用户名: 密码: 验证码:
基于卫星遥感数据分析中国区域大气CH4垂直柱浓度时空特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷(CH4)是一种重要的大气温室痕量气体,它的浓度变化不仅影响着地-气系统的辐射平衡过程,而且在大气和平流层化学过程中也起着非常重要的作用。平流层大气CH4分布的变化将会改变平流层中的辐射效应、动力效应和化学效应,并进一步通过平流层和相互作用而影响。近些年大气CH4浓度的不断攀升,而人们现在还没有完全掌握CH4的源汇,变化规律,同时大气CH4估算的不确定性也限制着气候变化估算的准确性。因此近几年国际上对大气CH4浓度的变化尤其关注。正确研究了解大气CH4浓度的时空分布特征,对于深入了解地-气系统循环,完善大气CH4源汇平衡,掌握大气CH4在区域尺度上的变化有着十分重要的理论意义和重要价值。
     在全球研究和探讨大气CH4在气候变化中的作用中,中国区域对全球大气CH4源汇的动态变化有着重要的影响作用。基于这一研究目的,论文利用SCIAMACHY CH4垂直柱浓度产品,结合中国2003~2005年的自然,社会经济数据等,对中国2003~2005年CH4垂直柱浓度的分布规律及其成因进行了详细的探索,研究结果表明:
     (1)区域性和不均匀性特征。东部沿海城市CH4垂直柱浓度明显高于中西部地区。据统计最高值出现在湖南、江西、湖北、山东、安徽、贵州等地,其次中原和华北一带,低值出现在西藏和青海西部地区,尤其是青藏高原区域。自然地理分区统计结果为:CH4四川盆地>CH4华中地区>CH4华南地区>CH4西南地区>CH4东北地区>CH4华北地区>CH4西北内蒙地区>CH4青藏高原。年平均增长量四川盆地居首位,青藏高原大气CH4柱浓度逐年下降,幅度最大达-12.04ppb
     (2)年际和季节变化特征。2003~2005年CH4柱浓度是近似逐渐增大,一年中最高值出现在8月份附近,且在5月份和10月份有两个拐点。变化范围约为:16336.90ppb-1888.35ppb,大小顺序表现为:CH4夏季>CH4秋季>CH4春季>CH4冬季,即夏秋较高,春冬较低。
     (3)不同土地利用类型中,2003~2005年大气CH4平均柱浓度表现为:CH4城建用地>CH4耕地>CH4林地>CH4其他>CH4未利用>CH4草地。其中共用地,耕地和林地数量级为1775.57ppb-1776.62ppb,相差约lppb,变化幅度不大;其次是CH4源较强的其它用地(自然湿地-沼泽,水田-水稻和水域),值为1773.12 ppb,较前者差约2.50 ppb草地和未利用土地的CH4柱浓度为1723.44ppb-1728.59ppb,较前两者相差约50ppb,明显偏低。另外,草地和未利用土地为大气CH4的汇,草地吸收能力更强,其它类型则表现为CH4源,而森林表现出最强的CH4释放能力。
     (4)造成中国区域大气CH4空间分布格局的原因很多,其中气候影响占主导地位。经相关分析发现,植被指数、降雨量和温度,和大气CH4柱浓度呈显著正相关,相关系数分别为:0.713、0.697、0.629,而紫外辐射(UVB)与大气CH4柱浓度存在着明显的负相关,相关系数为:-0.884。可见尽管在植被有氧呼吸排放CH4的观点下,紫外辐射仍然总体上对CH4的产生起着抑制的作用。并且在不同季节、不同土地利用类型、不同地理区域内,气候因子对大气CH4的影响作用也是不相同的。其中在人为因素影响相对较低的青藏高原区中,发现在植物生长季节(6-9月份),温度对阔叶混交林和针叶林影响最大,可以分别解释49%、43%的空间分布;非生长季节,主导因子则表现为降雨量、紫外辐射(UVB)。而对高寒草甸,紫外辐射的作用表现尤为明显。
     (5)其他因素的影响。各因素对大气CH4柱浓度的影响作用表现为:燃料燃烧工业废气排放总量>城市垃圾总量>天然气消费量>煤炭消费量>焦炭消费量,其中相关系数分别为:0.788、0.348、0.339、0.184、0.159,可见工业废气排放是能源中主要的大气CH4源,城市垃圾,天然气位居其次。化石燃料的燃烧集中在大陆人口最稠密,煤炭能源相对匮乏的地区提高了山东,江苏等地的大气CH4浓度,而反刍动物CH4排放抬升了河南等农业集中区的大气CH4浓度。除此之外,风速则可能降低了西部大气CH4浓度而抬升了东部区域的大气CH4浓度。
Methane (CH4) is an important trace atmospheric greenhouse gases in the atmosphere. And its concentration changes not only affect the radiation balance of the ground-gas system, but also play a very important role in tropospheric and stratospheric chemistry. The distribution of CH4 varies will influence the radiation effect, dynamic and chemical effects in the stratosphere, and further refer to the troposphere by their interaction. Concentrations of atmospheric CH4 have been surprisely rising during recent years, while the source and sink of CH4 and its variation are not completely knowed, and large uncertainties limit the budget of atmospheric CH4 limit the accuracy of climate-change projections, so it is particularly concerned in internation. Understanding of atmospheric CH4 concentration of temporal and spatial characteristics has a very important theoretical significance and important value for in-depth understanding of land-air circulation system, improving the balance of atmospheric CH4 sources and sinks, mastering of atmospheric CH4 changes at the regional scale.
     The varied of atmospheric CH4 sources over China are important for global CH4 research on climate-chage. Based on this, we focus on the analsis of CH4 distribution pattern and influenced factor by the vertical column density CH4 concentration product in tropospheric from SCIAMACHY, combined with natural data and socio-economic data et al from 2003 to 2005. The results of analysis on atmospheric CH4 column concentrations from 2003 to 2005 are showed that:
     (1) Regional and uneven charactical. The CH4 in atmosphere concentration in eastern coastal was higher than its concentration in middle and western. The maximun is showed in Hunan Jiangxi、Hubei、Anhui、Guizhou provience, then its huabei zone; At the same time, the minimum is showed over Tibet and Qinghai zone, especially in Tibet Plateau. And the results from eco-region are that:CH4 sichuan-basin> CH4 huazhong> CH4 huanan> CH4 xinan> CH4 dongbei> CH4 huabei> CH4 xibeineimeng> CH4 Tibet Plateau. And yearly mean increasing is the first over Sichuan Basin, while the concentration of atmospheric CH4 over Tibet Plateau is decreasing yearly, reaching-12.04ppb.
     (2) Yearly and seasonaly pattern. The atmospheric CH4 concentration is increasing yearly from 2003 to 2005, the highest atmospheric CH4 concentartion was showed in August and there were two inflection points in May and Octorber. The extern of atmospheric CH4 concentration was 16336.90ppb-1888.35ppb, the order was:CH4 summer> CH4 autumn> CH4spring> CH4winter.
     (3) From the land use type. The etmospheric CH4 concentration showed:CH4 construction> CH4 irrigation> CH4 forest> CH4 others> CH4 unuse> CH4 grass. And the degree of CH4 concentration over construction、irrigation and forest was 1775.57ppb-1776.62ppb, difference was about 1ppb; Moreover, the CH4 concentration over others (paddy and water et al) is 1773.12 ppb, the difference was 2.50 ppb with former; The CH4concentration over grass and unused land was 1723.44 ppb-1728.59 ppb, with the difference reaching 50 ppb, being low value.
     (4) There are more reasons for the regional spatial pattern of atmospheric CH4 over China, but the climate factors were dominant. The analysis revealed that NDVI、precipitation、temperature were manifest correlation with the atmospheric CH4 concentration, and the correlation were 0.713、0.697、0.629, respectively. At the same time, the UVB showed the negetive correlation with the atmospheric CH4 concentration and the correlation is -0.884. So, we can get that the role of UVB on the CH4 concentration was negetive wholly, although some reaseraches view plant can emit the CH4 under aerobic conditions and the UVB was the incentives and assited. In different seasons、different land use types and different geographical regions, that climate factors influence on atmosoheric CH4 concentration was varied. Such as, over Qinghai-Tibet Plateau being relatively low human activity, the temperature was the greast impact on the CH4 concentration of broad-leaved mixed forest and coniferous forest, explaining 49%、43% of the spatial distribution in growing season (June-September), while the sominant factors of this eco-region are rainfall and ultraviolet radiation (UVB) in non-growing season. But, the role of ultraviolet radiation was particularly obvious for alpine meadow.
     (5) Other factors. The effects of other various factors on column density of atmospheric methan showed that:industrial waste gas emissions from fuel combustion> Cities of the total garbage> natural gas consumption> Coal consumption>coke consumption, and the correlation coefficient was 0.788、0.348、0.339、0.184、0.159, respectively. So, industrial gas emission was the main atmospheric CH4 source, municipal waste and natural gas was second. And the fossil fuels burning foucused in the higher population density, relative scarcity of coal energy zone improved the atmospheric CH4 concentration value, for example:Shan dong, Jiangsu and Anhui et al, while ruminant animals CH4 emission uplift the atmospheric CH4 concentration value for Henan provience. In addition, the wind speed and direction can educe the concentration of atmospheric CH4 value in western and elevate the atmospheric CH4 concentration value of the eastern region.
引文
曹国良,张小曳,王丹等.中国大陆生物质燃烧排放的污染物清单[J].中国环境科学,2005,25(4):389-393.
    曹国良,张小拽,王亚强等.中国区域农田秸秆露天焚烧排放量的估算[J].科学通报,2007,52(15):1826-1831.
    陈槐,高永恒,姚守平等.若尔盖高原湿地CH4排放的时空异质性[J].生态学报,2008,28(7):3425-3437.
    程红兵,王木林,温玉璞等.我国瓦里关山,兴隆温室气体C02,CH4和N20的背景浓度[J].应用气象学报,2003,14(4):402-409.
    陈碧辉,李跃清,何光碧等,温室气体源汇及其对气候影响的研究进展[J].成都信息工程学院学报,2006,21(1):123-127.
    董红敏,林而达,杨其长,中国反刍动物CH4排放量的初步估算及减缓技术[J].农村生态环境学报,1995,11(3):4-7.
    高庆先,杜吴鹏,卢士庆等.中国城市固体废弃物CH4排放研究[J].气候变化研究进展,2006,2(6):269-272.
    国务院关于印发中国应对气候变化国家方案的通知[N],中华人民共和国国务院公报,2007.
    郭永彩,张天华,高潮等.差分吸收光谱技术及在大气监测领域中的应用[J].重庆大学学报:自然科学版,2003,26(008):27-31.
    核心撰写Pachauri R K., Resinger A政府间气候变化专门委员第四次评估报告第一,第二和第三工作组的报告[R],IPCC,气候变化,2007;综合报告[C].日内瓦,IPCC,2007.
    孔郑,龙瑞军,董召荣等.黑土型退化高寒草地CH4排放特征研究[J].安徽农业科学,2009,37(27):13218-13220.
    林顺达.气候变化与农业可持续发展[M].北京:北京出版社,2001.
    刘立新,周凌晞,温民等.中国4个国家级野外站大气CH4本底浓度变化特征[J].气候变化研究进展.2009,5(5):285-290.
    李兴生,我国大陆和西太平洋地区大气痕量气体及其化学物质的监测研究[M].北京,气象出版社.1986:172-185.
    李莹,地基DOAS观测反演的N02柱总量与SCIAMACHY卫星N02数据的比较及N02时空分布研究[M],硕士学位论文,北京,北京大学,2006.
    李韧,赵林,丁永建等.青藏高原总辐射变化对高原季节冻土冻结深度的影响[J].冰川冻土,2009,31(3):422-430.
    林清,金会军,程国栋等.青藏高原五道梁动土活动层表层二氧化碳和CH4的排放[J].冰川冻土,1996,18(4):325-330.
    马永生,蔡勋育,赵培荣等.四川盆地大中型天然气田分布特征与勘探方向[J].石油学报,2010,3(31):347-354.
    秦瑜,赵春生.大气化学基础[M].北京,气象出版社,2003,79-91.
    齐瑾,利用SCIAMACHY/ENVISAT资料开展中国区域NO_2反演研究[D].中国气象科学研究院,2007.
    齐玉春,董云社,耿元波等.内蒙古羊草草原不同物候期CH4通量日变化特征与日变化通量比较[J].地理研究,2004,23(6):785-794.
    孙维斌,胡建红.反刍动物瘤胃CH4的产生及调控研究进展[J].黄牛杂志,1999,25(6):37-39.
    宋长春,湿地生态系统CH4排放研究进展[J].生态环境,2004(01):
    宋长春,阎百兴,王跃思等.三江平原沼泽湿地C02和CH4通量及影响因子[J].科学通报,2003,48(23):2473-2477.
    魏合理,刘庆红,徐青山等.整层大气CH4含量季节变化的遥测[J].气象学报,2001(6),59-3:360-367.
    王平,黄耀,张稳,1955-2005年中国稻田CH4排放估算[J].气候变化研究进展,2009,5(5):291-297.
    王长科,王跃思,刘广仁等.北京城区大气CH4浓度及其变化规律[J].环境科学研究,2003,16(6):43-45.
    王明星.中国稻田CH4排放[M].北京,科学出版社,2001:84.
    王明星,大气化学[M],北京,气象出版社,1991,81-116.
    王明星,刘卫卫Rasmussen R.A等.我国西北部沙漠地区大气CH4浓度的季节变化的长期变化趋势[J].科学通报,1989,9:648-686
    徐柏青,姚檀栋Chappellaz J..工业革命以来青藏高原与南极冰芯高分辨率CH4记录对比研究[J].冰川冻土,2002,24(5):477-483.
    谢旻,李树等.中国地区陆地植被CH4排放及其对低层CH4浓度的影响[J].中国科学杂志社,2008,53(19):2365-2370.
    叶笃玉,陈泮勤.中国的全球变化预研究(第二部分)[M].地震出版社,1992:253-256.
    赵荣钦.农田生态系统碳源/汇的时空差异及增汇技术研究-以中国沿海地区为例[D].河南大学,2001.
    朱枚,田洪海等.大气CH4的源和汇[J].环境保护科学,1996,22(2):5-9.
    周凌晞,刘立新,张晓春等.我国温室气体本底站大气C02浓度变化特征[J].应用气象学报,2008.19(6):641-645.
    周凌,汤洁,温玉璞等.瓦里关山大气CH4本底浓度变化特征分析[J].应用气象学报,1998,9(3):385-391.
    郑伟,汪瞧,李宁,DOAS在环境监测中的应用[J].现代仪器,2006,12(003):42-44.
    Australia Bureau of Meteorology/Melbourne [M]. Baseline Atmospheric Program, edited by Francey R J, Dick A L and Derek N,1996,71-79.
    Anthony, J. P., Paul, C. D., Scaling methane emissions from vegetation. Trends in Ecology and Evolution,2006,21: 423-424.
    Bubier J L., Moore T R., Bellisario L. et al. Ecological controls on methane emission from a nothern peat land complex in the zone of discontinuous permafrost, Manitoba, Canada [J]. Global Bio-geochem Cycles,1995, 9(4):455-470.
    Bellisarion I.M., Bubier J. L., Moore t.R., Chanton J.P., Control on CH4 emissions from a northern peatland. Global Biogechem, Cycles,1999,13:81-91.
    Broken W, Davidson E A., Savage K, et al. Drying and wetting effects on carbon dioxide release from organic horizons [J]. Soil Science Society of Americ Jounal,2003,67:1888-1896.
    Brunke E G, Scheel H E, Seilev W., Trends of tropospheric CO, N2O and CH4 as observed at Cape Point. South Africa. Atmos. Environ,1990,24A(3):585-595.
    Bruhn D., Mikkelsen e T. N.. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material [M]. Plant Functioning in a Changing Global Environment,2009, 2009-01-01:43-48.
    Boone D.R., Biological formation and consumption of methane [M]. In:Atmospheric Methane:Its role in the Global Enviroment (ed. Khalil MAK), Spring, Berlin,2000,42-46.
    Butenhoff C., L. e M. A. K. Khalil., Global methane emissions from terrestrial plants [J]. Environmental Science & amp, technology,2007,41(11):4032-4037.
    Buchwitz, M., De Beek, R., Bramstedt, K., et al. Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS[J]. Atmospheric Chemistry and Physics Discussions,2004,4(3):2805-2837.
    Buchwitz, M., Rozanov, V.Burrows, J., A correlated-k distribution scheme for overlapping gases suitable for retrieval of atmospheric constituents from moderate resolution radiance measurements in the visible/near-infrared spectral region[J]. Journal of Geophysical Research,2000,105:15.
    Buchwitz, M., Rozanov, V.V.,Burrows, J.P., A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances[J]. Journal of Geophysical Research-Atmospheres,2000,105(D12):15231-15245.
    Buchwitz, M., De Beek, R., Bramstedt, K., et al. Global carbon monoxide as retrieved from SCIAMACHY by WFM-DOAS[J]. Atmospheric Chemistry and Physics Discussions,2004,4(3):2805-2837.
    Conrad R, Schutz H, Babbel M., Temperature limilatation of hydrogen turnover and methanogensis in anoxic paddy soil [J]. Ferns Microbiol,1987,45:281-289.
    Christopher, L. B., Aslam M. K.K., Global methane emissions from terrestrial plants [J]. Enviromental science and technology,2007,41:4032-4037.
    Conway T.J., Tans P.P., Waterman L.S., et al. Evidence for inter-annual variability of the carbon cycle from the NOAA/CMDL global air sample network [J]. Journal of Geophsical Research,1994,99:22831-22855.
    Cao M., Marshall S., Gregson K., Global carbon exchange and methane emissions from natural werlands: application of process-based model [J]. Journal of Geophysical Research,1996b,101:14399-14414.
    Christensen T. R., Jonasson S., Callaghan T. V., et al. Spatial variation in high-latitude methane flux along a transect across Siberian and European tundra environments [J]. Journal of Geophysical Research 1995,100: 21035-21045.
    Cicerone R J, Shetter J D, Delwiche C. C. Seasonal variation of methane flux from a California rice paddy [J]. Journal of Geophysical Research,1983,88:11022-11024.
    Caldwel M.M., Bjorn L, O., BornmanJ. F., Effects of increased solar ultraviolet radiation on terrestrial ecosystems [J]. Photochem Photobiol B:Biol,1998,46:40-50.
    Dasselaar A. V. D. P., Beusichem M. L., Oenema O., Methane emissions from wet grasslands on peat soil in a nature preserve [J]. Biogeochemistry,1999,44,205-220.
    Dlugokencky, E. J., Masarie, K. A. et al., Continuing decline in the growth rate of the atmospheric methane burden [J]. Nature,1998,393:447-450.
    Dueck, T.A. de Viaaer R.. Ooorter H. et al. No evidence for substantial aerobic methane emission by terrestrial plants:a C-13-labelling approach [J]. New Phytologist,2007,175:29-35.
    David J. M., Andy R. M. et al., The role of Ultraviolet radiation, photosensitizers, reactive oxygen species and ester groups in mechanisms of methane formation from pection [J]. Plant Cell and Eniviroment,2009, 32:1-9.
    Ding W X., Cai Z C., Tsuruta H., Factors affecting seasonal variation of methane concentration in water in a freshwater marsh vegetated with Carex lasiocarpa [J]. Soil Science Society of America Journal,2005,41: 1-8.
    Ding W., Cai Z., Tsuruta H., et al. Key factors affecting spatial variation of methane emissions from freshwater marshes [J]. Chemosphere,2003,51:167-173.
    Delmas R A., Marenco J P., Talthy B.C., et al. Sources and sinks of methane in the African Savanna:Ch4 emissions from biomass burning [J]. Journal of Geophysical Research,1991,96:7287-7299.
    Dise N B., Methane emission from minnesota peat lands:Spatial and seasonal variability [J]. Global Biogeochem, 1993,7:123-142.
    Donald J., Wuebbles, Katharine Hayhoe., Atmospheric methane and global change [J]. Earth Science Reviews, 2002,57:177-210.
    Esser G. Sensitivity of global climatic impacts [M]. Tellus,1987,39B:245-260.
    Ehhalt D. H., The atmospheric syale of methane [M]. Tellus,1974,26:58-70.
    Forster P., Change in atmospheric constituents and in radiative ofrcing. in Climate Change 2007:The Physical Science Basis-Contribution of Working to the Fourth Assessment Report of the intergovernmental Panel of Climate Change [R], edited by S. Solomon et al., Cambridge Univ. Press, U.K.,2007,131-234,
    Fung, I., John, J., Lerner, J., et al. Three-dimensional model synthesis of the global methane cycle [J]. Jounal of Geophysical ResearchJ,1991,96:13033-13065.
    Francey R J, Dick A L and Derek N, Australia Bureau of Meteorology/Melbourne [J]. Baseline Atmospheric Program,1996,71-79.
    Glueckauf, E., The composition of atmospheric air, In:Compendium of meteorology (Thomas F.Mabone, ed) [M], American Meteorological Society, Boston, U.S.A.1951,4-9.
    Gloudemans A.M.S., Schrijver H., Straume, A.G., et al. CH4 and Co total Columns from Scimachy:Comparisons with TM3 and MOPITT [J].
    Gottwald M., Bovensmann H., Lichtenberg G., et al. SCIAMACHY, monitoring the changing earth's atmosphere, Germany:Freiburger Graphische Betrebe,2006 (from web).
    Http://www.nationalgeographic.com/wildworld/profiles/terre strial_aa.html.
    IPCC, Climate Chane 2007:The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernment Panel on Climate Change [R]. Cambridge, UK:Cambridge University Press,2007.
    IPCC, Climate Change 1994:Radiative forcing of climate change and an evaluation of the IPCC 1992 emission scenarios [R]. U K:Cambridge University Press,1995.
    IPCC, Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios [J]. Global Biogeochemical Cycles,2001,15:891-907.
    Inubushi K., Furukawa Y., Hadi A., et al. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan [J]. Chemosphere,2003,52: 603-608.
    Jin Hui-jun, Cheng guo-dong., Variation of methane emission rates at qingshuihe Qinghai-Tibet Plateau in early winter [J], Jounal of glaciology and geocryology,1998,20(4):368-375.
    King J.Y., Reeburgh W. S., regli S.K.,1998. Methane emission and transport by arctic sedges in Alaska:results of a vegetation removal experiment [J]. J. Geophys. Res.103,29029-29083.
    Kapitanov V A., Tyryshkin I S. Krivolutskii N.P., et al. Spatial distribution of methane over Lake Baikal surface [J]. Spectrochimica Acta Part A,2007,66:788-795.
    Keppler, F., Hamilton J.I.G, et al. Methane emissions from terrestrial plants under aerobic conditions [J]. Nature, 2006,439:187-197.
    Keppler, F., Hanilton J.T.G., et al. Mehtoxyl groups of plant pectin as a precursor of atmospheric methane: evidence from deuerium labelling studies [J]. Nnew Phytologist,2008,178:808-814.
    Khalil, M.A.K., Rassmussen R.A., et al. Secular trend of atmospheric methane [J]. Chemosphere,1982,11: 877-883.
    Khalil, M.A.K., Butenhoff, C.L., Atmospheric methane:Trends and cycles of sources and sinks [J]. Environmental Science and Technology,2007,41:2131-2137.
    Klerkx J., De Batist M., Poort J. et al. Tectonically controlled methane escape in Lake Baikal [J]. NATO science serried IV earth and environmental science,2006,65:203-219.
    Levine J S., Biomass burning:a driver for global change [J]. Environmental Science and Technology,1995,29A: 120-125.
    Mcleod, A. R. e S. C. Fry, et al. Ultraviolet radiation drives methane emissions from terrestrial plant pectins [J]. New Phytologlst,2008,180:124-132.
    Miller D.N., Ghiorse W.C., Yavitt j. B., Seasonal paterns and controls on methane and carbon dioxide fluxes in forested swamp pools [J]. Jounal of Geomicrobio,1999,16:325-331.
    Mikaloff Fletcher S. E., Tans P. P., Bruhwiler L. M., et al. CH4 source estimated from atmospheric observations of CH4 and its-(13)C/-(12)C isotopic ratios:1. Inverse modelling of source processes [J]. Global Biogeochem Cycles,2004,18, GB4004,10,1029/2004GB002223.
    Migeotte, M.V., Methane in the Earth's atmosphere [J]. J. Astrophy,1948b,10:400-403.
    Migeotte, M.V., Spectroscopeic evidence of methane in the Earth's atmosphere [J]. PhyR. Rev,1948a,73:579-520.
    Maziere, M. de et al. "Comparisons between SCIMACHY scientific products and ground-based FTIR data for total column of CO, CH4 and N2O", Proc. Second Workshop on atmospheric Chemistry Validation of ENVISAT (ACVE), this issue.2004.
    Manney G L., Kruger K., Sabutis J.L., et al. the remarkable 2003-2004 winnter and other recent warm winters in the Arctic stratospherie since the late 1990s [J]. Journal of Geophysical Research,2005,110:D04107.
    Noel S., Burrows J.P., Bovensmann H., Atmospheric Enviroment [R],2004,38:21-25.
    Prieme A., Chrisensen S., Methane uptake by a selection of soils in Ghana with different land use [J]. Journal of Geophysical Research,1999,104(D19):23617-23622.
    Petit J., Jouzel J., Raynaud D., et al. Climate and atmosheric history of the past 420,000 years from Vostok ice core, Antarctica [J]. Nature,1999,399:429-436.
    Rannan R., Keinanen, M.M., Kasurinen A., et al. Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass [J]. Global Chane Biology,2005,11:564-574.doi:10.1111/j.1365-2486.2005.00933.x.
    Rasmussen R. A., Khalil M. A. K., Atmospheric methane:trend and seasonal cycles [J]. Journal of Geophysical Research,1981,86:9826-9832.
    Rasmussen R. A., Khalil M.A.K., Hoyt S. D., Methane and carbon monoxide in snow [J], JAPCA,1982,32: 176-178,
    Robblins R.C., Cavanagh L.A., Analysis of ancient atmospheres [J]. Journal of Geophysical Research,1973,78: 5341-5344.
    Rinnan R., Gehrke C., Michelsen A., Two mire species respond differently to enhancedultraviolet-B radiation: effects on biomass allocation and root exudation [J].New Phytologist,2006,169:809-818.
    Houghton J. T., Ding Y, Grigga D. J., et al., eds., Radiative forcing of climate change [A].
    Climate Chane 2001:The Scientific Basis, Contribution of Working Gro9upI to the Third Assessement Report of the Intergovenmental Panel on Climate Change [M].Cambridge, UK:Cambridge University Press,349-416.
    Ramanathan V, Cicerone R J, Singh H B, et al. Trace gas trends and their potential role in climate change [J]. J. Geo2phys. Res,1985,90:5547-5566.
    Sass R. L., Fisher F. M. Jr, Turner F. T., et al. Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation [J]. Global Biogeochem Cycles 1991,5:35-350.
    Schutz H., Seiler W., Conrad R., Influence of soil temperature on methane emission from rice paddy fields [J]. Biogeochemistry,1990,11:77-95.
    Smith L.K., Lewis W.M., Chanton J.P., et al. Methane emissions from the Orinoco River flood-plain, Venezuela [J]. Biogeochemistry,2000,51,113-140.
    Straume, A.G.,2001, "Techniques for validation of SCIMACHY CO and CH4 data products", proc. Pre-launch Workshop on atmospheric Chemistry Validation of ENVISAT (ACVE),CD-ROM ID WPP186, ESA, Noordwijk, The Netherlands.
    Steele L. P., Fraser P, J., Rasmussen R. A., et al. the global distribution of methane in the troposphere [J]. Journal of Atmospheric Chemistry,1987,5:125-171.
    Svebsson B.H, Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen [J]. Applied and Environmental Microbiology,1984,48:389-394.
    Verville J H., Hobbie S E, Chapin F S, et al., Response of tundra Ch4 and CO2 flux to manipulation of temperature and vegetation [J]. Biogeochemnistry,1998,41:215-235.
    Vigano I., Weelden H.V., et al. Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components [J]. Biogosciences Discussion,2008,5:243-270.
    Vigano, I., Rockmann T., The stable isotope signature of methane emitted from plant material under UV irradiation [J]. Atmospheric Enviroment,2009,43:.5637-5646.
    Wang Z., Han X. Aerobic methane emission from plants in the Inner Mongolia steppe [J]. Environmental Science & amp, Technology,2008,42(1):62-68.
    Walter K. M., Smith L. C., Chapin III F. S., Methane bubbling from northern lakes:present and future contributions to the global methane budget [J]. Philosophica Transactions of the Royal Society a-mathematical physcical and engineering sciences,2007,365 (1856):1657-1676.2007. (doi:10.1098/rsta.2007.2036).
    Walter K.M., Zimov S. A., Chanton J. P., Vet al. Methane bubbling from Siberian Thaw Lakes as a positive feedback to climate warming [J]. Nature,2006m,443:71-75. (doi:10.1038/nature05040).
    Wang Da-li., the influence of elevated CO2 concentration in the atmosphere on the global CH4 emission [J]. Chinese Science Bulletin,1999,44(1):1-6.
    Wang Chen-rui, Shi Yi, Yang Xiao-ming, et al. Advances of study on atmospheric methane oxidation (consumotion) in forest soil [J]. Jounal of Foresty Research,2003,14(3):230-238.
    Wang Xiaoke, Feng Zongwei, Zhuang Yahui. CO2, CO and CH4 emission from forest fires in China [J]. Scientia Silvae Sinicae,2001,37(1):90-95.
    Wang Xiaoke, Zhuang Yahui, Feng Zongwei. Emission of carbon-containing gases released from foreast fire [J]. Adv. Environ. Sci.,1998,6(4):1-15.
    Whalen, S. C., Reeburgh W. S., Interannual variations in tundra methane emission:a 4-year time series at fixed sites [J]. Global Biogeochemical Cycles,1992,5:261-273.
    WMO,12th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Traces Measurement Techniques [M]. Toronto, Canada:WMO,2005.
    Walter K. M., B. A., M. S., Methane emissions from lakes in northeast Siberia and Alaska [M]. University of Alaska Fairbanks:Fairbanks, Alaska,2006.
    Wuebbles D. J., Hayhose K., Atmospheric methane and global change [J]. Earth sci Rev,2002,57:177-210.
    Wen Yupu, Shao Zhiqing, Xu Xiaobin, Observation and investigation of variability of baseline CO2 concentration over Waliguan Mountain in Qinghai Province of China [J]. Acta Meteorologica Sinica,1995,8 (3):255-262.
    Xiuying Zhang, HongJiang, Yueqi Wang, et al. Spatial atmospheric methane concentrations in China [J]. Intenational journal of remoteing sensing,2010, TRES-SIP-2010-0018.R2.
    Yavitt J.B., Williams C.J., Wieder R.K., Controls on micro-bial production of methane and carbon dioxide in three Sphagenum-dominated peatland ecosystems as reveled by a reciprocal field pear transplant experiment [J]. Jounal of Geomicarobiol,2000,17,61-88.
    Zhang Min, Hu Haiqing., The effect of forest fire on Microorganism in soil [J]. Journal of Northeast Forestry University,2002,30(4):44-46.
    Zaller J.G., Caldwell M.M., Flint S.D., et al. Solar UVB radiation affects bolow-ground parameters in a fen ecosystem in Tibet del Fuego, Argentina:inplications of stratospheric ozone depletion [J]. Global Chane Biology,2002,8:867-871.
    Zhou L. X., Worthy D. E. J., Lang P. M., et al. Ten years of atmospheric methane observations at a high elevation site in Western China [J]. Atmospheric Enviroment,2004,38:7041-7054.
    Zhi-Ping Wang, Xing-Guo Han., Aerobic methane emission from plants in the inner Mongolia Steppe [J]. Environmental Science and Technology,2008,42:62-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700