用户名: 密码: 验证码:
可溶性BTLA协同HSP70疫苗增强肿瘤免疫效应及其分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
B、T淋巴细胞弱化因子(BTLA)是一种属于免疫球蛋白超家族的免疫抑制性受体,而它的配体单纯疱疹病毒进入介质(HVEM)是肿瘤坏死因子超家族的成员之一,这是目前为止发现的唯一一对来源于两个不同的超家族的成员相互作用的例子。它们的相互作用引发了一系列的问题,比如它们的结构差别这么大是如何相互作用的,相互作用后产生的下游信号是怎么样的等等。进来的许多研究表明HVEM与其内源性配体来自肿瘤坏死因子超家族的另一位成员LIGHT相互作用可以引发强大的免疫应答,而HVEM与BTLA相互作用对T细胞应答产生负性调节作用。
     有研究发现,通过一定手段阻断BTLA-HVEM相互作用能够增强适应性免疫应答,有利于抑制肿瘤生长。然而,阻断此抑制性通路是否能作为治疗性手段对已经形成的肿瘤产生治疗效应还不为人知。本研究中,我们阐述了利用BTLA胞外段这种可溶性分子,去封闭HVEM上的结合位点,阻断膜型BTLA与HVEM相互作用,并协同HSP70疫苗产生强大的抗肿瘤效应,并对其分子机制进行了阐述。我们用小鼠TC-1细胞局部肌肉注射构建原位肿瘤模型,B16F10细胞尾静脉注射构建肺转移模型,用质粒psBTLA和腺相关病毒装载的sBTLA-AAV协同HSP70-TC1抗原肽和HSP70-B16抗原肽作为治疗手段,对可溶性BTLA分子的肿瘤免疫增强效应进行了系统的研究。我们通过对肿瘤局部微环境中的免疫调节基因的表达进行检测分析来阐明联合治疗的分子机制,通过分析浸润到肿瘤局部的肿瘤特异淋巴细胞的表型、数量和功能以及测量肿瘤大小、监测小鼠生存率来评估免疫治疗的效果。我们发现单独应用可溶性BTLA分子的增强肿瘤免疫作用是非常有限的,但联合应用HSP70肿瘤抗原肽后,增强肿瘤免疫的效果非常明显,治疗效应令人满意。我们分析肿瘤微环境中免疫相关调节基因的表达发现联合治疗能够显著增加Th1类细胞因子IL-2、IFN-γ的表达水平,同时保持IL-10、TGF-β和foxp3等负性调节因子的持续低水平状态,并且可以产生更强更持久的免疫记忆效应。总之,利用可溶性BTLA分子阻断BTLA-HVEM负调节通路,可以显著增强HSP70疫苗的抗肿瘤效应,是进一步促进肿瘤免疫应答从而获得显著治疗效应的有效靶点。
The interaction between B and T lymphocyte attenuator (BTLA), an inhibitory receptor whose extracellular domain belongs to the immunoglobulin superfamily, and herpesvirus-entry mediator (HVEM), a co-stimulatory tumour-necrosis factor receptor, is unique in that it is the only receptor-ligand interaction that directly bridges these two families of receptors. This interaction has raised many questions about how receptors from two different families could interact and what downstream signalling events might occur as a result of receptor ligation. As we discuss, recent studies show that engagement of HVEM with its endogenous ligand (LIGHT) from the tumour-necrosis factor family induces a powerful immune response, whereas HVEM interactions with BTLA negatively regulate T-cell responses.
     Blocking BTLA-HVEM interaction augments adaptive immune response which benefits the prevention of tumor. However, whether it is effective as a therapeutic tool against established tumors is not well elucidated. In the present study, we evaluated the efficacy and mechanism of immunotherapy with soluble BTLA derived from psBTLA alone or sBTLA-AAV alone or its combination with HSP70 vaccine. The murine TC-1 cervical cancer served as an ectopic tumor model. The murine B16F10 melanoma served as a metastatic tumor model. The synergistic mechanism of combination therapy was elucidated by detecting the change of gene expression of immunoregulatory factors in tumor microenvironment. The effects of immunotherapy were evaluated by detecting the function of tumor-specific T cells, measuring tumor weight or survival of mice, and H&E staining of tissues. We found local gene transfer by injection of psBTLA alone possessed antitumor effect but limited, whereas, it significantly improve HSP70 vaccine-mediated antitumor immunity. Gene expression detection in tumor microenvironment showed significantly higher transcription activities of Th1 cytokines IL-2 and IFN-γgene and lower level of negative regulatory molecules IL-10, TGF-βand foxp3 in combination therapy group. Moreover, combination therapy could generate stronger memory effect. Taken together, our findings indicate that blocking BTLA-HVEM interaction with sBTLA enhances antitumor efficacy and showed significantly combined effect with HSP70 vaccine against the in vivo existent tumor cells.
引文
1.Murphy, K.M., C.A. Nelson, and J.R. Sedy, Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol, 2006. 6(9): p. 671-81.
    2.Carreno, B.M. and M. Collins, BTLA: a new inhibitory receptor with a B7-like ligand. Trends Immunol, 2003. 24(10): p. 524-7.
    3.Croft, M., The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM-BTLA. Trends Immunol, 2005. 26(6): p. 292-4.
    4.Wang, S. and L. Chen, Co-signaling molecules of the B7-CD28 family in positive and negative regulation of T lymphocyte responses. Microbes Infect, 2004. 6(8): p. 759-66.
    5.Wang, S. and L. Chen, T lymphocyte co-signaling pathways of the B7-CD28 family. Cell Mol Immunol, 2004. 1(1): p. 37-42.
    6.Leibson, P.J., The regulation of lymphocyte activation by inhibitory receptors. Curr Opin Immunol, 2004. 16(3): p. 328-36.
    7.He, Y.F., et al., Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol, 2004. 173(8): p. 4919-28.
    8.Han, P., et al., An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol, 2004. 172(10): p. 5931-9.
    9.Tao, R., et al., Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts. J Immunol, 2005. 175(9): p. 5774-82.
    10.Sedy, J.R., et al., B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol, 2005. 6(1): p. 90-8.
    11.Riley, J.L. and C.H. June, The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood, 2005. 105(1): p. 13-21.
    12.Krieg, C, et al., Functional analysis of B and T lymphocyte attenuator engagement on CD4~+ and CD8~+ T cells. J Immunol, 2005. 175(10): p. 6420-7.
    13.Wintterle, S., et al., Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res, 2003. 63(21): p. 7462-7.
    14.Watanabe, N., et al., BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol, 2003. 4(7): p. 670-9.
    15.Gavrieli, M, et al., BTLA and HVEM cross talk regulates inhibition and costimulation. Adv Immunol, 2006. 92: p. 157-85.
    16.Chemnitz, J.M., et al., B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. J Immunol, 2006. 176(11): p. 6603-14.
    17.Barber, D.L., et al., Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 2006. 439(7077): p. 682-7.
    18.Del Rio, M.L., et al., PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation. Transpl Int, 2008.
    19.De Trez, C. and C.F. Ware, The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis. Cytokine Growth Factor Rev, 2008. 19(3-4): p. 277-84.
    20.De Trez, C, et al., The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol, 2008. 180(1): p. 238-48.
    21.Otsuki, N., et al., Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun, 2006. 344(4): p. 1121-7.
    22.Lin, S.C., C.C. Kuo, and C.H. Chan, Association of a BTLA gene polymorphism with the risk of rheumatoid arthritis. J Biomed Sci, 2006. 13(6): p. 853-60.
    23.Wu, T.H., et al., B and T lymphocyte attenuator interacts with CD3zeta and inhibits tyrosine phosphorylation of TCRzeta complex during T-cell activation. Immunol Cell Biol, 2007. 85(8): p. 590-5.
    24.Wang, X.F., et al., Distinct expression and inhibitory function of B and T lymphocyte attenuator on human T cells. Tissue Antigens, 2007. 69(2): p. 145-53.
    25.Truong, W., et al., Combined coinhibitory and costimulatory modulation with anti-BTLA and CTLA4Ig facilitates tolerance in murine islet allografts. Am J Transplant, 2007. 7(12): p. 2663-74.
    26.Ware, C.F., Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunol Rev, 2008. 223: p. 186-201.
    27.Tao, R., et al., Regulatory T cell expression of herpesvirus entry mediator suppresses the function of B and T lymphocyte attenuator-positive effector T cells. J Immunol, 2008. 180(10): p. 6649-55.
    28.Steinberg, M.W., et al., A crucial role for HVEM and BTLA in preventing intestinal inflammation. J Exp Med, 2008.
    29.Oya, Y., et al., Development of autoimmune hepatitis-like disease and production of autoantibodies to nuclear antigens in mice lacking B and T lymphocyte attenuator. Arthritis Rheum, 2008. 58(8): p. 2498-510.
    30.Nelson, C.A., et al., Structural determinants of herpesvirus entry mediator recognition by murine B and T lymphocyte attenuator. J Immunol, 2008. 180(2): p. 940-7.
    31.Lasaro, M.O., et al., Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Nat Med, 2008. 14(2): p. 205-12.
    32.Kaye, J., CD160 and BTLA: LIGHTs out for CD4+ T cells. Nat Immunol, 2008. 9(2): p. 122-4.
    33.Deppong, C, et al., B and T lymphocyte attenuator regulates T cell survival in the lung. J Immunol, 2008. 181(5): p. 2973-9.
    1.Watanabe, N., M. Gavrieli, J. R. Sedy, J. Yang, F. Fallarino, S. K. Loftin, M. A. Hurchla, N. Zimmerman, J. Sim, X. Zang, T. L. Murphy, J. H. Russell, J. P. Allison, and K. M. Murphy. 2003. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nature immunology 4:670-679.
    2.Croft, M. 2005. The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM-BTLA. Trends in immunology 26:292-294.
    3.Sedy, J. R., M. Gavrieli, K. G. Potter, M. A. Hurchla, R. C. Lindsley, K. Hildner, S. Scheu, K. Pfeffer, C. F. Ware, T. L. Murphy, and K. M. Murphy. 2005. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nature immunology 6:90-98.
    4.Han, P., O. D. Goularte, K. Rufner, B. Wilkinson, and J. Kaye. 2004. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol 172:5931-5939.
    5.Gonzalez, L. C, K. M. Loyet, J. Calemine-Fenaux, V. Chauhan, B. Wranik, W. Ouyang, and D. L. Eaton. 2005. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proceedings of the National Academy of Sciences of the United States of America 102:1116-1121.
    6.Murphy, K. M., C. A. Nelson, and J. R. Sedy. 2006. Balancing co-stimulation and inhibition with BTLA and HVEM. Nature reviews 6:671-681.
    7.Gavrieli, M., N. Watanabe, S. K. Loftin, T. L. Murphy, and K. M. Murphy. 2003. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochemical and biophysical research communications 312:1236-1243.
    8.Lasaro, M. O., N. Tatsis, S. E. Hensley, J. C. Whitbeck, S. W. Lin, J. J. Rux, E. J. Wherry, G. H. Cohen, R. J. Eisenberg, and H. C. Ertl. 2008. Targeting of antigen to the herpes virus entry mediator augments primary adaptive immune responses. Nature medicine 14:205-212.
    9.Li, J, Z. X. Ye, K. N. Li, J. H. Cui, J. Li, Y. X. Cao, Y. F. Liu, and S. J. Yang. 2007. HSP70 gene fused with Hantavirus S segment DNA significantly enhances the DNA vaccine potency against hantaviral nucleocapsid protein in vivo. Vaccine 25:239-252.
    10.Lan, Y. H., Y. G. Li, Z. W. Liang, M. Chen, M. L. Peng, L. Tang, H. D. Hu, and H. Ren. 2007. A DNA vaccine against chimeric AFP enhanced by HSP70 suppresses growth of hepatocellular carcinoma. Cancer Immunol Immunother 56:1009-1016.
    11.Ge, F. F., Y. F. Qiu, Y. W. Yang, and P. Y. Chen. 2007. An hsp70 fusion protein vaccine potentiates the immune response against Japanese encephalitis virus. Archives of virology 152:125-135.
    12.Geng, H., G. M. Zhang, D. Li, H. Zhang, Y. Yuan, H. G. Zhu, H. Xiao, L. F. Han, and Z. H. Feng. 2006. Soluble form of T cell Ig mucin 3 is an inhibitory molecule in T cell-mediated immune response. J Immunol 176:1411-1420.
    13.He, Y. F., G. M. Zhang, X. H. Wang, H. Zhang, Y. Yuan, D. Li, and Z. H. Feng. 2004. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 173:4919-4928.
    14.Geng, H., G. M. Zhang, H. Xiao, Y. Yuan, D. Li, H. Zhang, H. Qiu, Y. F. He, and Z. H. Feng. 2006. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. International journal of cancer 118:2657-2664.
    15.Xiao, H., B. Huang, Y. Yuan, D. Li, L. F. Han, Y. Liu, W. Gong, F. H. Wu, G. M. Zhang, and Z. H. Feng. 2007. Soluble PD-1 Facilitates 4-1BBL-Triggered Antitumor Immunity against Murine H22 Hepatocarcinoma In vivo. Clin Cancer Res 13:1823-1830.
    16.De Trez, C, K. Schneider, K. Potter, N. Droin, J. Fulton, P. S. Norris, S. W. Ha, Y. X. Fu, T. Murphy, K. M. Murphy, K. Pfeffer, C. A. Benedict, and C. F. Ware. 2008. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol 180:238-248.
    17.De Trez, C, and C. F. Ware. 2008. The TNF receptor and Ig superfamily members form an integrated signaling circuit controlling dendritic cell homeostasis. Cytokine & growth factor reviews 19:277-284.
    18.Krieg, C, O. Boyman, Y. X. Fu, and J. Kaye. 2007. B and T lymphocyte attenuator regulates CD8~+ T cell-intrinsic homeostasis and memory cell generation. Nature immunology 8:162-171.
    19.Yi, K. H., H. Nechushtan, W. J. Bowers, G. R. Walker, Y. Zhang, D. G. Pham, E. R. Podack, H. J. Federoff, K. A. Tolba, and J. D. Rosenblatt. 2007. Adoptively transferred tumor-specific T cells stimulated ex vivo using herpes simplex virus amplicons encoding 4-1BBL persist in the host and show antitumor activity in vivo. Cancer research 67:10027-10037.
    20.Stephan, M. T., V. Ponomarev, R. J. Brentjens, A. H. Chang, K. V. Dobrenkov, G. Heller, and M. Sadelain. 2007. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nature medicine 13:1440-1449.
    21.Yamamoto, R., M. Nishikori, T. Kitawaki, T. Sakai, M. Hishizawa, M. Tashima, T. Kondo, K. Ohmori, M. Kurata, T. Hayashi, and T. Uchiyama. 2008. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111:3220-3224.
    22.Zeng, R., Z. Zhang, X. Mei, W. Gong, and L. Wei. 2008. Protective effect of a RSV subunit vaccine candidate G1F/M2 was enhanced by a HSP70-Like protein in mice. Biochemical and biophysical research communications.
    23.Timke, C, H. Zieher, A. Roth, K. Hauser, K. E. Lipson, K. J. Weber, J. Debus, A. Abdollahi, and P. E. Huber. 2008. Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves radiation tumor therapy. Clin Cancer Res 14:2210-2219.
    24.VanOosten, R. L., and T. S. Griffith. 2007. Activation of tumor-specific CD8~+ T Cells after intratumoral Ad5-TRAIL/CpG oligodeoxynucleotide combination therapy. Cancer research 67:11980-11990.
    25.Dorrell, M. I., E. Aguilar, L. Scheppke, F. H. Barnett, and M. Friedlander. 2007. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America 104:967-972.
    26.Savai, R., R. T. Schermuly, S. S. Pullamsetti, M. Schneider, S. Greschus, H. A. Ghofrani, H. Traupe, F. Grimminger, and G. A. Banat. 2007. A combination hybrid-based vaccination/adoptive cellular therapy to prevent tumor growth by involvement of T cells. Cancer research 67:5443-5453.
    27.Kurotaki, T., Y. Tamura, G. Ueda, J. Oura, G. Kutomi, Y. Hirohashi, H. Sahara, T. Torigoe, H. Hiratsuka, H. Sunakawa, K. Hirata, and N. Sato. 2007. Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol 179:1803-1813.
    28.Enomoto, Y., A. Bharti, A. A. Khaleque, B. Song, C. Liu, V. Apostolopoulos, P. X. Xing, S. K. Calderwood, and J. Gong. 2006. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol 177:5946-5955.
    29.Srivastava, P. 2002. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annual review of immunology 20:395-425.
    30.Liu, B., A. M. DeFilippo, and Z. Li. 2002. Overcoming immune tolerance to cancer by heat shock protein vaccines. Molecular cancer therapeutics 1:1147-1151.
    31.Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, N.Y 299:1057-1061.
    32.Williams, L. M., and A. Y. Rudensky. 2007. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nature immunology 8:277-284.
    33.Fontenot, J. D., M. A. Gavin, and A. Y. Rudensky. 2003. Foxp3 programs the development and function of CD4~+CD25~+ regulatory T cells. Nature immunology 4:330-336.
    34.Tao, R., L. Wang, K. M. Murphy, C. C. Fraser, and W. W. Hancock. 2008. Regulatory T cell expression of herpesvirus entry mediator suppresses the function of B and T lymphocyte attenuator-positive effector T cells. J Immunol 180:6649-6655.
    35.Kaye, J. 2008. CD160 and BTLA: LIGHTs out for CD4~+ T cells. Nature immunology 9:122-124.
    1.Mockey, M., et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MARTI mRNA histidylated lipopolyplexes. Cancer Gene Ther, 2007. 14(9): p. 802-14.
    2.Hu, K., et al., Recombined CC chemokine ligand 2 into B16 cells induces production of Th2-dominant [correction of dominanted] cytokines and inhibits melanoma metastasis. Immunol Lett, 2007. 113(1): p. 19-28.
    3.Amarzguioui, M., et al., Ex vivo and in vivo delivery of anti-tissue factor short interfering RNA inhibits mouse pulmonary metastasis of B16 melanoma cells. Clin Cancer Res, 2006. 12(13): p. 4055-61.
    4.He, Y.F., et al., Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol, 2004. 173(8): p. 4919-28.
    5.Geng, H., et al., Soluble form of T cell Ig mucin 3 is an inhibitory molecule in T cell-mediated immune response. J Immunol, 2006. 176(3): p. 1411-20.
    6.Yoshiura, K., et al., Inhibition of B16 melanoma growth and metastasis in C57BL mice by vaccination with a syngeneic endothelial cell line. J Exp Clin Cancer Res, 2009. 28:p. 13.
    7.Gong, W., et al., IFN-gamma withdrawal after immunotherapy potentiates B16 melanoma invasion and metastasis by intensifying tumor integrin alphavbeta3 signaling. Int J Cancer, 2008. 123(3): p. 702-8.
    8.Taylor, P., et al., Ajoene inhibits both primary tumor growth and metastasis of B16/BL6 melanoma cells in C57BL/6 mice. Cancer Lett, 2006. 239(2): p. 298-304.
    9.Matsuda, T., et al., Suppressive Effect of Juzen-Taiho-To on Lung Metastasis of B16 Melanoma Cells in vivo. Evid Based Complement Alternat Med, 2009.
    10.Murakami, M., et al., Regulatory expression of genes related to metastasis by TGF-beta and activin A in B16 murine melanoma cells. Mol Biol Rep, 2009.
    11.Ge, W., et al., The antitumor immune responses induced by nanoemulsion- encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother, 2009. 58(2): p. 201-8.
    12.Kim, H.E., et al., PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell, 2008. 30(2): p. 239-47.
    13.Toomey, D., et al., Therapeutic vaccination with dendritic cells pulsed with tumor-derived Hsp70 and a COX-2 inhibitor induces protective immunity against B16 melanoma. Vaccine, 2008. 26(27-28): p. 3540-9.
    14.Lasaro, M.O., et al., Targeting of antigen to the herpesvirus entry mediator augments primary adaptive immune responses. Nat Med, 2008. 14(2): p. 205-12.
    15.Lepenies, B., et al., Ligation of B and T lymphocyte attenuator prevents the genesis of experimental cerebral malaria. J Immunol, 2007. 179(6): p. 4093-100.
    16.De Trez, C, et al., The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol, 2008. 180(1): p. 238-48.
    17.Murphy, K.M., C.A. Nelson, and J.R. Sedy, Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol, 2006. 6(9): p. 671-81.
    1.He, Y F, et al. Blocking programmed death-1 ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol, 2004, 173(8): 4919-28
    2.Watanabe N, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol, 2003,4(7): 670-9
    3.Carreno B M, Collins M. BTLA: a new inhibitory receptor with a B7-like ligand. Trends Immunol, 2003,24(10): 524-7
    4.Han P, et al. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol, 2004, 172(10): 5931-9
    5.Compaan D M, et al. Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J Biol Chem, 2005,280(47): 39553-61
    6.Gonzalez L C, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci USA, 2005,102(4): 1116-21
    7.Gavrieli M, et al. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun, 2003,312(4): 1236-43
    8.Nie B, et al. AAV-HGFK1 and Ad-p53 cocktail therapy prolongs survival of mice with colon cancer. Mol Cancer Ther, 2008, 7(9): 2855-65
    1.Maiza H, et al. A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med, 1993,178(3): 1121-6.
    2.Bensussan A, et al. BY55 monoclonal antibody delineates within human cord blood and bone marrow lymphocytes distinct cell subsets mediating cytotoxic activity. Proc Natl Acad Sci USA, 1994, 91(19): 9136-40.
    3.Anumanthan A, et al. Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol, 1998, 161(6): 2780-90.
    4.Agrawal S, et al. Cutting edge: MHC class I triggering by a novel cell surface ligand costimulates proliferation of activated human T cells. J Immunol, 1999, 162(3): 1223-6.
    5.Le Bouteiller P, et al. Engagement of CD160 receptor by HLA-C is a triggering mechanism used by circulating natural killer (NK) cells to mediate cytotoxicity. Proc Natl Acad Sci USA, 2002, 99(26): 16963-8.
    6.Barakonyi A, et al. Cutting edge: engagement of CD160 by its HLA-C physiological ligand triggers a unique cytokine profile secretion in the cytotoxic peripheral blood NK cell subset. J Immunol, 2004, 173(9): 5349-54.
    7.Maeda M, et al. Murine CD160, Ig-like receptor on NK cells and NKT cells, recognizes classical and nonclassical MHC class I and regulates NK cell activation. J Immunol, 2005, 175(7): 4426-32.
    8.Murphy K M, Nelson C A and Sedy J R. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol, 2006, 6(9): 671-81.
    9.Kaye J, et al. CD160 and BTLA: LIGHTs out for CD4~+ T cells. Nat Immunol, 2008, 9(2): 122-4.
    1.Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002;3:611-618.
    2.Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol 2002;2:116-126.
    3.Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol 2005;23:515-548.
    4.Watanabe N, et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 2003;4:670-679.
    5.Han P, Goularte OD, Rufner K, Wilkinson B, Kaye J. An inhibitory Ig superfamily protein expressed by lymphocytes and APCs is also an early marker of thymocyte positive selection. J Immunol 2004;172:5931-5939.
    6.Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001;104:487-501.
    7.Croft M. Co-stimulatory members of the TNFR family: keys to effective T-cell immunity? Nat Rev Immunol 2003;3:609-620.
    8.Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 2005;23:23-68.
    9.Gavrieli M, Sedy J, Nelson CA, Murphy KM. BTLA and HVEM cross talk regulates inhibition and costimulation. Adv Immunol 2006;92:157-185.
    10.Vonderheide RH, June CH. A translational bridge to cancer immunotherapy: exploiting costimulation and target antigens for active and passive T cell immunotherapy. Immunol Res 2003;27:341-356.
    11.Appleman LJ, Boussiotis VA. T cell anergy and costimulation. Immunol Rev 2003; 192: 161-180.
    12.Saito T, Yamasaki S. Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 2003; 192:143-160.
    13.Riley JL, June CH. The CD28 family: a T-cell rheostat for therapeutic control of T-cell activation. Blood 2005;105:13-21.
    14. Subudhi SK, Alegre ML, Fu YX. The balance of immune responses: costimulation verse coinhibition. J Mol Med 2005;83:193-202.
    15. Granger SW, Ware CF. Commentary: turning on LIGHT. J Clin Invest 2001;108: 1741- 1742.
    16. So T, Lee SW, Croft M. Tumor necrosis factor/tumor necrosis factor receptor family members that positively regulate immunity. Int J Hematol 2006;83:1-11.
    17. Ware CF. Network communications: lymphotoxins, LIGHT, and TNF. Annu Rev Immunol 2005;23:787-819.
    18. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995;377:348-351.
    19. Chaplin D, Fu YX. Cytokine regulation of secondary lymphoid organ development. Curr Opin Immunol 1998;10:289-297.
    20. Gommerman JL, Browning JL. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 2003;3:642-655.
    21. Drayton DL, Liao S, Mounzer RH, Ruddle NH. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 2006;7:344-353.
    22. Mauri DN, et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 1998;8:21-30.
    23. Schneider K, Potter KG, Ware CF. Lymphotoxin and LIGHT signaling pathways and target genes. Immunol Rev 2004;202:49-66.
    24. Montgomery RI, Warner MS, Lum B, Spear PG. Herpes simplex virus 1 entry into cells mediated by a novel member of the TNF/ NGF receptor family. Cell 1996;87:427-436.
    25. Murphy KM, Nelson CA, Sedy JR. Balancing co-stimulation and inhibition with BTLA and HVEM. Nat Rev Immunol 2006;6:671-681.
    26. Yu KY, Kwon B, Ni J, Zhai Y, Ebner R, Kwon BS. A newly identified member of tumor necrosis factor receptor superfamily (TR6) suppresses LIGHT-mediated apoptosis. J Biol Chem 1999;274:13733-13736.
    27.Force WR, et al. Mouse lymphotoxin-p receptor. Molecular genetics, ligand binding, and expression. J Immunol 1996;155:5280-5288.
    28.Browning JL, French LE. Visualization of lymphotoxin-beta and lymphotoxin-beta receptor expression in mouse embryos. J Immunol 2002;168:5079-5087.
    29.Tamada K, et al. LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response. J Immunol 2000; 164: 4105-4110.
    30.Edwards AD, Chaussabel D, Tomlinson S, Schulz O, Sher A, Reis e Sousa C. Relationships among murine CD11c(high) dendritic cell subsets as revealed by baseline gene expression patterns. J Immunol 2003;171:47-60.
    31.Taylor RT, Lugering A, Newell KA, Williams IR. Intestinal cryptopatch formation in mice requires lymphotoxin alpha and the lymphotoxin beta receptor. J Immunol 2004;173:7183-7189.
    32.Meier D, et al. Ectopic lymphoid-organ development occurs through Interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 2007;26:643- 654.
    33.Cyster JG, et al. Follicular stromal cells and lymphocyte homing to follicles. Immunol Rev 2000;176:181-193.
    34.Scheu S, Alferink J, Potzel T, Barchet W, Kalinke U, Pfeffer K. Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin beta in mesenteric lymph node genesis. J Exp Med 2002; 195:1613-1624.
    35.Cohavy O, Zhou J, Ware CF, Targan SR. LIGHT is constitutively expressed on T and NK cells in the human gut and can be induced by CD2-mediated signaling. J Immunol 2005; 174:646-653.
    36.Sedy JR, et al. B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 2005;6:90-98.
    37.Hurchla MA, Sedy JR, Gavrielli M, Drake CG, Murphy TL, Murphy KM. B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly Induced in anergic CD4~+ T cells. J Immunol 2005;174:3377-3385.
    38.Peter ME, et al. The CD95 receptor: apoptosis revisited. Cell 2007;129:447-450.
    39.Li C, et al. Structurally distinct recognition motifs in lymphotoxin-beta receptor and CD40 for tumor necrosis factor receptor-associated factor (TRAF)-mediated signaling. J Biol Chem 2003;278:50523-50529.
    40.Dempsey PW, Doyle SE, He JQ, Cheng G. The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 2003;14:193-209.
    41.Li ZW, Rickert RC, Karin M. Genetic dissection of antigen receptor induced-NF- kappaB activation. Mol Immunol 2004;41:701-714.
    42.Ruland J, Mak TW. From antigen to activation: specific signal transduction pathways linking antigen receptors to NF-kappaB. Semin Immunol 2003; 15:177-183.
    43.Green DR. Death and NF-kappaB in T cell activation: life at the edge. Mol Cell 2003;ll:551-552.
    44.Dejardin E, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002; 17:525-535.
    45.Pineda G, Ea CK, Chen ZJ. Ubiquitination and TRAF signaling. Adv Exp Med Biol 2007;597:80-92.
    46.Oganesyan G, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 2006;439:208-211.
    47.Perkins ND. Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007;8:49-62.
    48.Rooney IA, et al. The lymphotoxin-beta receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells. J Biol Chem 2000;275:14307-14315.
    49.Bodmer JL, Schneider P, Tschopp J. The molecular architecture of the TNF superfamily. Trends Biochem Sci 2002;27:19-26.
    50.Bossen C, et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 2006;281:13964-13971.
    51.Holler N, et al. Two adjacent trimeric Fas ligands are required for Fas signaling and formation of a death-inducing signaling complex. Mol Cell Biol 2003;23:1428-1440.
    52.Banner DW, et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation. Cell 1993;73:431-445.
    53.Compaan DM, Hymowitz SG. The crystal structure of the costimulatory OX40-OX40L complex. Structure 2006;14:1321-1330.
    54.Hymowitz SG, et al. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 1999;4:563-571.
    55.Hymowitz SG, et al. Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. J Biol Chem 2005;280:7218-7227.
    56.Cachero TG, et al. Formation of virus-like clusters is an intrinsic property of the tumor necrosis factor family member BAFF (B cell activating factor). Biochemistry 2006;45: 2006-2013.
    57.Eldredge J, et al. Stoichiometry of LTbetaR binding to LIGHT. Biochemistry 2006;45:10117-10128.
    58.Ware, CF.; VanArsdale, TL.; Crowe, PD.; Browning, JL. The ligands and receptors of the lymphotoxin system. In: Griffiths, GM.; Tschopp, J., editors. Pathways for Cytolysis. Springer- Verlag; Basel: 1995. p. 175-218.
    59.Williams-Abbott L, Walter BN, Cheung TC, Goh CR, Porter AG, Ware CF. The lymphotoxin-alpha(LTalpha) subunit is essential for the assembly, but not for the receptor specificity, of the membraneanchored LTalphal-beta2 heterotrimeric ligand. J Biol Chem 1997;272:19451-19456.
    60.Black RA, et al. Substrate specificity and inducibility of TACE (tumour necrosis factor alphaconverting enzyme) revisited: the Ala-Val preference, and induced intrinsic activity. Biochem Soc Symp 2003;70:39-52.
    61.Granger SW, Butrovich KD, Houshmand P, Edwards WR, Ware CF. Genomic characterization of LIGHT reveals linkage to an immune response locus on chromosome 19pl3.3 and distinct isoforms generated by alternate splicing or proteolysis. J Immunol 2001;167:5122-5128.
    62.Chen J, Zhang L, Kim S. Quantification and detection of DcR3, a decoy receptor in TNFR family. J Immunol Methods 2004;285:63-70.
    63.Compaan DM, Gonzalez LC, Tom I, Loyet KM, Eaton D, Hymowitz SG Attenuating lymphocyte activity: the crystal structure of the BTLA-HVEM complex. J Biol Chem 2005;280:39553-39561.
    64.Garapati VP, Lefranc MP. IMGT Colliers de Perles and IgSF domain standardization for T cell costimulatory activatory (CD28, ICOS) and inhibitory (CTLA4, PDCD1 and BTLA) receptors. Dev Comp Immunol 2007;31:1050-1072.
    65.Keir ME, Sharpe AH. The B7/CD28 costimulatory family in autoimmunity. Immunol Rev 2005;204:128-143.
    66.Chemnitz JM, Lanfranco AR, Braunstein I, Riley JL. B and T lymphocyte attenuator- mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. J Immunol 2006;176: 6603-6614.
    67.Wu TH, Zhen Y, Zeng C, Yi HF, Zhao Y. B and T lymphocyte attenuator interacts with CD3zeta and inhibits tyrosine phosphorylation of TCRzeta complex during T-cell activation. Immunol Cell Biol 2007;85:590-595.
    68.Gonzalez LC, et al. A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci USA 2005;102:1116-1121.
    69.Cheung TC, et al. Evolutionarily divergent herpesviruses modulate T cell activation by targeting the herpesvirus entry mediator cosignaling pathway. Proc Natl Acad Sci USA 2005;102:13218-13223.
    70.Nelson CA, et al. Structural determinants of herpesvirus entry mediator recognition by murine B and T lymphocyte attenuator. J Immunol 2008;180:940-947.
    71.Croft M. The evolving crosstalk between co-stimulatory and co-inhibitory receptors: HVEM-BTLA. Trends Immunol 2005;26:292-294.
    72.Watts TH, Gommerman JL. The LIGHT and DARC sides of herpesvirus entry mediator. Proc Natl Acad Sci USA 2005;102:13365-13366.
    73.Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ. CD160 inhibits activation of human CD4(1) T cells through interaction with herpesvirus entry mediator. Nat Immunol 2008;9:176-185.
    74.Benedict C, et al. Cutting edge: a novel viral TNF receptor superfamily member in virulent strains of human cytomegalovirus. J Immunol 1999; 162:6967-6970.
    75.Spear PG Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 2004;6:401-410.
    76.Spear PG, Manoj S, Yoon M, Jogger CR, Zago A, Myscofski D. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 2006;344:17-24.
    77.Lurain NS, et al. Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates. J Virol 1999;73:10040-10050.
    78.Kinkade A, Ware CF. The DARC conspiracy - virus invasion tactics. Trends Immunol 2006;27:362-367.
    79.Kwon BS, et al. A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 1997;272:14272-14276.
    80.Harrop JA, et al. Antibodies to TR2 (herpesvirus entry mediator), a new member of the TNF receptor superfamily, block T cell proliferation, expression of activation markers, and production of cytokines. J Immunol 1998; 161:1786-1794.
    81.Ye Q, et al. Modulation of LIGHT-HVEM costimulation prolongs cardiac allograft survival. J Exp Med 2002;195:795-800.
    82.Shaikh R, et al. Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation and tissue destruction. J Immunol 2001; 167:6330-6337.
    83.Wang J, et al. The regulation of T cell homeostasis and autoimmunity by T cell derived LIGHT. J Clin Invest 2001;108:1771-1780.
    84.Tamada K, et al. Cutting Edge: selective impairment of CD8(+) T Cell function in mice lacking the TNF superfamily member LIGHT. J Immunol 2002;168:4832-4835.
    85.Tamada K, et al. Blockade of LIGHT/LTbeta and CD40 signaling induces allospecific T cell anergy, preventing graft-versus-host disease. J Clin Invest 2002; 109:549-557.
    86.Wan X, et al. A TNF family member LIGHT transduces costimulatory signals into human T cells. J Immunol 2002;169:6813-6821.
    87.Hurchla MA, Sedy JR, Murphy KM. Unexpected role of B and T lymphocyte attenuator in sustaining cell survival during chronic allostimulation. J Immunol 2007;178:6073-6082.
    88.Lin SC, Kuo CC, Chan CH. Association of a BTLA gene polymorphism with the risk of rheumatoid arthritis. J Biomed Sci 2006;13:853-860.
    89.Gavrieli M, Watanabe N, Loftin SK, Murphy TL, Murphy KM. Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2. Biochem Biophys Res Commun 2003;312:1236-1243.
    90.Deppong C, et al. Cutting edge: B and T lymphocyte attenuator and programmed death receptor-1 inhibitory receptors are required for termination of acute allergic airway inflammation. J Immunol 2006;176:3909-3913.
    91.Banchereau J, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18: 767-811.
    92.Asselin-Paturel C, et al. Mouse type Ⅰ IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2001 ;2:1144-1150.
    93.Martin P, et al. Characterization of a new subpopulation of mouse CD8alpha+ B220~+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 2002;100:383-390.
    94.Maldonado-Lopez R, et al. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999;189:587-592.
    95.Maldonado-Lopez R, Moser M. Dendritic cell subsets and the regulation of Thl/Th2 responses. Semin Immunol 2001; 13:275-282.
    96.Leenen PJ, et al. Heterogeneity of mouse spleen dendritic cells: in vivo phagocytic activity, expression of macrophage markers, and subpopulation turnover. J Immunol 1998;160:2166-2173.
    97.Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 2005;22:439-450.
    98.Abe K, et al. Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo. Blood 2003;101:1477-1483.
    99.De Trez C, et al. The inhibitory HVEM-BTLA pathway counter regulates lymphotoxin receptor signaling to achieve homeostasis of dendritic cells. J Immunol 2008;180:238-248.
    100.Wu L, D'Amico A, Winkel KD, Suter M, Lo D, Shortman K. RelB is essential for the development of myeloid-related CD8alpha- dendritic cells but not of lymphoid-related CD8alpha+ dendritic cells. Immunity 1998;9:839-847.
    101.Krieg C, Boyman O, Fu YX, Kaye J. B and T lymphocyte attenuator regulates CD8(+) T cell-intrinsic homeostasis and memory cell generation. Nat Immunol 2007;8:162-171.
    102.Xu Y, et al. Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease. Blood 2007; 109:4097-4104.
    103.Summers-DeLuca LE, et al. Expression of lymphotoxin-alphabeta on antigen-specific T cells is required for DC function. J Exp Med 2007;204:1071-1081.
    104.Wang Y, et al. The role of herpesvirus entry mediator as a negative regulator of T cell-mediated responses. J Clin Invest 2005;115:711-717.
    105.Schneider K, et al. Lymphotoxin-mediated crosstalk between B-cells and splenic stroma promotes the initial type I interferon response to cytomegalovirus. Cell Host Microbe 2008;3:67-76.
    106.Benedict CA, De Trez C, Schneider K, Ha S, Patterson G, Ware CF. Specific remodeling of splenic architecture by cytomegalovirus. PLoS Pathog 2006;2:el6.
    107.Benedict CA, et al. Lymphotoxins and cytomegalovirus cooperatively induce interferon-b,establishing host-virus detente. Immunity 2001;15:617-626.
    108.Banks TA, et al. A lymphotoxin-IFN-beta axis essential for lymphocyte survival revealed during cytomegalovirus infection. J Immunol 2005;174:7217-7225.
    109.Banks TA, Rickert S, Ware CF. Restoring immune defenses via lymphotoxin signaling: lessons from cytomegalovirus. Immunol Res 2006;34:243-254.
    110.Fava RA, et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collageninduced arthritis. J Immunol 2003;171:115-126.
    111.Gommerman JL, et al. A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. J Clin Invest 2003;112:755-767.
    112.Schwarz BT, et al. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology 2007;132: 2383-2394.
    113.An MM, et al. Lymphtoxin beta receptor-Ig ameliorates TNBS-induced colitis via blocking LIGHT/ HVEM signaling. Pharmacol Res 2005;52:234-244.
    114.An MM, et al. Lymphtoxin beta receptor-Ig protects from T-cell-mediated liver injury in mice through Blocking LIGHT/HVEM signaling. Biol Pharm Bull 2006;29:2025-2030.
    115.Anand S, et al. Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis. J Clin Invest 2006;116:1045-1051.
    116. Cohavy 0, Zhou J, Granger SW, Ware CF, Targan SR. LIGHT expression by mucosal T cells may regulate IFN-gamma expression in the intestine. J Immunol 2004;173:251-258.
    117. Truong W, et al. Negative and positive cosignaling with anti-BTLA (PJ196) and CTLA4Ig prolongs islet allograft survival. Transplantation 2007;84:1368-1372.
    118. Truong W, Hancock WW, Anderson CC, Merani S, Shapiro AM. Coinhibitory T-cell signaling in islet allograft rejection and tolerance. Cell Transplant 2006; 15:105-119.
    119. Yu P, et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 2004;5:141-149.
    120. Tamada K, et al. Modulation of T-cell-mediated immunity in tumor and graft-versus- host disease models through the LIGHT co-stimulatory pathway. Nat Med 2000;6:283- 289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700