用户名: 密码: 验证码:
大鼠局灶性脑缺血模型的氧代谢功能磁共振成像的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:比较吸入100%氧气所引起的正常大鼠不同脑组织弛豫值的变化。采用血氧水平依赖的功能磁共振成像技术(BOLD-fMRI)研究不同时间长度吸入100%氧气后BOLD信号的改变,探讨100%氧气引起正常大鼠脑组织弛豫值和信号变化的影响因素。建立大鼠局灶性脑缺血模型,比较吸入100%氧气后不同脑组织弛豫值的变化,采用BOLD-fMRI技术研究吸入100%氧气后BOLD信号的改变。研究方法:在7T超高场磁共振扫描仪下,采用200-250g的正常Sprague-Dawley雄性大鼠46只,分别测量吸入空气和100%氧气后脑组织的弛豫值,比较不同气体下T1、T2和T2*值的变化率。观察短时间吸入空气、短时间吸入100%氧气和长时间吸入100%氧气造成的不同脑组织的BOLD信号变化。在MCAO模型建立后1h和5h,分别进行吸入100%氧气后的弛豫值测量及BOLD信号测量。结果:与室内空气比较,吸入100%氧气后大鼠皮层、尾状核、胼胝体的T1值均有显著的缩短,T1值的缩短在皮层(-6.8%±2.2%)、尾状核(-4.6%±1.2%)、胼胝体(-3.0%±1.5%)之间存在显著差异(P<0.001)。T2和T2*值在吸入100%氧气后有明显延长,T2和T2*值的延长在皮层(3.2%±1.6%和22.7%±3.4%)、尾状核(7.0%-+1.8%和17.4%±6.8%)、胼胝体(12.4%±7.5%和12.5%±4.8%)之间也存在显著差异(P<0.001)。T1和T2*值变化率在皮层最高,T2值变化率在胼胝体最高。100%氧气下皮层脑血流量的下降比皮层下尾状核更为明显一些。短时间100%氧气吸入刺激后,BOLD信号变化分别为皮层(0.731%±0.071%)、尾状核(1.034%±0.049%)、海马(0.635%±0.051%)和丘脑(0.758%±0.089%)。长时间100%氧气吸入刺激后BOLD信号分别为皮层(0.962%±0.064%)、尾状核(1.556%±0.082%)、海马(1.107%±0.060%)和丘脑(1.235%±0.085%),短时间吸入空气、短时间吸入100%氧气和长时间吸入100%氧气产生的BOLD信号变化具有显著性差异(P<0.001)。MCAO后lh栓塞侧和正常侧大脑皮层、肼胝体、尾状核的T1弛豫值之间差异有统计学意义(P<0.001),大脑皮层(P<0.001)、胼胝体(P<0.05)的T2*弛豫值之间差异有统计学意义。栓塞侧皮层、胼胝体、尾状核的T1弛豫值均有不同程度延长,T2和T2*弛豫值不同程度缩短。而MCAO 1h后栓塞侧和正常侧大脑皮层、胼胝体、尾状核的T2值之间和尾状核的T2*弛豫值差异无统计学意义。MCAO5h后,栓塞侧和正常侧大脑皮层、胼胝体、尾状核的T1、T2、T2*弛豫值之间差异均有统计学意义(P<0.01),栓塞侧的T1弛豫值皮层、胼胝体、尾状核的均有不同程度延长,T2和T2*弛豫值不同程度缩短。MCAO后1h栓塞侧和正常侧的BOLD信号变化分别为皮层(0.677%±0.07l%和0.981%±0.074%)、尾状核(1.236%±0.056%和1.508%±0.102%)、海马(1.024%±0.014%和1.102%±0.035%)和丘脑(1.159%±0.037%和1.209%±0.085%)。MCAO后5h栓塞侧和正常侧的BOLD信号变化分别为皮层(0.192%±0.020%和0.964%±0.094%)、尾状核(0.162%±0.020%和1.585%±0.121%)、海马(1.054%+0.079%和1.130%±0.06%)和丘脑(1.108%±0.041%和1.221%±0.081%),MCAO后1h和5h,栓塞侧和正常侧于吸入100%氧气后BOLD信号的变化具有显著性差异(P<0.001)。MCAO 1h和5h时对于局灶性脑缺血的变化,皮层、尾状核、海马、丘脑的rADC和吸入100%氧气后的BOLD反应是一致的。结论:采用7T的超高强MRI扫描仪,可以获得更高的空间分辨力及更精确、可靠的实验数据。吸入100%氧气后,顺磁性游离氧的增加缩短了组织T1驰豫值,并使血流减少。T1、T2*值的变化率主要受脑血容量影响,而脑血流量减少影响甚小。氧合血红蛋白的比例升高造成脑组织T2、T2*值的延长。100%氧气吸入后,局部脑组织氧含量与脑组织BOLD信号变化是密切相关的,血液的氧合作用导致的局部磁敏感性的改变,造成BOLD信号增高。局灶性脑缺血大鼠的脑组织弛豫值变化可以反映缺血脑组织的部分氧代谢情况。T1弛豫值延长的主要原因为细胞毒性水肿的存在,去氧血红蛋白的顺磁性效应使局部缺血脑组织的T2和T2*弛豫值不同程度缩短。脑缺血局部氧代谢明显降低造成BOLD信号的持续下降。吸入100%氧气可以作为一种有效的外源性“对比剂”,与超高场MRI系统一起构成研究脑组织氧代谢和脑血管反应的新方法。
Objective:One of the aim of this study was to compare the changes in relaxation value of the brain in rats after administration of pure oxygen. With BOLD-fMRI techniques, we used three oxygen-inhaling methods for different duration in order to detect the BOLD signal intensity. To clarify how the pure oxygen impact the relaxation value and the BOLD signal intensity of the brain. We again compared the changes in relaxation value of the brain and the BOLD signal intensity after administration of pure oxygen in a rat stroke model of middle cerebral artery occlusion(MCAO). Methods:Forty six male Sprague-Dawley rats weighting 200-250g examined with 7T MR scanner. T1, T2 and T2* value of the brain were determined in air, respectively. After the air changed to 100% oxygen, T1, T2 and T2* value were again determined. Percentage changes in all values were compared. Three oxygen-inhaling methods for different duration in order to detect the BOLD signal intensity were compared. 1h and 5h After MCAO, T1, T2 and T2* value and the BOLD signal intensity of the brain were determined, respectively. Result:Compared with room air, T1 values of the cortex, caudate and corpus callosum decreased obviously, whereas significant T2 and T2* prolongation of of the cortex, caudate and corpus callosum was demonstrated. Percentage changes in all values between the cortex, caudate and corpus callosumwere different (P<0.001) when exposed to 100% oxygen.-Percentage changes of T1 and T2* value is respectively biggest in the cortex, whereas that of T2 value is biggest in the corpus callosum. After inhaling short duration of pure oxygen, the change of the BOLD signal intensiy of were 0.731%±0.071% in cortex,1.034%±0.049% in caudate、0.635%±0.051% in hippocampus and 0.758%±0.089% in thalamus, respectively. After After inhaling long duration of pure oxygen, the change of the BOLD signal intensiy were 0.962%±0.064% in cortex,1.556%±0.082% in caudate,1.107%±0.060% in hippocampus and 1.235%±0.085% in thalamus, respectively. The different change of BOLD signal intensity between the short duration and long duration inhale of pure oxygen was significant (P<0.001). 1h After MCAO,the different of the T1 relaxation value between the ischemia side and the normal side in cortex, caudate and corpus callosum were significant (P<0.001). The T2* relaxation value between the ischemia side and the normal side in cortex,and corpus callosum were significant. The T1 relaxation value of the ischemia side in cortex, caudate and corpus callosum were prolonged, whereas significant T2 and T2* shortening of of the cortex, caudate and corpus callosum was demonstrated. 1h After MCAO, the different of the T2 relaxation value between the ischemia side and the normal side in cortex, caudate and corpus callosum were not significant.5h After MCAO, the different of the all relaxation values between the ischemia side and the normal side in cortex, caudate and corpus callosum were significant (P<0.01). The T1 relaxation value of the ischemia side in cortex, caudate and corpus callosum were prolonged, whereas significant T2 and T2* shortening of of the cortex, caudate and corpus callosum was demonstrated. 1h After MACO, the change of BOLD signal intensity of the ischemia side and the normal side were (0.677%±0.071% vs.0.981%±0.074%) in cortex, 1.236%±0.056% vs.1.508%0.102% in caudate,1.024%±0.014% vs.1.102%±0.035% in hippocampus and 1.159%±0.073% vs.1.209%±0.085% in thalamus。5h After MACO, the change of BOLD signal intensity of the ischemia side and the normal side were 0.192%±0.020% vs.0.964%±0.094% in cortex,0.162%±0.020% vs.1.585%±0.121% in caudate,1.054%±0.079% vs.1.130%±0.06% in hippocampus and 1.108%±0.041% vs.1.221%±0.081% in thalamus.1h and 5h After MCAO, the different of change of the BOLD signal intensity between the ischemia side and the normal side in cortex, caudate, hippocampus and thalamus were significant (P<0.001).The BOLD signal intenstiy and the rADC change of the cortex, caudate, hippocampus and thalamus is coherent.Conclusion: Using 7T MR scanner permits getting higher spatial resolution and more reliable experiment data. The shortening T1 was induced by the increased amount of paramagnetic free oxygen. The contribution of reduction of CBF was negligible in changes to T1 and T2* value. The prolonging T2 and T2* was caused by the increased fraction of oxyhaemoglobin. Inhaling oxygen for different time may cause different BOLD signal intensity change in brain tissue. BOLD signal intensity is corresponding with heamoglobin saturation for inhaling pure oxygen. Administered pure oxygen increase the BOLD signal intensity because of its oxygenation sensitive paramagnetic characteristics. The prolong of the T1 relaxation value after MACO mainly because of the cytotoxic edema in ischemia brain. The shortening of the T2 and T2* relaxation value in ischemia brain was caused by the paramagnetism characteristics of the deoxyhemoglobin. The failure of the oxygen-metablism in ischemia brain caused continuely decrease of the BOLD signal intensity. Administered pure oxygen was shown to be effective as a exogenous'contrast agent' on high field MRI system that can be used as a new method to study the oxygen-metablism in brain and the cerebrovascular responses.
引文
1. Young IR, Clarke GJ, Bailes DR, et al. Enhancement of relaxation rate with paramagnetic contrast agents in NMR imaging. J Comput Tomogr.1981,5:543-547.
    2. Edelman RR, Hatabu H, Tadamura E, et al. Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med.1996,2:1236-1239.
    3. Tadamura E, Hatabu H, Li W, et al. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging.1997,7:220-225.
    4. Jones RA, Ries M, Moonen CT, et al. Imaging the changes in renal T1 induced by the inhalation of pure oxygen:a feasibility study. Magn Reson Med.2002,47:728-735.
    5. Noseworthy MD, Kim JK, Stainsby JA, et al. Tracking oxygen effects on MR signal in blood and skeletal muscle during hyperoxia exposure. J Magn Reson Imaging.1999,9:814-820.
    6. Deliganis AV, Fisher DJ, Lam AM, et al. Cerebrospinal fluid signal intensity increase on FLAIR MR images in patients under general anesthesia:the role of supplemental 02. Radiology.2001,218:152-156.
    7. Kettunen MI, Grohn OH, Silvennoinen MJ, et al. Effects of intracellular pH, blood, and tissue oxygen tension on Tlrho relaxation in rat brain. Magn Reson Med.2002,48:470-477.
    8. Thulborn KR, Waterton JC, Matthews PM, et al. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta.1982,714:265-270.
    9. Wright GA, Hu BS, Macovski A.1991 I.I. Rabi Award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging.1991,1:275-283.
    10. Messager T, Franconi F, Lemaire, et al. MRI Study of transient cerebral ischemia in the gerbil interest of T2 mapping. Invest Radiol,2000,35:180-185.
    11. Guilfoyle DN, Dyakin VV, O'Shea J, et al. Quantitative measurements of proton spin-lattice (T1) and spin-spin (T2) relaxation times in the mouse brain at 7.0 T. Magn Reson Med,2003,49:576-580.
    12. Uematsu H, Takahashi M, Hatabu H, et al. Changes in T1 and T2 observed in brain magnetic resonance imaging with delivery of high concentrations of oxygen. J Comput Assist Tomogr,2007, 31:662-665.
    13.杨正汉,冯逢,王霄英.磁共振成像技术指南.检查规范、临床策略及新技术应用.北京:人民军医出版社,2007,297-299.
    14.Law R, Bukwirwa H The physiology of oxygen delivery. Update Anaesthesia 1999,10:1-2.
    15.Santosh C, Brennan D, McCabe C, et al. Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra. J Cereb Blood Flow Metab, 2008,28:1742-1753.
    16. Lu J, Dai G, Egi Y, et al. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage.2009;45:1126-1134
    17. Berthezene Y, Tournut P, Turjman F, Inhaled Oxygen:A Brain MR Contrast Agent? AJNR 1995;16:2010-2012.
    18. Losert C, Peller M, Schneider P, et al. Oxygen-Enhanced MRI of the Brain. Magn Reson Med 2002;48:271-277.
    19. Greenberg JH, Alavi A, Reivich M, Kuhl D, Uzell B. Local cerebral blood volume response to carbon dioxide in man. Circ Res 1978;48:324-331.
    20.王霞,陶晓峰.吸纯氧后脑组织BOLD信号变化的影响因素.第二军医大学报,2008:29:684-687.
    21. Bulte DP, Chiarelli PA, Wise RG, et al. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab.2007;27:69-75.
    22. Kastrup A, Kruger G,Neumann-Haefelin T, et al. Assessment of cerbrovascular reactivity with functional magnetic resonance imaging:comparison of CO2 and breath holding. Magn Reson Imaging. 2001,19(1):13-20.
    1. Rostrup E, Larsson HB, Toft PB,et al. Signal changes in gradient echo images ofhuman brain induced by hypo- and hyperoxia. NMR Biomed,1999,58:41-47
    2. Berkowitz BA. Role of dissolved plasma oxygen in hyperoxia-induced contrast. Magn Reson Imag. 1997,15:123-126
    3. Johnston AJ, Steiner LA, Gupta AK, et al. Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br J Anaesth.2003,90:774-86
    4. Ogawa S, Lee TM, Nayak AS, et al. Oxygenation sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med,1990,14:68-78.
    5.赵喜平,主编.磁共振成像系统的原理以及应用.北京:科学出版社,2000.
    6. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging. Biophys,1993,64:803-812
    7. Berthezene Y, Tournut P, Turjman F, Inhaled Oxygen:A Brain MR Contrast Agent? AJNR 1995,16(10):2010-2012.
    8. Losert C, Peller M, Schneider P, et al. Oxygen-Enhanced MRI of the Brain. Magn Reson Med 2002,48(2):271-277.
    9. Law R, Bukwirwa H The physiology of oxygen delivery. Update Anaesthesia 1999,10:1-2.
    10. Floyd TF, Clark JM, Gelfand R, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003,95(6):2453-2461.
    11. Busija, D.W., Orr, J.A., Rankin, J.H., Liang, H.K., Wagerle, L.C.,. Cerebral blood flow during normocapnic hyperoxia in the unanesthetized pony. J. Appl. Physiol.1980,48,10-15.
    12. Jones, M.D., Traystman, R.J., Simmons, M.A. et al,. Effects of changes inarterial O2 content on cerebral blood flow in the lamb. Am. J. Physiol.1981,240, H209-H215.
    13. Eintrei, C., Odman, S., Lund, N., Effects of increases in the inspired oxygen fraction on brain surface oxygen pressure fields and regional cerebral blood flow. Adv. Exp. Med. Biol.1985,191, 131-138.
    14. Kolbitsch C, Lorenz IH, Hormann C, et al. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery(CBFVMCA) in human volunteers. Magn Reson Imag 2002,20(7):535-41.
    15. Bulte DP, Chiarelli PA, Wise RG, et al. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab.2007,27(1):69-75.
    16. Kastrup A, Kruger G,Neumann-Haefelin T, et al. Assessment of cerbrovascular reactivity with functional magnetic resonance imaging:comparison of CO2 and breath holding. Magn Reson Imaging.2001,19(1):13-20.
    17. Lu J, Dai G, Egi Y, et al. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage.2009,45(4):1126-1134
    18.杨正汉,冯逢,王霄英.磁共振成像技术指南.检查规范、临床策略及新技术应用.北京:人民军医出版社,2007,297-299
    1.杨正汉,冯逢,王霄英.磁共振成像技术指南-检查规范、临床策略及新技术应用.北京:人民军医出版社,2007,297-299.
    2. Beckmann N, Stirnimann R, Bochelen D. Highresolution magnetic resonance angiography of the mouse brain:application to murine focal cerebral ischemia models. J Magn Reson.1999,140:442-450
    3. Besselmann M, Liu M, Diedenhofen M, et al MR angiographic investigation of transient focal cerebral ischemia in rat. NMR Biomed.2001,14:289-296
    4. Reese T, Bochelen D, Sauter A, et al. Magnetic resonance angiography of the rat cerebrovascular system without the use of contrast agents. NMR Biomed 1999, 12:189-96
    5. Hilger T, Niessen F, Diedenhofen M, et al.Magnetic resonance angiography of thromboembolic stroke in rats:indicator of recanalization probability and tissue survival after recombinant tissue plasminogen activator treatment. J Cereb Blood Flow Metab.2002,22:652-62
    6.程敬亮,杨运俊,吕涵清,等.MRI不同扫描序列和MRA对早期脑梗死的诊断价值。郑州大学学报(医学版),2005,40(2):212-215
    7. Schlaug G, Benfield BS, BairdAE, et al.The ischemic penumbra:operationally defined by the diffusion and perfusion MRI. Neurology,1999,53(7):1528-1537
    8.杨运俊,程敬亮,张敏,等.磁共振扩散加权成像参数对兔超急性期脑梗死诊断的影响.郑州大学学报(医学版),2005,40(2):221—224.
    9. Grohn OH, Kettunen MI, Penttonen M, et al.Graded reduction of cerebral blood flow in rat as detected by the nuclear magnetic resonance relaxation time T2:a theoretical and experimental approach. J Cereb Blood Flow Metab 2002,20:316-326
    10. Olah L, Wecker S, Hoehn M (2001) Relation of apparent diffusion coefficient changes and metabolic disturbances after 1 h of focal cerebral ischemia and at different reperfusion phases in rats. J Cereb Blood Flow Metab 21:430-9
    11. Calamante F, Lythgoe MF, Pell GS, et al. Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn Reson Med,1999,41:479-485
    12. Kettunen MI, Grohn OHJ, Lukkarinen JA,et al. Interrelations of T1 and diffusion of water in acute cerebral ischemia of the rat. Magn Reson Med 44:833-839
    13.张勇,杨运俊综述,程敬亮审校.DWI和MRS诊断缺血性脑梗死的病理生理学基础.实用放射学杂志,2005,21(3):315—320.
    14. Jokivarsi KT, Niskanen JP, Michaeli S,et al. Quantitative assessment of water pools by T1q and T2q MRI in acute cerebral ischemia of the rat. J Cereb Blood Flow Metab 2009,29:206-216
    1.程敬亮,杨运俊,吕涵清,等.MRI不同扫描序列和MRA对早期脑梗死的诊断价值。郑州大学学报(医学版),2005,40(2):212-215
    2. Schlaug G, Benfield BS, BairdAE, et al.The ischemic penumbra:operationally defined by the diffusion and perfusion MRI. Neurology,1999,53(7):1528-1537
    3.杨运俊,程敬亮,张敏,等.磁共振扩散加权成像参数对兔超急性期脑梗死诊断的影响.郑州大学学报(医学版),2005,40(2):221—224.
    4. Grohn OH, Kettunen MI, Penttonen M, et al.Graded reduction of cerebral blood flow in rat as detected by the nuclear magnetic resonance relaxation time T2:a theoretical and experimental approach. J Cereb Blood Flow Metab 20:316-326
    5. Ogawa S, Lee TM, Nayak AS, et al. Oxygenation sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields[J]. Magn Reson Med,1990,14:68-78.
    6. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed.1997; 10 (4-5):197-203.
    7. Ono Y, Morikawa S, Inubushi T,et al. T2*-weighted magnetic resonance imaging of cerebrovascular reactivity in rat reversible focal cerebral ischema. Brain Res.1997;744(2):207-215
    8. Padhani AR, Krohn KA, Lewis JS, et al. Imaging oxygenation of human tumours, Eur Radiol 2007; 17(4):861-872.
    1. Kleinschmidt A, Steinmetz H, Sitzer M, et al. Magnetic resonance imaging of regional cerebral blood oxygenation changes under acetazolamide in carotid occlusive disease. Stroke.1995;26:106-110.
    2. Brown GG, Eyler Zorrilla LT, Georgy B,et al. BOLD and perfusion response to finger-thumb apposition after acetazolamide administration:differential relationship to global perfusion.J Cereb Blood Flow Metab.2003;23:829-837.
    3. Vagal AS,Leach JL, Fernandez-Ulloa M, et al. The acetazolamide challenge:techniques and applications in the evaluation of chronic cerebral ischemia. AJNR; 2009,30:876-884
    4. Bandettini PA, Wong EC. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed.1997;10:197-203.
    5. Ono Y, Morikawa S, Inubushi T,et al. T2*-weighted magnetic resonance imaging of cerebrovascular reactivity in rat reversible focal cerebral ischema. Brain Res.1997;744:207-215
    6. Kastrup A, Thomas C, Hartmann C, et al. Sex dependency of cerebrovascular CO2 reactivity in normal subjects. Stroke 1997;28:2353-2356.
    7. Kastrup A, Dichgans J, Niemeier M, et al. Changes of cerebrovascular CO2 reactivity during normal aging. Stroke 1998;29:1311-1314.
    8. Kastrup A, Kruger G,Neumann-Haefelin T, et al.Assessment of cerbrovascular reactivity with functional magnetic resonance imaging:comparison of CO2 and breath holding. Magn Reson Imaging. 2001;19:13-20.
    9. Nishimura S, Suzuki A, Hatazawa J, et al. Cerebral blood-flow responses to induced hypotension and to CO2 inhalation in patients with major cerebral artery occlusive disease:a positron-emission tomography study. Neuroradiology 1999;41:73-79.
    10. Rostrup E, Larsson HB, Toft PB, et al. Functional MRI of CO2 induced increase in cerebral perfusion. NMR Biomed 1994;7:29-34.
    11. Davis TL, Kwong KK, Weisskoff RM, et al. Calibrated functional MRI:mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA.1998;95:1834-1839
    12. Kim SG, Rostrup E, Larsson HB, et al. Determination of relative CMRO2 from CBF and BOLD changes:significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 1999;41:1152-1161.
    13. Corfield D R, Murphy K, Josephs O, et al. Does hypercapnia-induced cerebral vasodilation modulate the hemodynamic response to neural activation? Neurolmage 2001;13:1207-1211.
    14. Kastrup A, Kruger G, Glover G H, et al.Regional variability of cerebral blood oxygenation response to hypercapnia. Neurolmage 1999; 10:675-681
    15. Liu H L, Huang J C, Wu C T, et al. Detectability of blood oxygenation level-dependent signal changes during short breath hold duration. Magn. Reson. Imaging 2002;20;643-648
    16. Hong S K, Lin Y C, Lally D A, et al. Alveolar gas exchanges and cardiovascular function during breath holding with air. J Appl Physiol 1971;30:540-547
    17. Wise R G, Ide K, Poulin M J, et al. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neurolmage 2004;21:1652-1664
    18. Thomason M E, Foland LC, Glover G H. Calibration of BOLD fMRI using breath holding reduces group variance during a cognitive task. Hum. Brain Mapp.2007;28:59-68.
    19. Thomason M E, Burrows B E, Gabrieli J D, et al. Breath holding reveals differences in fMRI BOLD signal in children and adults. Neurolmage 2005;25:824-837.
    20. Handwerker D A, Gazzaley A, lnglis B A, et al. Reducing vascular variability of fMRI data across aging populations using a breathholding task. Hum. Brain Mapp.2007;28:846-859.
    21. Kimoto H, Ohno T, Takashima S, et al. The effect of acetazolamide and carbon dioxide on cerebral hemodynamic changes on near-infrared spectroscopy in young rabbits. Brain Dev.1995;17:261-263.
    22.Leoni R F, Mazzeto-Betti K C, Andrade K C, et al. Quantitative evaluation of hemodynamic response after hypercapnia among different brain territories by fMRI. Neuroimage.2008;41:1192-1198.
    23. Berthezene Y, Tournut P, Turjman F, Inhaled Oxygen:A brain MR contrast agent? AJNR 1995;16:2010-2012.
    24. Losert C, Peller M, Schneider P, et al. Oxygen-enhanced MRI of the brain. Magn Reson Med 2002;48:271-277.
    25.Becker H F,Polo O, Mcnamara SG, et al. Effect of different levels of hyperoxia on breathing in healthy subjects. J Appl Physiol 1996;81:1683-1690,
    26. Floyd TF, Clark JM, Gelfand R, et al. Independent cerebral vasoconstrictive effects of hyperoxia and accompanying arterial hypocapnia at 1 ATA. J Appl Physiol 2003;95:2453-2461,
    27. Watson NA, Beards SC, Altaf N, et al. The effect of hyperoxia on cerebral blood flow:a study in healthy volunteers using magnetic resonance phase-contrast angiography. Eur J Anaesthesiol 2000;17:152-159
    28. Kolbitsch C, Lorenz IH, Hormann C, et al. The influence of hyperoxia on regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and cerebral blood flow velocity in the middle cerebral artery(CBFVMCA) in human volunteers. Magn Reson Imag 2002;20:535-541.
    29. Bulte DP, Chiarelli PA, Wise RG, et al. Cerebral perfusion response to hyperoxia. J Cereb Blood Flow Metab.2007;27:69-75.
    30. Lu J, Dai G, Egi Y, et al. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat. Neuroimage.2009;45:1126-1134
    31. Padhani AR, Krohn KA, Lewis JS, et al. Imaging oxygenation of human tumours, Eur Radiol 2007; 17:861-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700