用户名: 密码: 验证码:
新疆地震断裂带次生植物对土壤微生物群落结构及代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解新疆地震断裂带次生植物对土壤微生物群落结构及代谢的影响,本文利用末端限制性片段长度多态性(terminal restriction fragment length polymorphism,T-RLFP)与BIOLOG技术,结合测定土壤主要化学性质,以同土层裸地为对照,对13种生长于地震断裂带的植物根际土壤微生物群落结构及代谢特征进行研究。主要研究内容与试验结果如下:
     1.依据土壤分析方法标准(DB/6500 B11)测定对照和不同植物根际土壤的pH、有机质、全氮、速效氮、速效磷、速效钾。结果表明,样地土壤呈碱性(pH 8.04-8.51),由方差分析(ANOVA)可知不同植物根际土壤化学性质差异均显著(p<0.05)。9种植物根际土壤pH高于对照;土壤养分在不同植物间变化范围较大,总体趋势表现为植物根际土壤养分多高于裸地。其中蓍、东方旱麦草的根际土壤各项养分含量普遍较高,而新疆方枝柏较低。由此可知,植被的恢复在不同程度上改善了土壤的养分。
     2.利用T-RLFP技术研究次生植物根际土壤细菌的群落结构,选用细菌16S rDNA通用引物8F/1492R进行扩增,HhaⅠ、RsaⅠ进行酶切。结果显示,不同植物改变了土壤微生物优势类群组成,增加了优势类群种类,尤其东方旱麦草、蓍对根际微生物作用最明显。变形菌门(Proteobacteria)细菌在植物根际土壤优势类群中占最大比例(49.55%)。典范对应分析(CCA)表明,细菌优势类群的分布与pH呈显著负相关(HhaⅠ酶切:r=-0.82,p<0.001; RsaⅠ酶切:r=-0.76,p<0.01)。由此推定植被的恢复增加了土壤细菌多样性,改变了土壤细菌群落结构,同时优势类群的分布还与土壤pH有关。
     3.利用T-RLFP技术研究次生植物根际土壤古菌的群落结构,选用古菌16S rDNA通用引物21F/958R进行扩增,HhaⅠ、RsaⅠ进行酶切。结果显示,在皱纹柳、直穗柳、东方旱麦草、西北绢蒿、鼠掌老鹳草、欧亚绣线菊、蓬子菜、密刺蔷薇8种植物根际土壤扩增出古菌,各植物根际土壤古菌群落间相似性较低,泉古菌门(Crenarchaeota)和广古菌门(Euryarchaeota)为主要类群。典范对应分析(CCA)表明,优势类群的分布与土壤有机质呈显著正相关(HhaⅠ酶切:r=0.94,p<0.001; RsaⅠ酶切:r=0.74,p<0.05),由相关分析可知土壤速效磷含量与古菌群落各多样性指数呈显著正相关(p<0.05),土壤总氮含量与均匀度指数E呈显著正相关(p<0.05)。总体而言,部分植被可在土壤0~20cm深度富集古菌,且古菌群落因植物种类不同呈较大差异,同时土壤有机质、速效磷也对古菌类群分布产生影响。
     4.选取次生植物中草本、灌木优势植物各3种,利用BIOLOG技术研究微生物群落代谢功能。结果显示:6种植物根际土壤的平均颜色变化率(AWCD)差异显著(p<0.05),且均高于裸地。次生植物不影响碳源利用的丰富度(p>0.05),但改变优势度和均匀度(p<0.05)。主成分分析(PCA)表明,不同植物根际土壤微生物群落利用碳源存在差异,其对糖类、氨基酸类、羧酸类碳源利用不同是造成差异的主要因素。随着植物的出现,土壤微生物利用碳源的类型由酚类向糖类、羧酸类转变。相关分析发现,土壤速效钾含量与聚合物类碳源(r=-0.84)、胺类(r=-0.83)的利用呈负相关。由此推断次生植物能显著增强土壤微生物碳源利用能力,改变碳源利用类型,且部分类型碳源的利用受速效钾含量的影响。
The aim of this study was to investigate the effects of secondary plants on Soil microbial community structure and metabolism in Xinjiang earthquake fault zone. The rhizosphere soils collected from 13 different secondary plants were studied by testing soil chemical properties and employing terminal restriction fragment length polymorphism (T-RFLP) and BIOLOG techniques. Unplanted soil in the same depth served as control. The investigated contents and results showed that:
     1. Soil pH, organic matter, total nitrogen, available nitrogen, available phosphorus and available potassium were measured according to the standard soil analysis methods (DB/6500 B11). The results showed that the soils were alkaline (pH=8.04-8.51), Analysis of variance(ANOVA) indicated that chemical properties of 13 rhizosphere soils were significantly different (p<0.05). The pH in most (9) rhizosphere soils were higher than control; soil nutrients among the different plants varied widely, the overall trend showed rhizosphere soil nutrients were higher than control, and soil nutrients contents in the rhizosphere of Achillea millefolium and Eremopyrum orientale were relatively high, while the one in Sabina pseudosabina were low. The results presumed that the vegetation restoration improved the soil nutrients in varying degrees.
     2. T-RLFP technique were used to study bacterial community structures in rhizosphere soil of secondary plants, we choosed universal primers 8F/1492R to amplify bacterial 16SrDNA, and HhaⅠ, RsaⅠenzymes to digest. As a result, the different plants changed the composition of dominant bacterial groups in soil and increased the sorts of dominant bacterial groups. Achillea millefolium and Eremopyrum orientale had the most significant effects. Proteobacteria accounted for the largest proportion (49.55%) in the soil. Canonical correspondence analysis (CCA) showed that the distribution of dominant bacterial groups was negatively correlated with pH significantly (HhaⅠdigestion: r =- 0.82, p <0.001; RsaⅠdigestion: r =- 0.76, p <0.05). These results suggested that vegetation restoration increased soil bacterial diversity, and had influence on the structures of soil bacterial communities. The distribution of dominant bacterial groups was also related to soil pH.
     3. T-RLFP technique were used to study archaeal community structures in rhizosphere soil of secondary plants, we choosed universal primers 21F/958R to amplify archaeal 16SrDNA, and HhaⅠ, RsaⅠe nzymes to digest. The results showed that archaea were found only in thoes rhizosphere soils of Salix vistita, Salix rectijulis, Eremopyrum orientale, Seriphidium nitrosum, Geranium sibiricum, Spiraea media, Galium verum and Rosa spinosissima. Results in the detection of archaea showed that the similarities of archaeal communities among different rhizosphere soils were low. Crenarchaeota and Euryarchaeota were the main groups. Canonical correspondence analysis (CCA) showed that the distribution of dominant archaeal groups was positively correlated with soil organic matter (HhaⅠdigestion: r = 0.94, p<0.001; RsaⅠdigestion: r = 0.74, p<0.05). Correlation analysis showed that soil available phosphorus content was positively correlated with all diversity indices of archaeal communities (p<0.05), and total nitrogen content showed a significant positive correlation (p<0.05) to the evenness index in HhaⅠDigestion results. The results showed that the vegetation restoration can enrich archaea at 0-20 cm soil. Because of the differences of plants, archaeal community presented very differently. Soil organic matter and available phosphorus also affected the distribution of archaea.
     4. We selected 3 dominant secondary plants from each herbaceous and shrubs, and used BIOLOG technique to study microbial communities metabolic function. As a result, the average well color development(AWCD)of 6 rhizosphere samples were distinctly(p<0.05) different, and higher than control. Secondary plants had no significant(p>0.05) impact on richness of carbon source utilization, but changed the dominance and evenness (p<0.05). The principal component analysis (PCA) showed that the utilization of carbon sources were different among samples. Those differences were mainly attributed to the use of carbohydrates, amino acids and carboxylic acids. As appearance of plants, the types of carbon sources utilized by microorganisms were changed from phenol to carbohydrates and carboxylic acid. In addition, available potassium content in soil was negatively correlated with the use of polymers (-0.84) and amines(-0.83). These results suggested that the secondary plants can significantly enhance the ability of microorganisms to carbon source utilization, and change the types of carbon sources utilized by microorganisms. The utilization of some carbon sources were affected by available potassium content.
引文
[1]李卫平,赵荣国.2006年国外灾害地震综述[J].国际地震动态.2007,2:11-14
    [2]赵荣国,李卫平,刘一鸣.2008年世界地震灾害综述[J].国际地震动态.2009,1:20-23.
    [3]杨红露,刘冬梅,孙辉.地震的生态破坏及其恢复重建研究进展[J].四川环境.2009, 28 (4): 97-101.
    [4]吴宁,卢涛.地震对山地生态系统的影响—以5.12汶川大地震为例[J].生态学报.2008,28(12):810-819
    [5]国家地震局兰州地震研究所.甘肃省地震资料汇编[M].北京:地震出版杜,1989.28-76
    [6]王文杰,潘英姿,徐卫华,王晶晶,白雪.四川汶川地震对生态系统破坏及其生态影响分析[J].环境科学研究.2008,21(5):110-116
    [7]吴建华.地震与生态环境关系初探[J].山西地震.2000, 4:32-34
    [8]吴瑾冰,郭安红.地震与环境生态[J].灾害学.2001,16(3):87-91,96
    [9]韩东银,魏英祖.生态系统地震灾害及其深层机制[J].国际地震动态. 2007,1:16-24
    [10] Claesson L,Skelton A,Graham C, Dietl C, M?rth M, Torssander P, Kockum I.Hydrogeochemical changes before and after a major earthquake[J].Geology.2004, 32:641-644.
    [11]韩东银,魏英祖.西部生态系统震害及其基本防御措施[J].西北地震学报.2005,27(4):337-341
    [12]彭少麟.恢复生态学[M].北京:气象出版社,2007.86-114
    [13]于文金.地震灾害对四川省区域生态系统危害及损失评价[J].生态学报.2008,28(12):5785-5794
    [14]欧阳志云,徐卫华,王学志,王文杰,董仁才,郑华,李迪华,李智琦,张宏锋,庄长伟.汶川大地震对生态系统的影响[J].生态学报.2008,28(12):5801-5809.
    [15]彭少麟.恢复生态学[M].北京:气象出版社,2007.39-42
    [16]杨世杰.植物生物学[M].第二版.北京:高等教育出版社, 2010. 325-344.
    [17]周云龙.植物生物学[M].第二版.北京:高等教育出版社, 2004. 497-500.
    [18]陆雅海,张福锁.根际微生物研究进展[J].土壤.2006,38(2):113-121
    [19]刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品.2006, 8(10):37-40.
    [20]赵大君,郑师章.凤眼莲根分泌物氨基酸对根际肠杆菌属F2细菌降酚的影响[J].应用生态学报.1996,7(4):435-438
    [21] Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J , Alabouvette C .Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads[J]. Appled and Environmental Microbiology. 1995, 61,(3):1004–1012
    [22] Zhang Q R, Zhou Q X, Ren L P, Zhu Y G, Sun S L. Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres[J]. Journal of Environmental Sciences.2006,18(6): 1101-1106
    [23] Choong-M R, Farag M A, Hu C H, Reddy M S,Wei H X , ParéP W, Kloepper J W. Bacterial volatiles promote growth in Arabidopsis[J]. Proc Natl Acad Sci USA. 2003, 100(8): 4927–4932.
    [24] Phillips D A ,Fox T C, King M D, Bhuvaneswari T V,Teuber L R. Microbial Products Trigger Amino Acid Exudation from Plant Roots[J].Plant Physiology. 2004,136(1):2887-2894
    [25] Bakkera A W, Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas SPP-mediated plant growth-stimulation[J].Soil Biology and Biochemistry. 1987,19(4): 451-457.
    [26] Elhottov D,Kri t fek V,Mal S,Frouz J. Rhizosphere Effect of Colonizer Plant Species on the Development of Soil Microbial Community during Primary Succession on Postmining Sites[J]. Communications in Soil Science and Plant Analysis.2009,40(1-6): 758-770.
    [27] Kang S, Mills A.L. Soil bacterial community structure changes following disturbance of the overlying plant community[J]. Soil Science.2004,169(1):55-65.
    [28] Miniaci C, Bunge M, Duc L, Edwards I, Bürgmann H, Zeyer J. Effects of pioneering plants on microbial structures and functions in a glacier forefield[J]. Biology and Fertility of Soils. 2007,44(2): 289-297.
    [29] Tscherkoa D, Hammesfahra U, Marxb M C, Kandeler E. Shifts in rhizosphere microbial communities and enzyme activity of Poa alpina across an alpine chronosequence[J]. Soil Biology & Biochemistry. 2004,36(10): 1685-1698.
    [30] Tscherko D, Hammesfahr U, Zeltnerb G, Kandelera E, B?cker R. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain[J]. Basic andApplied Ecology.2005,6(4):367-383.
    [31] Artz R R E, Chapman S J, Siegenthaler A, Mitchell E A D, Buttler A, Bortoluzzi E, Gilbert D, Ylipetays M, Vasander H, Francez A J. Functional microbial diversity in regenerating cutover peatlands responds to vegetation succession[J]. Journal of Applied Ecology.2008, 45(6):1799―1809.
    [32] He X Y, Wang K L, Zhang W, Chen Z H, Zhu Y G, Chen H S. Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst[J]. Plant and Soil.2008, 307(1-2): 123-134.
    [33] White D C, Davis W M, Nickels J S, King J D, Bobbie R J. Determination of the sedimentary microbial biomass by extractible lipid phosphate[J]. Oecologia.1979, 40:51-62.
    [34] Tunlid A, Baird B H, Trexler M B, Olsson S, Findlay R H, Odham G, White D C. Determination of phospholipid ester-linked fatty acid and polyβ-hydroxybutyrate for the stimulation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus(L.) [J]. Canadian Journal of Microbiology.1985, 31:1113-1119.
    [35] Costerton J W, Colwell R R. Native aquatic bacteria,enumeration,activity and ecology[M]. Philadelphia: American Society for Testing and Materials,1979.69-81.
    [36] Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian journal of biochemistry and physiology.1959,37(8):911-917.
    [37]齐鸿雁,薛凯,张洪勋.磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用[J].生态学报.2003.23(8):1576-1582
    [38]席劲瑛,胡洪营,钱易.Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1): 138-141
    [39] Garland J L,Mills A L.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J].Applied and Environmental Microbiology.1991,57(8):2351-2359
    [40]郑华,欧阳志云,方治国,赵同谦.BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报.2004,41(3):456-461
    [41]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报.2003,23(5):988-994
    [42]周晓杨,肖仁普.分子生物学方法在微生物生态学研究中的应用[J].重庆文理学院学报(自然科学版).2007,26(4):57-60
    [43] Lukow T, Dunfield P F, LiesackW.Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants[J].FEMS Microbiology Ecology.2000,32(3):241-247
    [44] Dunbar J, Ticknor L O,Kuske C R.Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities[J].Applied and Environmental Microbiology.2001,67(1):190-197
    [45]沈萍.微生物学[M].北京:高等教育出版社,2000.314-320
    [46]李红.末端限制性酶切片段长度多态性分析技术进展[J].安徽师范大学学报(自然科学版). 2006,29(6): 582-585
    [47]蒋浩旋.富蕴地震断裂带[M].北京:地震出版社,1985.1-5
    [48]何寿欢.新疆维吾尔自治区地震资料汇编[M].北京:地震出版社,1985.5-132
    [49]李博.生态学[M] .北京:高等教育出版社,2000.150-172
    [50]欧阳学军,黄忠良,周国逸,褚国伟,李炯,史军辉,徐国良.鼎湖山南亚热带森林群落演替对土壤化学性质影响的累积效应研究[J].水土保持学报. 2003,17(4):51-54
    [51] Shen W S, Lin X G, Gao N, Zhang H Y, Yin R, Shi W M, Duan Z Q. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze river delta[J]. Plant Soil.2008,306(1-2):117-127
    [52]徐华君,韩宝平.新疆阿勒泰山区土壤形成特征及其垂直分布[J].中国土壤与肥料.2008 (1):12-17
    [53]曾锋,邱治军,许秀玉.森林凋落物分解研究进展[J].生态环境学报.2010,19(1):239-243
    [54]潘静娴,张莹.地震灾后生态系统重建中的植被恢复初探[J].防灾科技学院学报.2009,11(3):9-13
    [55]曹富强,刘朝晖,刘敏,崔俊峰.森林凋落物及其分解过程的研究进展[J].广西农业科学.2010,41(7): 693-697
    [56]于恩娜,王金贵,初宝顺.凋落物及其在森林生态中的作用[J].现代农业科技.2009(2): 286-288
    [57]张学利,杨树军,刘亚萍,刘淑玲.章古台固沙林主要树种根际土壤性质研究[J].中国沙漠.2004,24(1): 72-76
    [58]席峰,傅莲英,王桂忠,郑天凌.海洋沉积物DNA提取前的简易脱腐方法[J].研究高技术通讯.2006,16(5):639-544
    [59] Zhou J, Bruns M A , Tiedje J M. DNA recovery from soils of diverse composition[J]. Applied and Environmental Microbiology. 1996, 62(2):316-322.
    [60]张瑞福,曹慧,崔中利,李顺鹏,樊奔.土壤微生物总DNA的提取和纯化[J].微生物学报.2003,43(2):276-281
    [61]杜涛,黄小毛,侯明生,林木兰,周宁一.从土壤中提取DNA用于PCR扩增[J].微生物学通报.2003,3(6):1-5
    [62] Zhang R, Thiyagarajan V, Qian P Y. Evaluation of terminal-restriction fragment length polymorphism analysis in contrasting marine environments[J]. FEMS Microbiology Ecology. 2008,65(1): 169–178
    [63]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用与环境生物学报.2006,12(6):861-868
    [64] Schütte U M. E, Abdo Z, Bent S J, Shyu C,Williams C J, Pierson J D,Forney L J. Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities[J]. Applied Microbiology and Biotechnology.2008,80(3): 365-380
    [65]张金屯.数量生态学[M].北京:科学出版社,2004.171—178
    [66]毕江涛,贺达汉.植物对土壤微生物多样性的影响研究进展[J].中国农学通报.2009,25(09):244-250
    [67]杨喜田,宁国华,董惠英,李有.太行山区不同植被群落土壤微生物学特征变化[J].应用生态学报. 2006,17(9):1761-1764.
    [68]郑华,欧阳志云,王效科,方治国,赵同谦,苗鸿.不同森林恢复类型对土壤微生物群落的影响[J].应用生态学报.2004, 15(11): 2019-2024
    [69]赵辉,赵铭钦,程玉渊,王文基,卢叶.土壤微生物影响因子研究综述[J].江西农业学报.2009,21(12):52-56
    [70]丛立双,刘惠荣,王瑞刚,冯福应,陶羽.浑善达克沙地生物土壤结皮细菌群落特征[J].内蒙古农业大学学报.2010,31(3):168-172
    [71]张永生,赖欣,张静妮,李刚,赵帅,杨殿林.内蒙古贝加尔针茅草原细菌多样性的PCR-DGGE分析[J].华北农学报.2010,25(3):58-63
    [72]李潞滨,刘振静,杨凯,刘敏,周金星,孙磊,韩继刚.青藏铁路沿线唐古拉山口土壤微生物的ARDRA分析[J].生态学报.2008,28(11):5482-5487
    [73] Sessitsch A, Weilharter A,Gerzabek M H, Kirchmann H, Kandeler E.Microbial population structures in soil particle size fractions of a long—term fertilizer field experiment[J]. Applied and Environmental Microbiology.2001, 67(9):4215-4224.
    [74]余彬彬,金则新,李钧敏.常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性[J].西北林学院学报.2008,23(5):30-33
    [75]沈利娜,邓新辉,蒋忠诚,覃星铭.不同植被演替阶段的岩溶土壤微生物特征—以广西马山弄拉峰丛洼地为例[J].中国岩溶.2007,26(4):310-333
    [76]曾巾,杨柳燕,梁医,黎嘉韵,肖琳,蒋丽娟.南京玄武湖底泥微生物群落结构研究[J].生态科学.2008,27(5):351-356
    [77] WuY P,Ma B, Zhou L,Wang H Z, Xu J M,Kemmitt S,Brookes P C. Changes in the soilmicrobial community structure with latitude in eastern China,based on phospholipid fatty acid analysis[J]. Applied Soil Ecology. 2009,(43):234-240
    [78] Fierer N, JacksonR B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America[J].Proc Natl Acad Sci USA.2006,103(3):626-631
    [79] Lin A,Lin S J. Tree Damage and Surface Displacement: The 1931 M 8.0Fuyun Earthquake[J]. The Journal of Geology. 1998,106:751-757
    [80]范业宽,叶坤合.土壤肥料学[M].武昌:武汉大学出版社,2002.28-40
    [81]张薇,魏海雷,高洪文,胡跃高.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志.2005,24(1):48-52
    [82] Eiler A, Bertilsson S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes[J].Environmental Microbiology. 2004.6(12):1228-1243.
    [83] NicolG W, TscherkoD, Embley T M, ProsserJ I. Primary succession of soil Crenarchaeota across a receding glacier foreland[J]. Environmental Microbiology, 2005,7(3): 337-347.
    [84]黄成敏,龚子同.土壤发生和发育过程定量研究进展[J].土壤.2000,32(3):145-150,166
    [85] Jackson C R, Liew KC, Yule C M. Structural and Functional Changes with Depth in Microbial Communities in a Tropical Malaysian Peat Swamp Forest[J].Microbial Ecology.2009,57(3):402-412.
    [86]张薇,胡跃高,黄国和,高洪文.西北黄土高原柠条种植区土壤微生物多样性分析[J].微生物学报.2007,47(5): 751-756
    [87] Chen X P, Zhu YG, Xia Y, Shen JP, He JZ. Xue-Ping Chen, Yong-Guan Zhu, Yue Xia, Ju-Pei Shen, Ji-Zheng He. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil[J]? Environmental Microbiology.2008,10(8):1978–1987.
    [88] Rice E L.Allelopathy[M].2nd ed,Orlando Fiorida:Academic Press Inc,1984.119
    [89] Minorsky P V.Different roles for Catechin enantiomers secreted into rhizosphere[J].Plant Physiol.2002,128(4):1163-1164
    [90] RiceE L,Pancholy S K.Inhibition of Nitrification by Climax Ecosystems. II. Additional Evidence and Possible Role of Tannins[J]. American Journal of Botany.1973,60(7):691-702
    [91] Patterson D T.Effects of Allelopathic Chemicals on Growth and Physiological Responses of Soybean (Glycine max) [J].Weed Science.1981,29(1):53-59
    [92]林清华,刘波,徐有为.牛至挥发油对肠炎常见菌的体外抗菌作用[J].应用与环境生物学报. 1997,3(1):76-78
    [93] Hansel C M,Fendorf S,JardineP M,Francis C A. Changes in Bacterial and Archaeal Community Structure and Functional Diversity along a Geochemically Variable Soil Profile[J]. Applied and Environmental Microbiology.2008, 74(5):1620–1633
    [94] Aller J Y, aul. KempP F. Are Archaea inherently less diverse thanBacteria in the same environments[J]? FEMS Microbiol Ecology.2008,65:74-87
    [95] Nicol G W,Glover L A,Prosser J I. Spatial Analysis of Archaeal Community Structure in Grassland Soil[J]. Applied and Environmental Microbiology. 2003, 69(12):7420-7429.
    [96] Karner M B,DeLong E F,Karl D M.Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature. 2001, 409: 507-510.
    [97]程海鹰,肖生科,马光东,汪卫东,王修林.营养注入后油藏微生物群落16SrRNA基因的T-RFLP对比分析[J].石油勘探与开发.2006,33(3): 356-359,373
    [98]袁三青,薛燕芬,高鹏,汪卫东,马延和.T-RFLP技术分析油藏微生物多样性[J].微生物学报.2007,47(2):290-294
    [99]潘惠霞,程争鸣,王方,牟书勇,齐晓玲,尹林克,张元明,王毅,赵金山.甘草、麻黄根际土壤微生物的生态分布特性[J].西北植物学报.2003,23(10):1792-1795
    [100]宋亚娜,林智敏,林捷.不同品种水稻土壤氨氧化细菌和氨氧化古菌群落结构组成[J].中国生态农业学报, 2009,17(6):1211-1215
    [101] Wu L Q,Ma K,Li Q,Ke X B,Lu Y H. Composition of Archaeal Community in a Paddy Field as Affected by Rice Cultivar and N Fertilizer[J].Microbial Ecology.2009,58(4): 819-826
    [102]贺纪正,沈菊培,张丽梅.土壤中温泉古菌研究进展[J].生态学报.2009,29(9): 5047-5055.
    [103] Dalal R C, Henderson P A , Guasby J M. Organic matter and microbial biomass in a vertisol after 20 years of zero-tillage[J]. Soil Biology and Biochemistry.1991,23: 435-441.
    [104] E A Paul, J N Ladd. Soil Biochemistry[M]. New York: Marcel Dekker Inc,1981. 415-471
    [105] Carter M R, Rennie D A. Dynamics of soil microbial biomass N under zero and shallow tillage for spring wheat, using 15N urea[J]. Plant Soil.1984,76:157-164.
    [106]周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报.2003,14(8):1246-1250
    [107]张宇宁,梁玉婷,李广贺.油田土壤微生物群落碳代谢与理化因子关系研究[J].中国环境科学.2010,30(12):1639-1644
    [108]张乃莉,郭继勋.松嫩草甸不同退化程度生境土壤磷素动态研究[J].应用与环境生物学报2006,12(6):777-782
    [109]周陈,李许滨,杨明开,徐德彬,吴建伟,魏成熙.冬小麦不同生育期土壤微生物及养分动态变化[J].西北农业学报.2008,17(3):13-116,128
    [110]方辉,王翠红,辛晓云,张洪满,刘其彬.平朔安太堡矿区复垦地土壤微生物与土壤性质关系的研究[J].安全与环境学报.2007,7(6):74-76
    [111]向仕敏,陆梅,徐柳斌,张仕艳,左智天,蒋翠芬.5种林分类型林地土壤氮含量与其土壤微生物学性质的研究[J].西部林业科学.2008,37(1):41-45
    [112] Jenkinson D S, Parry L N. The nitrogen cycle in the broad balk wheat experiment, a model for the turnover of nitrogen through the soil microbial biomass[J]. Soil Biology& Biochemistry,1989, 21: 535-541
    [113]刘晶静,吴伟祥,丁颖,石德智,陈英旭.氨氧化古菌及其在氮循环中的重要作用[J].应用生态学报.2010,21(8):2154-2160
    [114]区余端,苏志尧,彭桂香,刘刚.车八岭山地常绿阔叶林冰灾后土壤微生物群落功能多样性[J] .生态学报.2009,29(11):6156-6164
    [115] Garland J L, Millsa L. Classification and characterization of heterotrophic microbial communities on basis of patters of community-level sole-carbon-utilization[J].Applied Environment Microbiology.1991,57(8): 2351-2359
    [116] Magurran A E. Ecological diversity and its measurement. Cambridge: University Press,1988
    [117]申卫收,林先贵,张华勇,尹睿,段增强,施卫明.不同施肥处理下蔬菜塑料大棚土壤微生物活性及功能多样性[J] .生态学报.2008,28(6):2682-2689
    [118] Jeffrey S B, Donald D K. Microbial diversity in the rhizosphere of corn grown under conventional and low-input systems[J]. Applied Soil Ecology.1996,5(1):21-27
    [119] Kela P W, Jason A G, Matthias G, et al. Data transformations in the analysis of community-level substrate utilization data from microplates[J]. Journal of Microbiological Methods.2007,69(3):461-469
    [120]李从娟,马健,李彦.五种沙生植物根际土壤的盐分状况[J].生态学报.2009,29(9): 4649-4655
    [121]郑华,陈法霖,欧阳志云,方治国,王效科,苗鸿.不同森林土壤微生物群落对Biolog-GN板碳源的利用[J].环境科学.2007,28(5):1126-1130
    [122]李世朋,蔡祖聪,杨浩.贵阳市东郊不同植被类型下土壤特性对微生物功能的影响[J].土壤.2009,41(2):224-229
    [123]金剑,王光华,陈雪丽,刘晓冰,Stephen J Herbert. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J].大豆科学.2007,26(4):565-570
    [124] Selvaraj P, Munusamy, Tongmin S. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion[J]. Plant And Soil.2006,286(1-2):167-180

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700