用户名: 密码: 验证码:
质粒pSET152对小单孢菌40027菌株产福堤霉素A的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小单孢菌(Micromonospora)是一类能产生结构类型多样的抗生素的稀有放线菌。就小单孢菌近年来所产生的生物活性物质的数目,小单孢菌已超过链霉菌而位居首位。因此,小单孢菌属作为寻找新抗生素和其它新生物活性物质的一种新菌源受到越来越多的关注和重视,显示出巨大的研究潜力。
     本文以小单孢菌40027原始菌株和小单孢菌40027::pSET152菌株为研究对象,通过比较小单孢菌40027原始菌株和小单孢菌40027::pSET152菌株在发酵过程的生物活性与发酵产物中的生物活性,研究了质粒pSET152所携带的外源基因(acc(3)IV)对小单孢菌40027菌株所产生的次级代谢产物-福堤霉素A的产量、结构、功能之间的影响。
     采用超声波细胞破碎法和反复冻融法对小单孢菌40027菌株的菌丝体进行破碎,研究表明超声波细胞破碎法破碎小单孢菌40027菌株的菌丝体效果比反复冻融法好,且经验证小单孢菌40027菌株菌丝体内所产生的少量的抗菌活性物质包含有福堤霉素A,但是胞外所产的生物活性物质要高于胞内。
     通过对小单孢菌40027菌株发酵工艺的研究,结果表明二级种子液制备至12h和发酵液制备至42h时,这2个时间分别为小单孢菌40027菌株种子培养期及发酵培养期的最佳时间。
     比较小单孢菌40027原始菌株和小单孢菌40027::pSET152菌株在相同培养时期的抑菌活性,研究发现在菌种活化时期、发酵培养时期,小单孢菌40027菌株抑菌活性比小单孢菌40027::pSET 152的抑菌活性强。
     对小单孢菌40027菌株的发酵液分离纯化工艺进行研究,结果表明:小单孢菌40027菌株发酵所产福堤霉素A的饱和吸附量为6倍树脂体积,0.5N的氨水洗脱液的用量为3倍树脂体积。提取的粗产物采用TCL检测,确定了氯仿-甲醇-浓氨水为1:2:1是小单孢菌40027菌株发酵产物的粗提物薄层层析的最佳展层系统。
     对1mg/mL福堤霉素A标准品进行色谱分析,采用示差折光检测器和蒸发光散射检测器进行检测,表明了蒸发光散射检测器检测福堤霉素A的效果要优于前者的检测效果,且确定蒸发光散射检测器的检测条件为:0.2 mol/L三氟乙酸溶液与甲醇比例为95:5;流速为1.0mL/min;漂移管温度为40℃;进样量为20μL;雾化气体压力为350kPa。在此条件下1mg?mL福堤霉素A标准品保留时间是7.20min。
     对小单孢菌40027::pSET152菌株和小单孢菌40027菌株的发酵纯化产物经高效液相色谱分离,确定了小单孢菌40027::pSET152菌株和小单孢菌40027菌株的发酵所产福堤霉素A的保留时间分别为7.31、7.35 min,峰面积所占比例分别为11.9%、12.3%,表明了二者发酵产物中含有基本等量的福堤霉素A。结果暗示了二者之间抑菌活性的差别不是由于二者所产的福堤霉素A的含量不同造成的,而是由于质粒pSET152所包含的acc(3)IV对福堤霉素A的结构有不同程度的钝化,引起福堤霉素A结构变化,从而导致了福堤霉素A抑菌活性的降低。
The Micromonospora which can produce antibiotics with Various types of structures belongs to the rare actinomycetes. In terms of out-put of new antibiotics, Micromonospora is more than Streptomyces for the moment. so, Micromonospora, as Searching for new antibiotics and other bioactive substances people pays more attention to it.It also has an enormous research potential.
     The article mainly talked about the Micromonospora sp. 40027 strain and Micromonospora sp. 40027:: pSET152 strain. By comparing of bioactive of their fermentation culture and fermentation product, this paper studied the effects of plasmid pSET 152 with heterologous genes acc(3)IV on production, structure and function of fortimicin A.
     Mycelium is disrupted by ultrasonic method and freezing- thawing method. The results show that ultrasonic method is much better for mycelium disruption, and bioactive substances of Micromonospora sp. 40027 strain intracellular contain fortimicin A by TLC detection. The bioactive substances of extracellular is higher than intracellular.
     According to the study on the fermentationin broth of Micromonospora sp. 40027 strain, the results show that the 12th hour and 42th hour are the best time of seed culture and fermentation culture for Micromonospora sp 40027 strain.
     Bacteriostatic activity of Micromonospora sp. 40027 strain and Micromonospora sp.40027: : pSET 152 strain are compared during active strains and fermentation period. The results show that Micromonospora sp. 40027 strain has higher bacteriostatic activity than Micromonospora sp. 40027: : pSET 152 strain.
     Separation and purification of the active component from the fermentation broth of Micromonospora sp.40027 stains were studied too.The results indicated that the maximum absorption capacity of fotimicin A from Micromonospora sp. 40027 stains are 6 times to the volume of ion exchange resin; 0.5N ammonia eluent is 4 times to the volume of ion exchange resin. Theirs extracts are basically determined on the basis of analysis of the Thin Layer Chromatographic (TLC).The most effectly developing solvent is composed of chloroform, methanal and concentrated ammonia(1:2:1).
     Using refractive index detector(RID) and evaporative light scattering detector(ELSD) detect standard of fortimicin A for chromatographic analysis.The results show that ELSD is more effective than RID. The condition of ELSD determination: the mobile phase is the mixture of 0.2 mol/L trifluoroacetic acid and methanol(95: 5) at the rate of 1.0mL/min with the temperature of the drift tube 40℃and the injection volume of 20μL, high pure nitrogen atomizing gas pressure of 350 kPa. Under these conditions, 1mg/mL fotimicin A standard retention time is 7.20min.
     The extras of fotimicin A of Micromonospora sp. 40027:: pSET152 strain and Micromonospora sp. 40027 strain are detected by HPLC,Their respective retention time is 7.31、7.35 min, the proportion of peak area of fotimicin A are 11.9%、12.3%. It shows that their fermentation product contains the same amount of fotimicin A. The results show the difference between the antibacterial activity is not only produced by fotimicin A content , but also the plasmid pSET152 with acc(3)IV had a passive effect on activities of fotimicin A. so it lead to decrease antibacterial activity.
引文
[1]雷湘兰,洪葵,阮继生.生物技术通报.小单孢菌及其在海洋药物开发中的景,2006(S1):87-90.
    [2] George M G, Matthew W, Denise B S. Taxonomic outline of the prokaryotic genera Bergey’s manual of systematic bacteriology. second edition[M] , April 2001.
    [3] Tamura T, Hayakawa M, Hatano k. A new genus of the order Actinomycetales, Virgosporangium gen. nov, with descriptions of Virgosporangium ochraceum sp nov and Virgosporangium aurantiacum sp nov. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(5):1809-1816.
    [4]张学武,建丽.微生物学通报.小单孢菌属的分类及应用研究,2006,33(5):117-121.
    [5] Thawai C, Tanasupawat S, Itoh T, et al. Micromonospora aurantionigra sp. nov., isolated from a peat swamp forest in Thailand. Actinomycetologica, 2004, 18:8-14.
    [6] Trujillo M E, Fernández-Molinero C, Velázquez E, et al. Micromonospora mirobrigensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2005, 55 (2):877-880.
    [7] John G H, Noel R K, Peter H A, et a1. Bergey’s manual of determinative bacteriology [M]. 9th edition, Baltimore, Maryland:Williams&Wilkins Press.1 994:6-11.
    [8] Koch C, Kroppenstedt R M, Stackebrandt E. 16S ribosomal DNA analysis of the genera Micromonospora, Actinoplanes, Catellatospora, Catenuloplanes, Couchioplanes, Dactylosporangium, and Pilimelia and emendation of the family Micromonosporaceae. Int J Syst Bacteriol, 1996, 46 (3):765-8.
    [9] Wang C, Xu XX, Qu Z, et al.Micromonospora rhizosphaerae sp.nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol, 2010, 3.19. [Epub ahead of print].
    [10] Thawai C, Tanasupawat S, Itoh T, et al. Micromonospora eburnea sp. nov, isolated from a Thai peat swamp forest .International Journal of Systematic and Evolutionary Microbiology, 2005, 55 (1): 417-422.
    [11] Thawai C, Tanasupawat S, kudo T, et al. Micromonospora pattaloongensis sp. nov., isolated from a Thaimangrove forest. Int J Syst Evol Microbiol, 2008,58(7):1516-21.
    [12] Zenova G M, Zvyagintsev D G. Actinomycetes of the genus Micromonospora in meadow ecosystems. Microbiology, 2002, 71 ( 5) : 570-574.
    [13] Kirby B M, Meyers P R. Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol, 2009, 8.10. [Epub ahead of print].
    [14] Hirsch P, Mevs U, Kroppenstedt R M, et al. Cryptoendolithic actinomycetes from antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Systematic and Applied Microbiology, 2004, 27(2): 166-174.
    [15] Maldonado L A, Stach J E, Pathom-aree W, et al. Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie Van Leeuwenhoek, 2005, 87 (1) : 11-8.
    [16] Mincer T J, Jensen P R, Kauffman C A, Fenical W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Applied and Environmental Microbiology, 2002, 68 (10) : 5005-11.
    [17] Magarvey N A, Keller J M, Bernan V, et al. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Applied and Environmental Microbiology , 2004, 70 (12) : 7520-7529.
    [18] Tanasupawat S, Jougrungruangchok S,Kudo T. Micromonopora marina sp.nov., isolated from sea sand. Int J Syst Evol Microbiol, 2010, 60(3):648-52.
    [20] Reidinger J, Reicke A, Zahner H, et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032 . Journal of Antibiotics, 2004, 579(4): 271-9.
    [20] Xu L H, Li Q R, Jiang C L, et al. Diversity of soil actinomycetes in yunnan, china. Applied and Environmental Microbiology,1996,62 (1):244-248.
    [21] Malfait M, Godden B, Penninckx M J, et al. Growth and cellulase production of Micromonospora chalcae and Pseudonocardia thermophila. Annales de Microbiologie, 1984, 135B (1):79-89.
    [22] Suarez J E, Barbes C, Hardisson C. Germination of spores of Micromonospora chalcea: physiological and biochemical changes [J]. J Gen Microbiol, 1980, 121(1): 159- 167.
    [23] Kikuchi M, Perlman D. Characteristics of bacteriophages for Micromonospra purpurea. Applied and Environmental Microbiology, 1978, 36(1):52-55.
    [24] Lazzarini A, Cavaletti L, Toppo G, et al. Rare genera of actinomycetes aspotential producers of new antibiotics. Antonie van Leeuwenhoek, 2000, 78(3-4): 399-405.
    [25] Caso J L, Hardisson C, Suarez J E. Characterization of five Micromonospora bacteriophages. Journal of General Microbiology, 1986, 132(6):3367-3373.
    [26] Weinstein M J, Wagman G H, Marquez JA, et al. Verdamicin, a new broad spectrum aminoglycoside antibiotic produced by a new species of Micromonospora. Abest Papers NO.136, 13th intersci conf Antimicr Agents and Chemoth, Washington,1973, Sept:164.
    [27] Wagman G H,Weinstein M J. Antibiotic from Micromonospora [J]. Annu Rev Microbiol, 1980, 34: 537- 57.
    [28]程元荣,黄威.小单孢菌产生的生物活性物质[J].国外医药抗生素分册,1998,4:407.
    [29]郑卫,程元荣.微生物新药筛选应重视新菌源的开发[A].第四届中国新医药博士论坛论文集[C].北京: 1999:421.
    [30]程元荣,黄捷.抗真菌抗生素和免疫抑制剂.中国新药杂志,2005,14(3):268. [ 31 ] Milorad K, Ljubisa T, Branka V. Cloning and characterization of an aminoglycoside resistance determinant from Micromonospora zionensis. J Bacteriol, 1992, 174(23): 7868-7872.
    [32]李晓华.小单孢菌40027菌株质粒、噬菌体及其基因克隆系统:[博士学位论文].武汉:华中农业大学,2003,44-47.
    [33] Weinstein M J, Luedemann G M, Oden E M, et al. Gentamician, a new antibiotic complex from Micromonospora. J. Med.Chem, 1963, 6:463-464.
    [34]褚志义主编.生物合成药物学.北京:化学工业出版社,2000.
    [35] WHO Expert Committee. The use of essential drugs, model list of essential drugs. WHO technical reports series No. 796 [Z]. Genveva: WHO,1990.
    [36]刘本发.固液两相两段培养小单孢菌生产庆大霉素的研究:[硕士学术论文].天津:河北工业大学,2002,7.
    [37]杨绪明.庆大霉素高产菌的选育及其发酵条件优化研究:[硕士学术论文].无锡:江南大学,2008,3.
    [38] Weinstein M J, Marquez J A, Testa R T, et al. Antibiotic 6640, a new Micromonospora-produced aminoglycoside antibiotic [J]. J. Antibiot, 1970, 23: 551-554.
    [39] Testa R T, Tilley B C. Biotransformation: A new approach to aminoglycoside biosynthesis: I. Sisomicin [J]. J. Antibiot, 1975, 28:576-579.
    [40]程振泰,高悟岩,陈久信.小单孢菌产生的氨基糖苷类抗生素T125.1的研究Ⅱ、提取、精制和生物活性[J].抗生素,1985,10(1):5.
    [41] Antal N, Fiedler H P, Stackebrandt E, et al. Retymicin, galtamycin B, saquayamycin Z and ribofuranosyllumichrome, novel secondary metabolites from Micromonospora sp. Tü6368. I. Taxonomy, fermentation, isolation and biological activities[J]. Journal of Antibiotics, 2005, 58(2):95-102.
    [42]连云阳,谢阳,魏天恩等.小单孢菌FIM98P-160产生的抗分枝杆菌抗生素Labilomyein[J].中国抗生素杂志,2002,27(9):519.
    [43] Akita E, Maeda K, Umezawa H. Isolation and characterization of Labilomycin, a new antibiotic[J]. J. Antibiot, 1963,16:147.
    [44] Ganguly A K, Girijavallabhan V M, et al. Chemical modification of everninom icins[J]. The Journal of the American Chemical Society, 982(35): 561-570.
    [45] Charan R D, Schlingmann G, Janso J, et al. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. [J]. Journal of Natural Produce, 2004, 67 (8):1431-1433.
    [46] Rinehart K L Jr , Shield L S. Chemistry of the ansamycin antibiotics [J]. For tschr Chem Org Naturst, 1976, 33,231.
    [47] Sepkowitz K A, Rafalli J, Riley L et al. Tubeiculosis in the AIDS era [J]. Clin Microbiol Reus, 1995, 8(2):180.
    [48] Maiese W M, Lechevalier M P, Lechevalier H A, et al. Calicheamicins,a novel family of antitumor antibiotics: taxonom, fermentation and biological properties. Journal of Antibiotics, 1989, 42(4):558-563.
    [49]郑卫,程元荣.小单孢菌与微生物新药筛选[J].药学学报,2000 ,35 (增刊) :58.
    [50] Wang H, Yeo SL, Xu J, et al. Isolation of streptonigrin and its novel derivative from Micromonospora as inducing agents of p53-dependent cell apoptosis. Journal of Natural Product, 2002, 65 (5):721-4.
    [51] He H, Ding W D, Bernan VS, et al. Lomaiviticins A and B, potent antitumor antibiotics from Micromonospora lomaivitiensis. Journal of the American Chemical Society. 2001,123 (22): 5362-5363.
    [52] Feling R H, Buchanan G O, Mincer T J, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angewandte Chemie, 2003, 42(3):355-357.
    [53] Ganquly A K, Sarre Z. Genistein and daidzein, metabolites of Micromonosporahalophytica. Chemical and Industry, 1970, 6:201.
    [54] Gacto M, Vicente-Soler J, Cansado J, et al. Characterization of an extracellular enzyme system produced by Micromonospora chalcea with lytic activity on yeast cells. Journal of Applied Microbiology, 2000, 88(6):961-96.
    [55] Nara T , Yamamoto M, Kawamoto I , et al . Fortimycin A and B , new aminoglycoside antibiotics. I.producing organisms , fermentation and biological properties of fortimicins. J Antibiotics , 1977 , 30 (7):533-40.
    [56]王铃萍,江连清,林剑秋..复提霉素的研究.激光生物学报, 2000,9(2):147-150.
    [57]马加生,杨昭中,石光敏等.小单孢菌SIPI436及其代谢产物福堤霉素A[J].抗生素,1986,11(2): 11-18.
    [58] Bierman M, Logan R, Obrien K, et al. Plasmid cloning vectors for the conjugal transfer of DNA from escherichia coli to streptomyces spp[J]. Gene, 1992, 116 (1): 43-9.
    [59]李爱英.变铅青链霉菌DNA异常修饰系统的分子生物学研究[D].武汉:华中农业大学,2000,57-58.
    [60] Li Xiaohua, Zhou Xiufen, Deng Zixin. Vector systems allowing efficient autonomous or integrative gene cloning in Micromonospora sp. 40027[J]. Applied and Environmental Microbiology, 2003, 69 (6):3144-3151.
    [61] Li Xiaohua, Zhou Xiufen, Deng Zixin.Micromonospora phageΦHAU8and its development into a phasmid[J]. Applied and Environmental Microbiology, 2004, 70 (7) : 3893-3897.
    [62]李晓华,周秀芬,邓子新等.外源基因对小单孢菌40027菌株产生抗生素的影响[J].安徽农业科学,2005,33(8):1453-1454.
    [63] Kim C, Villegas-Estrada A, Hesek D, et al. Mechanistic characterization of the bifunctional aminoglycoside-modifying enzyme ACC(3)-Ib/ACC(6')-Ib' from pseudomonas aeruginosa. Chem Biol, 2007, 46(17):5270-82.
    [64] Vetting M W, Park C H, Hegde S S, et al. Mechanistic and structural analysis of aminoglycoside N-acetyltransferase ACC(6')-Ib and its bifunctional, fluoroquinolone-active ACC(6')-Ib-cr variant. Chem Biol, 2008,47(37):9825-35. [ 65 ] Magalhaes M L, Blanchard J S. The kinetic mechanism of ACC3-IV aminoglycoside acetyltransferase from Escherichia coli. Chem Biol, 2005 , 44 (49): 75-83.
    [66] Sato S, Iida T, Okachi R, Shirahata K, Nara T. Enzymatic acetylation of fortimicin A and seldomycin factor 5 by aminoglycoside 3-acetyltransferase I: [ACC(3)-I] of E.coli KY8348. The Journal of Antibiotics,1977, 30 (11):1025-7.
    [67]中华人民共和国药典委员会.中华人民共和国药典[M].北京:化学工业出版社,2000:312. [ 68 ] British Pharmacopeia Commission.British Pharmacopeia[M]. London:Her Majesty’S StationeryOffice. 1998:299.
    [69]马统勋,张莉蓉.氨基苷类抗生素体液浓度微生物测定法的改进及其与β-内酰胺类合用药动学研究的进展.四川生理科学杂志, 2003,25 (3):103-106.
    [70] Korsrud G O, Boison J O, Nouws J F, et al. Bacterial inhibition tests used to screen for antimicrobial veterinary drug residues in slaughtered animals. J.AOAC Int, 1998, 81(1):21-4.
    [71]张悦晗,甄汉深,成莉.蒸发光散射检测器(EISD)应用概况.中华中医药学刊. 2007,25(4):831-833.
    [72]姚尚辰,马仕洪.蒸发光散射检测器及其在2005版中国药典抗生素品种中的应用.中国抗生素杂志,2005,30(12):712-720.
    [73]洪利娅,陈悦,陈贵斌,周明吴. HPLC-ELSD法分析硫酸阿司米星含量及有关物质.生物分析杂志,2006,26(2):218-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700