用户名: 密码: 验证码:
不同下垫面上行星边界层对流的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
边界层对流在热量、水汽、动量以及气溶胶的传输中起着重要作用。不同的下垫面不仅影响空气中的物理特性,而且还能影响边界层对流的形式及其发展高度。边界层对流卷是平坦地形上较常见的边界层对流。当控制深对流触发的中尺度辐合较弱时,边界层对流可以触发深对流的发生。地形的变化能改变边界层的气流,如在起伏不平的山地,对流的分布往往是由迎风坡的坡度和宽决定的。而在极端干旱的沙漠地区,较强的地表感热通量引起的深厚边界层干对流使沙漠地区夏季的边界层厚度可以达到5km以上的高度。深厚的边界层对流对沙尘的传输也有重要影响。本文利用一大涡模式(LEM)模拟研究了平坦地形上边界层对流卷形成和消散的地表热通量和风切变的条件,比较了对流卷和非对流卷在深对流的触发中的不同。还选取了一实际的半干旱复杂山区用复杂地形上的边界层模式(BLASIUS),在不同的天气条件下模拟研究了半干旱山区上空的垂直速度场分布和对流特征以及地形对热力对流活动的影响。最后在极端干旱的沙漠地区,用LEM模式模拟了撒哈拉沙漠地区特有的边界层结构,并探讨了非均匀的地表热通量对撒哈拉对流边界层和撒哈拉残留层、以及对流边界层到残留层之间传输的影响。
     边界层中有不同形式的对流活动。而水平对流卷是边界层中普遍存在的对流形式之一。它在深对流的触发中起着重要作用。对流卷不仅可以与中尺度辐合带相互作用为深对流的发展提供有利地点,而且它本身也可以触发深对流。本文利用英国气象局的三维大涡模式(LEM)模拟研究了Small Cumulus Microlohysical Study(SCMS)外场试验期间8月15日观测的水平对流卷。模拟的边界层变量与实测的探空廓线和飞机观测结果相比,尽管模拟的虚位温和水汽混合分别比观测的大0.5K和减小0.2gkg~(-1),但是模拟和观测的垂直速度场具有相似的变化范围(-2或-3 ms~(-1)到2.5ms~(-1)),而且模式能较合理地模拟出实测的边界层对流卷。利用此模式我们还考察了对流卷的形成对地表热通量和地转风切变值的大小依赖关系。模拟的个例结果显示对流卷维持所需要的地表热通量的上限是110Wm~(-2)(由于模式运行所需的自旋(spin-up)时间的限制,我们无法判断对流卷维持所需的地表热通量值的下限)。当边界层风切变大于5×10~(-3) s~(-1)时,有对流卷形成。模拟结果还表明,当5≤-Zi/L≤45时,对流卷开始消散。这个临界值的大小与包含风切变、对流边界层高度和对流速度尺度的无量纲量(如(?))有关。我们还对垂直速度场和余弦函数进行了二维相关分析,从而定量地评估了边界层对流卷的线性(用0.25作为对流卷形成的临界值)。
     为了探讨边界层对流卷在深对流触发中的重要性,我们比较了边界层对流卷和非对流卷的个例(对流卷和非对流卷的实验中,除了风和风切变不同,其它模拟条件都相同)。结果表明,在对流卷和非对流卷的个例中,是初始气块的变化对对流抑制能量(CIN)的大小有主要贡献,而初始气块抬升逆温层顶的过程对CIN的变化影响较小。另外,非对流卷具有较强的湿上升气流,而在对流卷中上升和下沉运动的分布较对称,而且它的下沉气流比非对流卷的强。因此非对流卷具有更小的CIN值,这使非对流卷的云顶高度较对流卷的早15分钟开始增加。而对流卷的个例中云层的加深较非对流卷的迅速,从而使两者的云顶高度约在同一时间达到最大(2.7km)。
     本文还利用高分辨率的数值模式(BLASIUS),从西北地区选取了一实际的复杂山区进行了一系列的理想数值模拟。分析了在不同天气条件下(不同的大尺度地转风和大气静力稳定度下)山区上空的垂直速度场分布和对流特征以及地形对热力对流活动的影响。模式结果表明,当地转风速较小(如风速为5ms~(-1)和10ms~(-1)的情况)(Froude数小于0.5的情况)的条件下,气流往往被山峰阻塞而在迎风坡造成地形强迫和辐合性抬升,从而易在迎风坡触发深对流活动;在背风坡则由于迎风坡的绕流重新辐合而造成垂直运动。绕流的辐合是触发深对流活动的另一重要因子。当地转风速较大时(20ms~(-1)),气流很容易越过山脊,地形重力波容易在山地下游被激发。
     另外还分析了复杂地形上空热力对流的特征。结果显示,模式积分3h后,有对流卷在山脊的周边产生;模式积分6h后,一些强度较弱的对流卷开始消失或者与其它的对流卷合并,而且对流卷的波长也有所增加。另外,在大气静力稳定度较小时,对流卷的强度也较强。因此对流活动在稳定度较小时可以延伸到更高的高度。如果对流上升运动正好与重力波相拌的上升运动区相合,在此区域内的垂直上升运动将得到加强。相反地,如果对流上升运动正好与重力波相伴的下沉运动区相重合,在此区域内的对流上升运动将受到抑制。重力波除了与对流活动相耦合,使气团上升到较高的高度外,如果重力波的走向与对流卷的走向夹角不大时,重力波对对流卷走向的影响较显著。因此我们认为重力波的走向很可能会影响到深对流系统的传播路经。
     实测结果表明撒哈拉对流边界层(CBL)增温2K与撒哈拉地表反照率分布不均匀(如尺度约为20km的岩石区地表反照率是0.2,而周围沙漠的地表反照率为0.45)密切相关。进而猜测地表反照率分布不均匀也可能影响撒哈拉残留层(SRL)的垂直混合。由于缺少SRL的观测资料,这一猜测只能由数值模拟结果来证实。因此我们GERB Intercomparison of Longwave and Shortwave Radiation(GERBILS)外场试验期间两个观测个例为基础,利用大涡模式进行了大量的敏感性数值模拟实验,研究了非均匀的地表热通量对撒哈拉对流边界层、撒哈拉气层及CBL到SRL的传输的影响。
     模拟结果表明,地表较热的区域里(在模式的底层取一小块,使它表面的热通量高于周围区域表面的热通量)CBL中产生的上升和辐合运动,加强了CBL到SRL的传输;而热区周围的下沉运动又抑制了CBL的增长。在环境风速较小,非均匀的地表热通量加强的条件下,如果保持模拟区域的地表热通量保持不变,即增加热区地表热通量但减少热区周围的地表热通量时,导致对流边界层变冷、厚度减小;如果是热区周围区域的地表热通量保持不变,则对流边界层变暖,且厚度减小。
     为了进一步研究地表热通量的非均匀性对CBL和SRL之间物质传输的影响,我们在模式的底层(200m高度以下)加入了被动示踪物(值为100)。通过分析不同的(?)或(?)(这里M和D分别是地表热通量和热区水平尺度的增大倍数,U是1000m高度上的初始风速)。对应的示踪物浓度的垂直廓线表明,(?)或MD增大时(风速较小,非均匀的地表热通量强度较大时)不仅使对流边界层(CBL)的厚度减小,而且可以加强示踪物从对流边界层(CBL)到撒哈拉残留层(SRL)的传输。模拟结果还显示,当环境风速增加时,由于热区引起的辐合运动加强了它西侧的风速,从而导致示踪物在热区西侧的抬升有所加强。而且当环境风速较低时(小于15ms~(-1)),由于非均匀的地表热通量可以引起局地风速的增大,从而增加了总体示踪物抬升的趋势。
Boundary layer convection plays a significant role in transport of heat, moisture, momentum and aerosols. Different underling surfaces affect not only the physical properties of the air but also the forms and developments of convection. Convective rolls have been shown to be common in the boundary layer. When the mesoscale forcings that often controls the deep convection are weak, convective rolls can provide a significant control on convective initiation. Variety terrains can change the flow within the boundary layer. The distribution of convection over an orographic area is determined by the depth and the width of a mountain. In extremely dry Saharan area, the depth of the boundary layer can reach upto 5km due to the very deep dry convection which is caused by the strong surface heat fluxes. Deep boundary layer convection also has important effects on the transport of dust. In this paper, a large eddy model (LEM) was used to simulate the necessary conditions of surface heat flux and wind for the formation and dissipation of boundary rolls, with comparing the differences of rolls and nonroll convection on initiation of deep convection. A high resolution boundary layer model (BLASIUS) was also utilized to investigate the characteristics of vertical velocity fields and thermal convection over complex terrain and effects of orography on them. The LEM model was applied over the Saharan desert to simulate the boundary structure in this area. The effects of surface flux anomalies on Saharan CBL, Saharan SRL and transport from the CBL into the SRL were investigated.
     Boundary layer convection can take variety forms. Convective rolls have been shown to be common in the boundary layer. Rolls play an important role in the deep convection initiation. Not only the interactions of rolls with the mesoscale convergence zones create preferred locations for convective development, but rolls themselves can initiate storms. In this paper we use the Met Office large eddy model (LEM) to explicitly resolve boundary layer rolls observed on 14 August 1995 during the Small Cumulus Microphysical Study (SCMS) field campaign. Comparing with the sounding and the aircraft data, average the simulations are 0.5K warmer and 0.2gkg~(-1) drier than the observations, but the modeled and observed vertical velocity fields have similar range (-2 or -3 to 2.5ms~(-1)). And the observed boundary layer rolls were reproduced by the model. We also investigated how the rolls relate to the surface heat fluxes and the magnitude of the geostrophic wind shear. For the case modeled, rolls persisted for surface buoyancy fluxes less than 110Wm~(-2) (because the limitation of the spin-up time, the lower value of surface heat fluxes for rolls persistence was not determined). Rolls formed for boundarylayer wind shears greater than 5×10~(-3)s~(-1). Rolls started to decay when - Z_i, /L exceededa threshold, with a value between 5 and 45. The value was found to depend on a non-dimensional combination of the low-level wind shear, the height of the CBL, and theeddy velocity scale (e.g.(?)). Two dimensional correlation between w and a cosinefunction was performed to measure the linearity of the rolls (a threshold of 0.25 used as the criteria for linear convection).
     In order to investigate the importance of the rolls on the initiation of deep convection, simulated rolls convection was compared with nonroll simulation, which was identical except for the wind and wind shear used. In both the roll and nonroll cases the variability in convective inhibition (CIN) was dominated by the source air, rather than the lifting of the top of the boundary layer by the convection. Stronger moist updrafts existed in the nonroll convection, whereas roll convection gave a more symmetrical distribution of up and downdrafts, with stronger downdrafts than the nonroll case. The nonroll convection simulations have lower minimum values of CIN and clouds develop 15 min earlier this case. However, in the roll case clouds deepen slightly more rapid than in the nonroll case, so the cloud tops reach 2.7km at approximately the same time.
     In this paper, a series of idealised model simulations have been performed over a real hilly terrain located in north west region using a high resolution boundary layer model. The model used is Met Office boundary layer model called Boundary Layer Above Stationary, Inhomogeneous Uneven Surface (BLASIUS). Based on those simulations, the characteristics of vertical velocity fields and thermal convection over complex terrain are investigated and effects of orography on them are diagnosed. The simulated results show when the geostrophic wind is low (which is 5ms~(-1) or 10ms~(-1)) (Froude number is less than 0.5), air flow tends to be blocked and upward motion can be forced by orography and convergence over windward slope. Under such circumstances deep convection is likely to be triggered. Due to the division of airflow over windward slope the vertical motion can also be induced in the lee because of convergence. The convergence in the lee of mountains is another important factor which may cause deep convective systems. When the gostrophic wind is high, air can climb over the mountain easily, and gravity waves can be induced at the downwind of mountains.
     We also analysed the characters of thermal convection over the complex terrain. The simulated results show that the rolls appeared around the mountains after 3 hours of model running. After 6 hours of the model run, weak rolls started to decay or combined with others, with the increase of rolls wavelength. And rolls tend to be strong with the lower static stability value. So the convection can develop to the higher altitude with small static stability value. The vertical updrafts were enhanced at where the convective updrafts combined with the upward motion of the gravity wave. Conversely, the vertical updrafts were inhibited when convective updrafts corresponded with the downward motion of the gravity wave. Not only the gravity wave moved the air to the upper altitude, but it altered the direction of the rolls when the direction of gravity wave was close to that of rolls. So we suggest that the gravity wave might affect the transmitting of the deep convection.
     The observation showed that a rocky area approximately 20km across, with an albedo of approximately 0.2 compared with 0.45 for the surrounding desert, was linked to a CBL temperature increase of approximately 2K. Such variations may significantly affect the vertical mixing of the SRL. This assume has to be confirmed by the numerical simulation due to the lack of the observed data in SRL. Using two cases based on observations from the GERBILS (GERB, Intercomparison of Longwave and Shortwave radiation) field campaign, large eddy model (LEM) simulations have been used to investigate the effects of surface flux anomalies on the growth of the summertime Saharan convective boundary layer (CBL) into the Saharan Residual layer (SRL) above, and transport from the CBL into the SRL.
     Modeled results show that hot surface anomalies (increase the surface flux over the warm patch) generated updraughts and convergence in the CBL that increased transport from the CBL into the SRL. The induced subsidence in regions away from the anomalies inhibited growth of the CBL there. Under stronger surface flux anomalies and lower ambient wind conditions, if the domain averaged surface flux kept constant this led to a shallower, cooler CBL, while if fluxes outside the anomaly were kept fixed this gave a warmer, shallower CBL.
     In order to further understand the effects of surface anomalies on the transport between CBL and SRL, a passive tracer with a fixed value of 100 was added below the 200m model level in all simulations. Vertical distributions of the horizontally-averaged passivetracer concentrations at different values of (?) or MD show that not only do strongersurface flux anomalies with lighter winds tend to decrease the CBL depth (using balanced or unbalanced surface fluxes), but they also enhance the vertical transport from the CBL into the SRL. The simulations also show that the uplift of tracer was enhanced at the west of the warm patch because the convergence increase the wind at the west of the patch, with the ambient wind increased. When the ambient wind speed is low (< 15ms~(-1)), anomaly tend to increase tracer uplift due to anomalies lead to locally increase wind speeds.
引文
陈陟,周明煜,钱粉兰,李诗明,苏立荣,徐德祥,陈联寿,王继志.我国西北高原大气边界层中的对流活动,2004,13(2):142-152。
    丁一汇.1991年江淮流域特大暴雨研究.北京:气象出版社,1993,114pp。
    巢纪平.非均匀层结大气中的重力惯性波及其在暴雨预报中的初步应用.大气科学,1980,4(3):230-235。
    龚佃利,吴增茂,傅刚.一次华北强对流风暴的中尺度特征分析.大气科学,2005,29(3):453-464。
    康风琴、张强、渠永兴等.青藏高原东北侧冰雹微物理过程模拟研究.高原气象,2004,23(6):735-742。
    康凤琴、张强、马胜萍等.青藏高原东北边缘冰雹形成机理.高原气象, 2004,23(6):749-757。
    李志楠,李廷福.北京地区一次强对流大暴雨的环境条件及动力触发机制分析,应用气象学报,2000,11(3):304-311。
    姜彤,施雅风等.全球变暖、长江水灾与可能损失.地球科学进展,2003,18(2):277-284.
    江吉喜,范梅珠.夏季青藏高原上的对流云和中尺度对流系统.大气科学,2002,26(2):19-27。
    王鹏云,刘春涛.1996年第8号台风中尺度结构的数值研究,气象学报,1998,56(3):296-311。
    王文,程麟生.“96.1”高原暴雪过程三维条件性对称不稳定的数值研究.高原气象,2002,21(3):225-232。
    吴池胜.地形对重力惯性波发展的影响.大气科学,1994,18(1):81-88。
    吴洪,林锦瑞.垂直切变和地形影响下惯性重力波的发展.气象学报,1997,55(4):499-505。
    薛根元,陈丽芳,诸晓明.浙江中北部前汛期一次大暴雨过程的数值模拟及诊断研究,2007,高原气象,6(1):176-186。
    徐祥德,周明煜,陈家宜等.青藏高原地、气过程动力、热力结构综合物理图象.中国科学,2001,31(5):428-440。
    薛具奎,胡隐樵.对流边界层大涡自组织过程的数值模拟.力学学报,2002,34(6):963-968。
    赵思雄,周晓平,张可苏等.中尺度低压系统形成和维持的数值实验.大气科学,1982,(2):109-117。
    张春喜,朱佩君,郑永光,卓鸿,邵明轩,谭晓光,余小鼎.一次春季暴雨不稳定条件和对流触发机制的数值模拟研究.北京大学学报(自然科学板),2005,41(5):746-753。
    张强、卫国安、侯平.初夏敦煌荒漠戈壁大气边界层结构特征的一次观测研究.高原气象,2004,23(5):587-597。
    张强.极端干旱荒漠地区大气热力边界层厚度研究.[J].2007,中国沙漠,27(4):614-620。
    张顺利,陶诗言,张庆云等.长江中下游致洪暴雨的多尺度条件.科学通报,2002,47(6):467-473。
    朱民,余志豪,陆汉城中尺度地形背风波的作用及其应用.气象学报,1999,57(6):705-714。
    Alpers, W., and B. Brummer, Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satelite, 1994, J. Geophys. Res., 99,12613-12621.
    Atkinson, B. W., Meso-scal atmospheric circulation, 1981, Academic Press.
    Bennett, L. J., K. A. Browning, A. M. Blyth, D. J. Parker and P. A. Clark, A review of the initiation of precipitating convection in the United Kingdom. 2006, Quart. J. Roy. Meteor. Soc., 132,1001-1020.
    Brown, R. A., Longitudinal instabilities and secondary flows in the planetary boundary layer: A reveiew. 1980, Rev. Geophys. Space Phys., 18, 683-697.
    Byers, H. R., and H. R. Rodebush, Causes of thunderstorms of the Florida peninsula. 1948, J. Meteor., 5,275-280.
    Cakmur, R. V., R. L. Miller, and O. Torres, Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model, 2004, J. Geophys. Res. -Atmos., 109, Art. No.D07201.
    Chlond, A., A numerical studay of horizontal roll vortices in neutral and unstable atmospheric boundary layers. 1987, Beitr. Phys. Atmosph., 60,144-169.
    Chlond, A., Three-dimensional simulation of cloud street development during cold air outbreak. 1992, Boundary-Layer Meteorol., 58,161-200.
    Christian, T. W. and R. W. Wakimoto, The relationship between radar reflectivities and clouds associated with horizontal roll convection on 8 August 1982. Mon. Wea. Rev., 117,1530-1544.
    CoLEMan, G. N., J. H. FerZinger, and P. R. Spalart, A numerical study of the turbulent Ekman layer. 1990, J. Fluid Mech., 21,407-421.
    Cosma, S., E. Richard, and F. Miniscloux, The role of small-scale orographic features in the spatial distribution of precipitation. 2002, Quart. J. Roy. Meteor. Soc., 128, 75-92.
    Crook, N. A. and D. F. Tucker, Flow over heated terrain. Part Ⅰ: Linear theory and idealized numerical simulation.2005,Mon.Wea.Rev.,2005,133:2552-2564
    Cuijpers,J.W.M.and P.G Duynkerke,Large eddy simulation of trade wind cumulus clouds.1993,J.Atmos.Sci.,50,3894-3908.
    Deardorff,J.W.,Numerical investigation of neutral and unstable planetary boundary layers.1972,J.Atmos.Sci.,29,91-115.
    Etling,D.and R.A.Brown,Roll vortices in planetary boundary layer:A review.1993,Boundary-Layer Meteoro.,65,215-248.
    Flamant,C,J.P.,Chaboureau,D.J.Parker,C.M.Taylor,J.P.Cammas,O.Bock,F.Timouk,and J.Pelon,Airbone observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the intertropical discontinuity region of the west African monsoon,2007,J.Atmos.Sci.,133,1175-1189.
    Frankauhser,J.C,N.A.Crook,J.Turtle,L.J.Miller,and C.G Wade,Initiation of deep convection along boundary layer convergence lines in a semitropical environment.1995,Mon.Wea.Rev.,123,291-313.
    Gammo,M.,Thickness of the dry convection and large scale subsidence above deserts.1996,Boundary-Layer Meteorol.,79,265-278.
    Glendening,J.W,Linear eddy features under strong shear conditions.1994,J.Atmos.Sci.,53.3430-3449.
    Grossman,R.L.,An analysis of vertical velocity spectra obtained in the BOMEX fair-weather,trade-wind noundary layer.1982,Bound.Layer Meteor.,23,323-357.
    I dso,S.B.,Tordado or dust devil:The enigma of desert whirlwinds,1974,Am.Sci.,62,530-541.
    Koch,J.,and N.O.Renno,The role of convective plumes and vortices on the global aerosol budget.2005,Geophys.Res.Lett.,32,L18806,doi:10.1029/2005GL023420.
    Kuttner,J.P.,The band structure of the atmosphere.1959,Tellus,2,267-294.
    Kuttner,J.P.,Cloud bands in the earth's atmosphere.1971,Tellus,23,404-425.
    Lee,B.D.,R.D.Farley,and M.R.HjelmfeLT.A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado.1991,J.Atmos.Sci.,48,2350-2366.
    LeMone,M.A.,The structure and dynamics of horizontal rolls in an unstable planetary boundary layer.1973,J.Atmos.Sci.,30,1077-1091.
    LeMone,M.A.and W.T.Pennell,The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure.1976,Mon.Wea.Rev.,104,524-539.
    Marsham,J.H.,D.J.Parker,C.M.Grams and B.Johnson,Observations of mesoscale and boundary-layer circulations affecting dust uplift and transport in the Saharan boundary-layer.2008,Atom.Chem.Phys.Discuss.,8,8817-8845.
    Mason,P.J.,On the influence of variation in Monin-Obukhov Length on horizontal roll vortices in the inversion-capped planetary boundary layer.1983,Boundary-Layer Meteorol.,27,43-68.
    Mason,P.J.,A numerical study of cloud streets in the palneatry boundary layer.1985,Boundary-Layer Meteorol.,32,281-304.
    Mason,P.J.,and D.J.Thomson,Large eddy simulations of the neutral-static-stability planetary boundary.1987,Q.J.R.Meteorol.Soc,113,413-443.
    Mason,P.J.,and R.I.Sykes,A two-dimensional numerical study of horizontal roll vortives in the neutral atmospheric boundary layer.1980,Q.J.R.Meteorol.Soc,106,351-366.
    Mason,P.J.,and R.I .Sykes,A two-dimensional numerical study of horizontal roll vortives in an inversion capped planetary boundary layer.1982,Q.J.R.Meteorol.Soc,106,351-366.
    McTainsh,G H.,and J.R.Pitblado,Dust storms and related phenomena measured from meteorological records in Australia.1987,Earth Surf.Processes Landforms,12(4),415-424.
    Miniscloux,F.,J.D.Creutin,and Anquetin,Geo-statistical analysis of orographic rainbands.2001,J.Appl.Meteor.,40,1835-1854.
    Moeng,C.-H.,and P.P.Sullivan,A comparison of shear and buoyancy driven planetary-boundary-layer flows.1994,J.Atmos.Sci.,51,999-1022.
    Parker,D.J.,R.R.Burton,A.Diongue-Ninag,R.J.Ellis,M.FeLTon,C.M.Taylor,C.D.Thorncroft,P.Bessemoulin and A.M.Tompkins,The diurnal cycle of the west African monsoon circulation.2005,Quart.J.Roy.Meteor.Soc,191,2839-2860.
    Piekel,R.A.,A three dimensional numerical model of the sea breezes over south Florida 1974,Mon.Wea.Rev.,102,115-139.
    Purdom,J.F.W.,Subjective interpretations of geostationary satellite data for nowcasting.1982,Nowcasting,K.Browning,Ed.,Academic Press,149-166.
    Raasch,S.,Numerical simulation of the development of the convective boundary layer during the cold air outbreak.1990,Boundary-Layer Meteorol.,52,349-375.
    Renno,N.O.,et al.,MATADOR 2002:A pilot field experiment on convective plumes and dust devils.2004,J.Geophys.Res.,109,E07001,doi:10.1029/2003JE002219.
    Roland B.Stull,An introduction to boundary layer meteorology.1988,Kluwer academic publishers,p13.
    Rotunno,R.,J.B.KLEMp,and M.L.Weisman,A theory for strong,long-lived squall lines.1988,J.Atmos.Sci.,45,463-485.
    Sakai,T.,T.Shibata,Y.I wasska,T.Nagai,M.Nakazato,T.Matsumura,A.I chiki,Y.S.Kim,K.Tamura,D.Troshkin,S.Hamdi,Case Study of Raman lidar measurements of Asian dust events in 2000 and 2001 atNagoya and Tsukuba,2002,Japan,Atmos.Environ.,36,5,479-5489.
    Sakai,T.,T.Nagai,M.Nakazato,and T.Matsumura,Raman lidar measurement of the water vapour and ice clouds associated with Asian dust layer over Tsukuba,2004,Japan,Geophys.Res.Lett.,31,L06128,doi:10.1029/2003GL019332.
    Sykes,R.I.,W.S.Lewellen,and D.S.Henn,Numerical simulation of the boundary layer structure during cold air outbreak of GALE IOP-2.1990,Mon.Wea.Rev.,118,363-374.
    Tanaka,T.Y.and M.Chiba,A numerical study of the contributions of dust source regions to the global dust budget.2006,Global and Planetary Change,52,88-104.
    Takemi,T.,Structure and evolution of a severe squall line over the arid region in north west China.1999,Mon.Wea.Rev.,127,1301-1309.
    Takemi,T.,M.Yasui,J.Zhou,and L.Liu,Modeling study of diurnally varying convective boundary layer and dust transport over desert regions,2005,Sci.Online Lett.Atmos.,1,157-160.
    Takemi,T,M.Yasui,J.Zhou,and L.Liu,Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area.2006,J.Geophys.Res.,111,D11203,doi:1029/2005JD006666.
    Takemi,T.and T.Satomura,Numerical experiments on the mechanisms for the development and maintenance of long-lived asquall lines in dry environments.2000,J.Atmos.Sci.,57,1718-1740.
    Thrope,A.J.,M.J.Miller.,and M.W.Moncrieff,Two-dimensional convection in nonconstant shear:A model of midlatitude squall lines.1982,Quart.J.Roy.Meteor.Soc,108,739-762.
    Tian,W.S.,and D.J.Parker,Observation sand numerical simulation of atmospheric cellular convection over mesoscale topography.2002a,Mon.Wea.Rev.,131,222-235.
    Tian W.S.,and D.J.Parker,Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection.2002b,Q.J.R.Meteor.Soc,128,1929-1952
    Tian W.S.,and D.J.Parker,A modeling study and scaling analysis of orographic effects on boundary layer shallow convection.2003a,J.Atmos.Sci.,60,1981-1991
    Tian,W.S.,D.J.Parker,and C.A.D.Kilburn,Observations and numerical simulation of atmospheric cellular convection over mesoscale topography.2003b,,Mon.Wea.Rev.,131,222-235
    Weckwerth,T.M.,T.W.Horst,and J.W.Wilson,An observational study of the evolution of horizontal convective rolls.1999,Mon.Wea.Rev.,127,2160-2179.
    Weckwerth,T.M.,and Coauthors,An overview of the International H20 Project (I HOP_2002) and some preliminary highlights.2004,Bull.Amer.Meteor.Soc,85,253-300.
    Wilson,J.W.and R.D.Roberts,Summary of convective storm initiation and evolution during I HOP:Observational and modeling perspective.2006,Mon.Wea.Rev.,134,23-47.
    Wilson,J.W.and W.E.Schreiber,Initiation of convective storm at radar-observed boundary convergence lines.1986,Mon.Wea.Rev.,114.2516-2536.
    Wilson,J.W,G B.Foote,N.A.Crook,J.C.Fankhauser,C.G Wade,J.D.Turtle,C.K.Mueller,and S.K.Krueger.The role of boundary layer convergence zones and horizontal rolls in the initiation of thunderstorms:A case study.1992,Mon.Wea Rev.,120,1785-1815.
    Xue,M.and W.J.Martin,A high-resolution modeling study of the 24 May 2002 dryline case during I HOP.Part Ⅱ :Horizontal convective roll and convective initiation.2006,Mon.Wea.Rev.,134,172-191.
    蒋维楣、苗世光.大涡模拟与大气边界层研究—30年回顾与展望.自然科学通报,2004,14(1):11-19。
    Brown, A. P., S. H. Derbyshire, and P. J. Mason, Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. 1994, Quart. J. Roy. Meteorol. Soc., 123,2245-2275.
    Bull, J. M. and S. H. Derbyshire, Numerical solution of the surface layer equations . 1990, Met O (P) Turbulence and Diffusion Note No. 197.
    Clark, T. L., A small-scale dynamic model using a terrain-following transformation. 1977, J. Comput. Phys., 24,184-215.
    Deardorff, J. W., Numerical investigation of neutral and unstable planetary boundary layers. 1972, J. Atmos. Sci., 29, 91-115.
    Deardprff, J. W., Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. 1974, Boundary-Layer Meteorol., 7, 81-106.
    Deardorff, J. W., Efficient prediction of ground-surface temperature and moisture, with inclusion of a layer of vegetation. 1978, J. Geophys. Res., 83, 1889-1903.
    Derbyshire, S. H., A. R. Brown and A. P. Lock, The Meteorological Office Large-Eddy Simulation model. 1994, Met O (APR) Turbulence and Diffusion Note No. 213.
    Garratt, J. R., The Atmospheric Boundary Layer. 1992, Cambridge University Press.
    Gray M. E. B. and J. Petch, Version 2.3 of the Met. Office large eddy model. 2001, The Met. Ofiice, Exeter, UK.
    Huntingfort C. E. M. Blyth, N. Wood, F. E. Hewer, and A. Grant, The effect of orography on evaporation. 1998, Boundary-Layer Meteorol., 86,487-504.
    Kessler, E, On the distribution and continuity of water substance. 1969, Meteor. Monogr, 10, 86-97.
    Tian W. S. and D. J. Parker, Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection.2002a,Q.J.R.Meteor.Soc,128,1929-1952.
    Tian,W.S.,D.J.Parker and C.A.D.Kilburn,Observations and numerical simulation of atmospheric cellular convection over mesoscale topography.2002b,Mon.Wea.Rev.,131,222-235.
    Tian W.S.,and D.J.Parker,A modeling study and scaling analysis of orographic effects on boundary layer shallow convection.2003,J.Atmos.Sci.,60,1981-1991.
    Wood,N.and P.Mason,The influence of static stability on the effective roughness length for momentum and heat transfer.1991,Quart.J.Roy.Meteorol.Soc,117,1025-1056.
    Agee, E. M., T. S. Chen and K. E. Doswell, A review of mesoscale cellular convection. 1973, Bull. Am. Met. Soc., 54,1004-1012.
    Couvreux, F., F. Guichard, J. L. Redelsperger, C. Kiemle and V. Masson, Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and Ⅰ HOP_2002 observations. 2005, Quart. J. Meteor. Soc., 131,2665-2693.
    Deardorff, J. W., Numerical investigation of neutral and unstable planetary boundary layers. 1972, J. Atmos.Sci., 29,91-115.
    Frankauhser, J. C., N. A. Crook, J. Turtle, L. J. Miller, and C. G. Wade, Initiation of deep convection along boundary layer convergence lines in a semitropical environment. 1995, Mon. Wea. Rev., 123, 291-313.
    Grossman, R. L., An analysis of vertical velocity spectra obtained in the BOMEX fair-weather, trade-wind noundary layer.1982, Bound. Layer Meteor., 23, 323-357.
    Khanna, S., and J. G. Brasseur, Three-dimensional buoyancy and shear-induced local structure of the atmospheric boundary layer. 1988, J. Atmos. Sci., 55,710-743.
    Kristovich, D. A., R. N. F. Laird, M. R. HjelmfeLT, R. G. Derickson and K. A. Cooper, Transitions in boundary layer meso-convective structures: An observational case study. 1999, Mon. Weather Rev., 127, 2895-2909.
    LeMone, M. A., The structure and dynamics of horizontal rolls in an unstable planetary boundary layer. 1973, J. Atmos. Sci., 30,1077-1091.
    LeMone, M. A. and W. T. Pennell, The relationship of trade wind cumulus distribution to subcloud layer fluxes and structure. 1976, Mon. Weather Rev., 104, 524-539.
    Mahrt, L., Mixed layer moisture structure. 1976, Mon. Weather Rev., 104, 524-539.
    Marsham, J. H., J. S. E. Dobbie and R. J. Hogan, Evaluation of a large-eddy model simulation of a mixed-phase aLTocumulus cloud using microwave radiometer, lidar and Doppler radar data. 2006, Quart. J. Roy. Meteor. Soc., 132,169.
    Miura, Y., Aspect ratio of longitudinal rolls and convection cells observed during cold air outbreaks. 1986, J. Atmos. Sci., 43,26-39.
    Moeng, C.-H.. and J. C. Wyngaard, Spectral analusis of large-eddy simulations of convective boundary layer. 1988, J. Atmos. Sci., 45, 3575-3587.
    Moeng, C.-H. and R. Rotunno, Vertical-velocity skewness in the buoyancy-driven boundary layer. 1994, J. Atmos. Sci., 51,999-1022.
    Moeng, C.-H., and P. P. Sullivan, A comparison of shear and buoyancy driven planetary-boundary-layer flows. 1994, J. Atmos. Sci., 51,999-1022.\
    Stull, R. B., An introduction to boundary layer meteorology. 1988, Kluwer Academic Publishers, 666p.
    Sykes, R. I., W. S. Lewellen and D. S. Henn, A numerical study of the development of cloud-streets spaCINg. 1989, J. Atnos. Sci., 45,2556-2570.
    Tian, W. S., Parker, D. J. and Kilburn, C. A. D., Observations and numerical simulation of atmospheric cellular convection over mesoscale topography. 2002, Mon. Wea. Rev., 131,222-235
    Weckwerth, T.. M., J. W, Wilson, R. M. Walimoto and N. A. Crook, Horizontal convective rolls:
    Determining the environmental conditions supporting their existence and characteristics.1997,Mon.Weather Rev.,125,505-526.
    Weckwerth,T.M.,T.W.Horst,and J.W.Wilson,An observational study of the evolution of horizontal convective rolls.1999,Mon.Wea.Rev.,127,2160-2179.
    Weckwerth,T.M.,Thermodynamic variability within the convective boundary layer due to horizontal convective rolls.1996,Mon.Weather Rev.,124,770-784.
    Wulfmeyer,V.,Investigation of humidity skewness and variance profiles in the convective boundary layer and comparison of the latter with large eddy simulation results.1999,J.Atmos.Sci.,56,1077-1087.
    陈乾、朱阳生.甘肃雹暴的分类及其诊断分析.强对流天气文集,1983,北京:气象出版社,15-24。
    丁一汇、蔡则怡、李吉顺.1975年8月上旬河南特大暴雨的研究.大气科学,1978,4(2):276-289。
    李川、陈静、何光碧.青藏高原东侧陡峭地形对一次强降水天气过程的影响.高原气象,2006,25(3):442-450。
    刘德祥、白虎志、董安详.中国西北地区冰雹的气候特征及异常研究.高原气象,2004,23(6):795-803。
    刘全根、马骥德.平凉地区降雹及其与环境要素的关系.高原气象,1982,1(1):53-62。
    张鸿发、左洪超、郄秀书、郭三刚.平凉冰雹云回波特征分析.气象学报,2002,60(1):110-115。
    Maddox, N. E., Mesoscale convective complexes. 1980, Bull. Amer. Meteor. Soc., 61, 1374-1387.
    Martin, D. W. and A. J. Schreiner, Characteristics of west African and east Atlantic cloud clusters: A survey from GATE. 1981, Mon. Weather Rev., 109,1671-1688.
    Rowell, D. P. and J. R. Milford, On the generation of African squal lines. 1993, J. Climate, 6, 1181-1193.
    Scorer, R. S., and H. Klieforth, Theory of mountain waves of large amplitude, 1959, Q. J. R. Meteor. Soc., 85,131-143.
    Hunt, J. C. R., Wind over hills. 1980, Workshop on the planetary boundary layer. J. C. Wyngaard (Ed.), Amer. Meteor. Soc. Boston. 107-144.
    Smith, R. B., and S. Gronas, Stagnation points and biburcation in 3-D airflow, 1993, Teluus, 45A: 28-43.
    Cakmur,R.V..,R.L.Miller and O.Torres,2004,Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model,J.Geophys.Res.-Atmos.,109(D07201),doi:10.1029/2003JD004067.
    Chomette,O.,M.Legrand and B.Marticorena,1999,Determination of the wind speed threshold for the emission of desert dust using satellite remote sensing in the thermal infrared,J.of Geophys.Res.,104,31,207-31,215.
    Doms,G.and U.Sch (a|¨) ttler,2002,A description of the nonhydrostatic regional model LM.Part i:Dynamics and numerics,consortium for small-scale modeling (cosmo),download at http://www.cosmo-model.org.
    Drobinski,P.,B.SuLTan and S.Janicot.2005,Role of the hoggar massif in the west African monsoon onset.Geophys.Res.Lett.,32(L01705),doi:10.1029/2004GL020710.
    Hadfield,M.G,W.R.Cotton and P.A.Pielke.1991,Large-eddy simulations of thermally forced circulations in the convective boundary layer,part i:a small-scale circulation with zero wind,Boundary-Layer Meteorol.,57,79-114.
    Haywood,J.M.,R.P.Allan,I.Culverwell,T.Slingo,S.MiLTon,J.Edwards and N.Clerbaux.2005,Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?,J.Geophys.Res.-Atmos.,110(D05 105),doi:10.1029/2004JD005232.
    Houldcroft,C,W.Grey,M.Barnsley,C.Taylor,S.Los and P.North,2007,New vegetation albedo derived from modis for use in a climate model.J.Hydrometerology,I mpress.IPCC,4~(th) assessment report ,working Group I report:The physical Science Basis,Intergovernment Panel on Climate Change,download at http:// www.ipcc.ch/ipccreports/arg4-wgl .htm,2007.
    Gao,F.C,A.Schaaf,A.Strahler,A.Roesch,W.Lucht and R.Dikinson.2005,Modis bidirectional reflectance distribution function and albedo climate modeling grid products and variability of albedo for major global vegetation tyles,J.of Geophys.Res.,110(D01104),doi:10.1029/2004JD005190.
    Gillette,D.,1978,A wind tunnel simulation of the erosion of soil:Effect of soil texture,sand blasting,wind speed and soil consolidation on dust production,Atmos.,Environ.,1735-1743.
    Gray M.E.B.and J.Petch,Version 2.3 of the Met.Office large eddy model.2001,The Met.Ofiice,Exeter,UK.
    Marsham,J.H.,C.J.Morcrette,K.A.Browning,A.M.Blyth,D.J.Parker,U.Corsmeier,N.KaLThoof and M.Kohler,2007,Variable cirrus-shading during CSI P I OP 5,part i:Effects on the initiation of convection,Quart.J.Roy.Meteor.Soc,133,1643-1660.
    Marsham,J.H.,D.J.Parker,C.M.Gram and B.Johnson.2008,Observations of mesoscale and boundary-layer circulations affecting dust uplift and transport in the Saharan boundary layer.Atmos.Chem.Phys.8,8817-8846.
    Marsham,J.H.,D.J.Parker,C.M.Grams,C.M.Taylor,and J.M.Haywood,2008b,Uplift of Saharan dust south of the inter-tropical discontinuity.J.of Geophys.Res.-Atmos.,Accepted for publication.
    Marticorena,B.,and G Bergametti,1997,Modelling of the atmospheric dust cycle 2.Simulations of Sahara.J.Geophys.Res.-Atmos.,102,4387-4404.
    Ramel,R.,H.Gallee and C.Messager.2006,On the northward shift of the west African monsoon,climate dynamics,87,1739-1746.
    Sijikumar,S.,P.Roucou and B.Fontaine,2006,Monsoon onset over sudan-sahel:Simulation by the regional scale model mm5.Geophys.Res.Lett.,33(L03814),doi:10.1029/2005GL024819. Stull,R.B.,An introduction to boundary layer meteorology.1988,Kluwer Academic Publishers,666p.
    SuLTan,B.and S.Janicot.2003,The west African monsoon dynamics.Part ii:The “preonset” and “onset” of the summer monsoon.J.C,16,3407-3427.
    Talbot,W.R.,R.C.Harriss,E.V.Browell,G.L.Gregory,D.I .Sebacher,and S.M.Beck,1986,Distribution and geochemistry of aerosols in the tropical North Atlantic troposphere:Relationship to Sahara dust.J.Geophys.Res.-Atmos.,91(D4),5173-5182.
    Tanaka,T.Y.,and M.Chiba,2006,A numerical study of contributions of dust source regions to the global dust budget.Global and Planetary Change,52,88-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700