifiers, Gaussian processes, and kernel fisher discriminant analysis. Neural Computation, 2002, 14 (5): 1115-1147.
    [64] Ferris MC, Munson TS. Semismooth support vector machines. Mathematic Programming, 2004, 101 (1): 185-204.
    [65] Bennett KP, Bredensteiner EJ. Duality and geometry in SVM Classifiers, In Proceedings of the 17th International Conference on Machine Learning, Morgan Kaufmann, 2000: 57-64.
    [66] Crisp D, Burges C. A geometric Iiterpretation of v-SVM classifiers, In Advances in Neural Information Processing Systems 12, In Solla SA, Leen TK, Muler KR, edtors, Cambridge, MA, MIT Press, 2000.
    [67] Chang CC, Li CJ. Training nu-support vector classifiers: theory and algorithms, Neural Computation, 2001, 13 (9): 2119-2147.
    [68] Keerthi SS, Shevade SK, Bhattacharyya C, et al. A fast iterative nearest point algorithm for support vector machine classifier design. IEEE Tranctions on Neural Networks, 2000, 11 (1): 124-136.
    [69] Qing T, Gao-wei W and Jue W. A generalized S-K algorithm for learning v-SVM classifiers. Pattern Recognition Letters, 2004, 25: 1165-1171.
    [70] Abe S, Inoue T. Fast training of support vector machines by extracting boundary. Lecture Notes in Computer Science, Berlin: Springer, 2001, 213: 308-313.
    [71] Chen L, Huang J and Gong ZH. An anti-noise text categorization method based on support vector machines. AWIC, LNAI, Berlin: Springer, 2005, 3528: 272-278.
    [72] Li BQ. Distance-based selection of potential support vector by kernel matrix. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2004, 3173: 468-473.
    [73]李红莲,王春花,袁保宗等.针对大规模训练集的支持向量机的学习策略.计算机学报, 2004, 27 (5): 140-144.
    [74]刘万里,刘三阳,薛贞霞.基于距离核函数的除噪和减样方法.系统工程理论与实践,2008, 28 (7): 160-164.
    [75] Wu M, Sch?lkopf B and Bakir G. A direct method for building sparse kernel learning. Journal of Machine Learning Research, 2006, 7: 603-624.
    [76] Lee YJ, Mangasarian OL. RSVM: Reduced Support Vector Machines. In Proceedings of the SIAM International Conference on Data Mining, Chicago, 2001, SIAM, Philadelphia.
    [77] Fung G, Mangasarian OL. Data Selection for Support Vector Machine Classifiers. In Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, MA, ACM, NY, 2000: 64-70.
    [78] Chang CC, Lee YJ. Generating the reduced set by systematic sampling. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2004, 3177: 720-725.
    [79] Gao J, Shi W, Tan J, et al. Support vector machines based approach for fault diagnosis of valves in reciprocating pumps. In Proceedings of IEEE Conference on Electrical and Computer Engineering, Canadian, 2002, 3: 1622-1627.
    [80] Li Y, Hu Z, Cai Y, et al. Support vector based prototype selection method for nearest neighbor rules. Lecture Notes in Computer Science, Berlin: Springer-Verlag, 2005, 3610: 528-535.
    [81] Mika S, Sch?lkopf B, Smola A, et al. Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems, Cambridge, MA, MIT Press, 1999, 11: 536-542.
    [82] Valentini G, Muselli M and Rufmo F. Bagged ensembles of SVMs for gene expression data analysis. IEEE International Joint Conference on Neural Networks, Portland, 2003: 1844-1849.
    [83] Zhang Y, Burer S and Street WN. Ensemble pruning via semi-definite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
    [84] Valentini G, Dieterich T. Bias-variance analysis of support vector machines for the developlopment of SVM-based ensemble methods. Journal of Machine Learning Research, 2004, 5: 725-775.
    [85] Robert B, Ricardo GO and Francis Q. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets, Pattern Recognition, 2003, 36: 1291-1302.
    [86] Dong YS, Man KS. A comparison of several ensemble methods for text categorization. IEEE International Conference on Services Computing, Washington DC, USA, 2004: 419-422.
    [87] Skurichina M, Duin RPW. Bagging, boosting and the random subspace method for linear classifiers, Pattern Analysis and Applicaiton, 2002, 5 (2): 121-135.
    [88] Tao D, Tang X, Li X, et al. A symmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (7): 1088-1099.
    [89] Dietterich TG. Ensemble methods in machine learning. In Proceedings of the 1st International Workshop on Multiple Classifier Systems (MCS’00), Cagliari, Italy, 2000: 1-15.
    [90] Akbai R, Kwek S and Japkowicz N. Applying support vector machines to imbalanced datasets. The 15th European Conference on Machines Learning, Berlin: Springer-Verlag, 2004: 39-50.
    [91] Barandela R, Sanchez JS, Garcia V, et.al. Strategies for learning in class imbalance problems. Pattern Recognition, 2003, 36 (3): 849-851.
    [92] Chawla NV, Bowyer KW, Hall LO, et al. Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16 (3): 321-357.
    [93] Chawla NV, Japkowicz N and Kolcz A. Editorial: Special Issue on Learning from Imbalanced Data Sets. ACM SIGKDD Explorations, 2004, 6 (1): 1-6.
    [94] Japkowicz N, Stephen S. The class imbalanced problem: a systematic study. Intelligent Data Analysis, 2002, 6 (5): 429-449.
    [95] Barandela R, Valdovinos RM, Sanchez JS, et al. The imbalanced training sample problem: under or over sampling? LNCS, Berlin: Springer-Verlag, 2004, 3138: 806-814.
    [96] Kubat M, Matwin S. Addressing the curse of imbalanced datasets: One-sided Selection In Proceedings of the 14th International Conference on Machine Learning (ICML'97), Nashville, Tennessee, 1997: 178-186.
    [97] Feng J. Non-symmetric support vector machines. IWANN, LNCS2084, Berlin: Springer-Verlag, 2001: 418-426.
    [98] Tao Q, Wu GW, Wang FY, et al. Posterior probability support vector machines for unbalanced data. IEEE Transactions on Neural Networks, 2005, 16 (6): 1561-1573.
    [99]郑恩辉,李平,宋执环.不平衡数据挖掘:类分布对支持向量机的影响.信息与控制, 2005, 34 (6) :703-708.
    [100] Chew HG, Bonger RE and Lim CC. Dual nu-support vector machine with error rate and training size biasing. In Proceedings of the 26th IEEE International Conference Acoustics, Speech, and Signal, USA, 2001: 1269-1272.
    [101] Huang K, Yang H, King Z, et al. The minimum error minimax probability machine. Journal of Machine Learning Research, Cambridge, MA, MIT Press, 2004, 5: 1253-1286.
    [102]贾银山,贾传荧.一种加权支持向量机分类算法.计算机工程, 2005, 31 (12): 23-25.
    [103] Lin CF, Wang SD. Fuzzy support vector machines. IEEE Transactions on Neural Networks, 2002, 13 (2): 464-471.
    [104] Lin Y, Lee Y and Wahba G. Support vector machines for classification in nonstandard situations. Machine Learning, 2002, 46: 191-202.
    [105] Weiss GM. Mining with rarity-problems and solutions: a unifying framework. SIGKDD Explorations, 2004, 6 (1): 7-19.
    [106]肖健华,吴今培.样本数目不对称时的SVM模型.计算机科学, 2003, 30 (2): 165-167.
    [107] Davenport MA. The 2ν?SVM: A Cost-Sensitive Extension of theν? SVM. Tech. Rep. TREE 0504, Rice University, Dept. of Elec. And Comp. Engineering, October, 2005. http://www-dsp.rice.edu/~md/content/research/files/mad_tr05.pdf
    [108] Gish H, Schidt M. Text-indepenten speaker identification. IEEE Transactions on Signal Processing Magazine, l994, 42 (1): 18-32.
    [109] Heisele B, Serre T, Prentice S, et al. Hierarchical classification and feature reduction for fastface detection with support vector machines. Pattern Recognition, 2003, 17 (3): 417-439.
    [110] Walavalkar L, Yeasin M, Narasimhamurthy A, et al. Support vector learning for gender classification using audio and visual cues. International Journal of Pattern Recognition and Artificial Intelligence, 2003, 17 (3): 417-439.
    [111] Mike F, James R. Computer intrusion detection with classification and anomaly detection using SVMs. International Journal of Pattern Recognition and Artificial Intelligence. 2003, 17 (3): 441-458.
    [112] Mukherjee S. Classifying microasray data using support vector machines. In a Practical Approach to Microarray Data Analysis Kluwer Academic Publishers Boston, MA, 2003, 9: 166-185.
    [113] Brown M, Lewis GH and Gunn RS. Linear spectral mixture models and support vector machines for remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 1998.
    [114] Liu W, Shen P, Qu Y, et al. Fast algorithm of support vector machines in lung cancer diagnosis. In Proceedings of International Workshop on Medical Imaging and Augmented Reality, Hong Kong, China, 2001: 188-192.
    [115] Chen S, Samingan AK and Hano L. Support vector machine multiuser receiver for DS-CDMA signals in multipath channels. IEEE Transactions on Neural Network, 2001, 12 (3): 264-276.
    [116] Suykens JAK, Vandewalle J and De Moor B. Optimal control by least squares support vector machine. Neural Network, 2001, 14: 23-35.
    [117] Shahshahani B, Landgrebe D. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32 (5): 1087-1095.
    [118] Lippmann RP. Pattern classification using neural networks. IEEE Communications, 1989, 27 (11): 47-64.
    [119] Miller DJ, Uyar HS. A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Mozer M, Jordan MI, Petsche T, editors. Advances in Neural Information Processing Systems 9, Cambridge, MA, MIT Press, 1997: 571-577.
    [120] Nigam K, McCallum A, Thrun S, et al. Text classification from labeled and unlabeled documents using EM. Machine Learning, 1999, 39: 103-134.
    [121] Baluja S. Probabilistic modeling for face orientation discriminition: Learning from labeled and unlabeled data. Neural Information Processing Systems, 1998: 854-860.
    [122] Rosenberg C, Hebert M and Schneiderman H. Semi-supervised self-training of object detection models. Seventh IEEE Workshop on Applications of Computer Vision, 2005.
    [123] Yarowsky D. Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of the 33rd Annual meeting of the Association for computational Linguistics, 1995: 189-196.
    [124] Blum A, Mitchell T. Combining labeled and unlabeled data with co-training. In Proceedings of Computer Learning Theory, 1998.
    [125] Nigam K, Ghani R. Analyzing the effectiveness and applicability of co-training. In Proceedings of the 9th ACM International Conference on Information and Knowledge Management (CIKM’00), McLean, VA, 2000: 86-93.
    [126] Goldman S, Zhou Y. Enhancing supervised learning with unlabeled data. In Proceedings of the 17th International Conference on Machine Learning (ICML’00), San Francisco, CA, 2000: 327-334.
    [127] Zhou Y, Goldman S. Democratic co-learning. In Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’04), Boca Raton, FL, 2004: 594-602.
    [128] Zhou ZH, Li M. Tri-training: exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge and Data Engineering, 2005, 17 (11): 1529-1541.
    [129] Li M, Zhou ZH. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 37 (6): 1088–1098.
    [130] Mavroeidis D, Chaidos K, Pirillos S, et al. Using tri-training and support vector machines for addressing the ECML/PKDD 2006 discovery challenge. In Proceedings of the ECML-PKDD Discovery Challenge Workshop, Berlin, Germany, 2006: 39-47.
    [131] Bennett KP, Demiriz A. Semi-supervised support vector machines. In Proceedings of the 1998 conference on Advances in neural information processing systems 11. Cambridge, MA, MIT Press, 1999: 368-374.
    [132] Fung G, Mangasarian OL. Semi-supervised support vector machines for unlabeled data classification. Optimization Methods and Software, 2001, 15: 29-44.
    [133] Mangasarian OL. Solution of general linear complementarity problem via nondifferentiable concave minimization. Acta Mathematica Vienamica, 1997, 22 (1): 199-205.
    [134] Joachims T. Transductive inference for text classification using support vector machines. In Proceedings of the Sixteenth International Conference on Machine Learning (ICML 1999), Morgan Kaufmann Publishers, San Francisco, 1999: 200-209.
    [135] Chen YS, Wang GP and Dong SH. Learning with progressive transductive support vector machines. Pattern Recognition Letters, 2003, 24 (12): 1845-1855.
    [136]赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法.江南大学学报(自然科学版), 2006, 5 (4): 441-444.
    [137]沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法.计算机应用, 2007, 27 (6): 1463-1467.
    [138]廖东平,姜斌,魏玺章等.一种快速的渐进直推式支持向量机分类学习算法.系统工程与电子技术, 2007, 29 (1): 87-91.
    [139] Zhou DY, Scholkopf B. Learning from labeled and unlabeled data using random walks. In Proceedings of 26th DAGM Symposium Pattern Recognition, Berlin: Springer-Verlag, 2004: 237-244.
    [140] Belkin M, Niyogi P. Using manifold structure for partially labeled classification. In Advancesin NIPS 151 Cambridge, MA, MIT Press, 2002: 929-936.
    [141] Belkin M, Niyogi P. Semi-supervised learning on Riemannian manifolds. Machine Learning, 2004, 56: 209-239.
    [142] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, 15 (6): 1373-1396.
    [143] Zhu X, Ghahramani Z, Lafferty J, et al. Semi-supervised learning using gaussian fields and harmonic functions. In Proceedings of the 20th International Conference on Machine Learning, (ICML-2003), Washington DC, 2003: 912-919.
    [144] Blum A, Chawla S. Learning from labeled and unlabeled data using graph mincuts. In Proceedings of the 18th International Conference on Machine Learning (ICML’01), San Francisco, CA, 2001: 19-26.
    [145] Zhou ZH, Li M. Semi-supervised learning with co-training. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland, 2005: 908-913.
    [146] Zhou ZH, Li M. Semisupervised regression with cotraining-style algorithms. IEEE Transactions on Knowledge and Data Engineering, 2007, 19 (11): 1479-1493.
    [147] Sugato B. Semi-supervised clustering by seeding. The 19th International Conference on Machine Learning, Sydney, 2002.
    [148] Demiriz A, Bennett K and Embrechts M. Semi-supervised clustering using genetic algorithms. In Proceedings of Artificial Neural Networks in Engineering, 1999.
    [149] Dara R, Kremer S. Clustering unlabeled data with SOMs improves classification of labeled real-world data. In Proceedings of World Congress of Computational Intelligence (WCCI), 2002.
    [150] Zhang D, Gatica-Perez D, Bengio S, et al. Semi-supervised adapted HMMs for unusual event detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005, 1: 611-618.
    [151] Gao J, Cheng HB and Tan PN. A novel framework for incorporating labeled examples into anomaly detection. In Proceedings of the Second SIAM International Conference on Data Mining, Bethesda, Maryland, USA, 2006.
    [152] Gao J, Cheng HB and Tan PN. Semi-supervised outlier detection. In Proceedings of the ACM Symposium on Applied Computing, 2006, 1: 635-636.
    [153] Li Y, Fang BX and Guo L. A novel data mining method for network anomaly detection based on transductive scheme. In Liu D et al, editors, Part I, LNCS 4491, Berlin: Springer-Verlag, 2007: 1286–1292.
    [154]李洋,方滨兴,郭莉,陈友.基于直推式方法的网络异常检测方法.软件学报, 2007, 18 (10): 2595-2604.
    [155]李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测.软件学报, 2007, 18 (3): 527-537.
    [156] Liu R, Zhou JZ and Liu M. A graph-based semi-supervised Iearning algorithm for web page classification. In Proceedings of the 6th international Conference on Intelligence Systems Design and Applications (ISDA’06), 2006.
    [157]鲁坷,赵继东,叶娅兰等.一种用子图像检索的新型半监督学习算法.电子科技大学学报, 2000, 34 (5): 669-671.
    [158] Balcan MF, Blm A, Choi PP, et al. Person identification in webcam images: an application of semi-supervised learning. ICML2005 Workshop on learning with partially Classified Training Data, 2005.
    [159] Cristianini N, Shawe-Tayor J. An introduction to support vector machines and other kernel-based learning methods. Cambridge, Cambridge University Press, 2000.
    [160] Osuna E, Castro OD. Convex hull in feature space for support vector machines, Lecture Notes in Computer Science, 8th Ibero-American Conference on AI, Seville, Spain: Springer, 2002: 411-419.
    [161]李东晖,杜树新,吴铁军.基于壳向量的线性支持向量机快速增量学习算法.浙江大学学报(工学版), 2006, 40 (2): 202-215.
    [162] Tax DMJ, Duin RPW. Data domain description using support vectors. In Proceedings of European Symposium on Artificial Neural Networks, Bruges (Belgium), 1999: 251-256.
    [163] Murphy PM, Aha DW. UCI repository of machine learning databases, 1998. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    [164]刘万里,刘三阳,薛贞霞.不平衡支持向量机的平衡方法.模式识别与人工智能, 2008, 21 (2): 136-141.
    [165] Fawcett T. ROC graphs: notes and practical considerations for researchers.Machine Learning, 2004.
    [166] Bradley AP. Use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 1997, 30 (7): 1145-1159.
    [167] Cauwenberghs G, Poggio T. Incremental and decremental support vector machine learning. In Advances Neural Information Processing Systems (NIPS 2000), Cambridge, MA, MIT Press, 2001.
    [168] Ding A, Liu F and Li Y. Pre-extracting support vector by adaptive projective algorithm. International Conference on Signal Proceedings, 2002, (1): 21-24.
    [169] Joachims T. Support Vector Machine SVMlight: Support Vector Machine. http://www-ai.cs.undortmund.de/SOFTWARE/SVM_LIGHT/svm_light_v3.html.
    [170] David D. Lewis, Reuters-21578 text categorization test collection Distribution 1.0 README file. http://www.daviddlewis.com/resources/testcollections/reuters21578/.
    [171] Wang L, Jia HD and Sun SX. A fast and accurate progressive algoritm for training transductive SVMs. Berlin: Springer-Verlag, 2007, 3: 497-505.
    [172] Chapelle O, Zien A. Semi-supervised classification by low density separation. In Proceedings of 10th International Workshop on AI&Statistics, 2005: 57-64.
    [173] Hawkins D. Identification of outliers. London: Chapman and Hall, 1980.
    [174] Barnett V, Lewis T. Outliers in statistical data, New York: John Wiley & Sons, 1994.
    [175] Knorr EM, Ng RT and Tucakov V. Distance-based outliers: algorithms and applications. VLDB Journal: Very Large Data Bases, 2000, 8 (3-4): 237-253.
    [176] Breunig MM, Kriegel HP, Ng RT, et al. Lof: identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, ACM Press, 2000: 93-104.
    [177] Jin W, Tung AKH and Han J. Mining top-n local outliers in large databases. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge discovery and data mining, 2001: 293-298.
    [178] Tax DMJ, Ypma A and Duin RPW. Pump failure detection using support vector data descriptions. In Proceedings of the 3th International Symposium on Advances in Intelligent Data Analysis, Springer-Verlag, 1999, 1642: 415-426.
    [179] Sch?lkopf B, Williamson R, Smola A, et al. Support vector method for novelty detection. Advances in Neural Information Processing Systems 12, (NIPS’99), Boston, MA, MIT Press, 2000: 582-588.
    [180] Mukkamala S, Janoski G and Sung A. Intrusion detection using neural networks and support vector machines.In Proceedings of IEEE International Joint Conference on Neural Networks, 2002, 2: 1702-1707.
    [181] Markou M, Singh S. A neural network-based novelty detector for image sequence analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (10): 1664-1677.
    [182] MacQueen J. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967: 281-297.
    [183] Dunn JC. Some recent investigations of a new fuzzy partition algorithm and its application to pattern classification problems. J. cybernetics, 1974, 4: 1-15.
    [184] Bezdek JC. Pattern recognition with fuzzy objective function algorithms. Plenum, New York, 1981.
    [185] Lingras P, West C. Interval set clustering of web users with rough k-means. Journal of Intelligent Information Systems, 2004, 23: 5-16.
    [186] Peters G. Outliers in rough k-means clustering. In Proceedings of 1th International Conference on Pattern Recognition and Machine Intelligence, Berlin: Springer-Verlag, 2005, 3776: 702-707.
    [187] Hu Q, Yu D. An improved clustering algorithm for information granulation.In Proceedings of the 2th International Conference, FSKD 2005, Changsha, China, 2005.
    [188] Chimphlee W, Addullah AH, Sap MNM, et al. Anomaly-based intrusion detection using fuzzy rough clustering. In 2006 International Conference on Hybrid Information Technology (ICHIT’06), Cheju Island, Korea: IEEE, Springer, 2006.
    [189]赵英刚.非理想状态下支持向量机学习算法的研究.杭州:浙江大学博士学位论文, 2006.
    [190]罗瑜.支持向量机在机器学习中的应用研究.成都:西南交通大学博士研究生学位论文, 2007.
    [191]赵仲秋.基于模块神经网络和流形学习的模式识别中若干高复杂问题的研究.合肥:中国科学技术大学博士学位论文, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700