用户名: 密码: 验证码:
葛根淀粉和藕淀粉的理化性质及血糖指数体外测定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择葛根淀粉、藕淀粉、木薯淀粉、马铃薯淀粉和玉米淀粉为测试材料,采用现代分析仪器和设备,对淀粉的理化性质和功能特性进行了深入研究,并对当今碳水化合物的研究热点和难点问题,即碳水化合物食品血糖指数的研究,以期在国内开创血糖指数体外测定的操作平台。通过实验表明:
     (1)在淀粉的颗粒性质方面,藕淀粉具有最大的颗粒度,马铃薯淀粉次之,然后是玉米淀粉和木薯淀粉,葛根淀粉粒的粒度最小。而在淀粉粒粒度分布上,藕淀粉的最宽,而且呈双峰曲线,这对藕淀粉的分离提纯带来一定的难度。马铃薯淀粉粒粒度虽然较大,但粒度分布窄,其它的几种淀粉粒粒度分布呈单峰曲线;各种淀粉粒的偏光十字和形状都表现出其特征性。淀粉粒的表面结构,以马铃薯淀粉和藕淀粉的最为光滑,在木薯、玉米和葛根淀粉表面都存在凹陷点;玉米淀粉和木薯淀粉的晶型为A型,结晶度为37%和36%。马铃薯淀粉和藕淀粉为B型,结晶度分别为25%和23%。葛根淀粉为C_A型,结晶度为18%;马铃薯淀粉糊的透光率最好,有较好的冷稳定性。木薯淀粉糊的透光率次之,而冷稳定性是几种淀粉中最好的。葛根淀粉糊的透光率最差,但在淀粉糊的热、冷稳定性方面都表现的较好;藕原淀粉和马铃薯原淀粉具有较强的抗酶解能力,而木薯和玉米淀粉较差,而葛根淀粉对α-淀粉酶的作用高度敏感;葛根淀粉所需的糊化温度及范围最大,但糊化的热焓较小。而藕淀粉和马铃薯淀粉则相反,糊化的温度和范围较低,但热焓较大。
     (2)采用略为改进的Schoch法,能将藕淀粉和葛根淀粉的支、直链淀粉分离分级,得到的组分经SepharoseCL-2B柱层析和碘亲和力测定,纯度高。藕淀粉的支链淀粉分子量较大,且分布比葛根淀粉的宽。藕淀粉的直链和支链淀粉的重均分子量为4.54×10~6Da和130×10~6Da,而葛根淀粉的则分别为1.89×10~6Da和60×10~6Da。
     (3)从分布指数曲线可看出,淀粉凝胶存在着两个明显不同的T_2值域,即所谓的固相和液相;淀粉凝胶的浓度、水分含量不同,其T_2有显著差异(p>0.05),表明淀粉粒子受热糊化吸水,与淀粉结
    
     西南农业大学二**三届博士学位论文
     合的水分子的流动性急剧降低;相同浓度的藕淀粉凝胶的TZ值要大
     于葛根淀粉的,即相同浓度的葛根淀粉的老化速度要快于藕淀粉。水
     分含量对淀粉凝胶的老化进程有显著的影响。
     (4)淀粉受热作用,产生糊化,其中的抗酶解淀粉含量大大降
     低,可消化淀粉含量增加。采用蛋自酶和淀粉酶混合作用,水解淀粉,
     淀粉在90min内的水解百分率快速升高,而在90-180min则呈缓慢上
     升趋势。通过淀粉在 90m i n时的水解百分率和水解指数推算的血糖指
     数值表明,不论采用何种热处理方式,颗粒度细小的淀粉食品糊化后
     都属于高血糖指数食品。
     本论文的创新之处在于:使用了藕淀粉和葛根淀粉为原料,以开
     发其在食品业、工业的应用为目的,应用现代分析技术对其理化性质
     和功能特性进行了系统的研究。为探讨淀粉在老化速率的表现,在国
     厂
     内首次采用了CPMG研究淀粉的凝沉,为缓释葡萄糖淀粉的开发进行
     了尝试。采用血糖指数体外测定方法,对淀粉在不同处理方式下的体
     外消化进行了研究,以期在国内建立碳水化合物食品血糖指数体外测
     定操作平台。
The physicochemical properties and functional charactrization were determined with the modern analytical techniques for the wild starches from kudzu vine (Puerariu D. C.) and lotus (Nelumbo nucifera Gaertn), and cassava starch, potato starch, and maize starch. And the glycemic index of carbohydrate foods in vitro was estimated also, trying to start the research in this field domestically. The results showed :
    The average particle size of the lotus starch was much bigger, and the potato starch was the next, but the k.udzu starch was the smallest; there existed some pores on the surfaces of the maize, tapioca, and kudzu starches through the SEM, but lotus and potato starches were with the smooth surface. The lotus and potato starches displayed a B-type X-ray diffraction pattern, C-type for kudzu starch, and A-type for maize and tapioca starches. The kudzu starch was much difficult to be gelatinizated compared to the others, and the potato starch was the easiest one. The cooling stability of the kudzu starch pasta was much better. Lotus and potato starches were more resistant to pancreatic a -amylase hydrolysis than the others, and kudzu exhibited much higher susceptibility to enzymatic hydrolysis.
    Modified Schoch method was used to fractionation the kudzu starch and lotus starch, and highly purified amylose and amylopectin from starches were obtained. Light scatter was used to investigate the weight average molecular weights (Mw) for both amyloses and amylopectins of starches. Results from the gel permeation chromatography (GPC) showed the molecular weights for lotus amylose and amylopectin was found to be larger than those of kudzu and maize starches, and the amylopectin molecular weight had a wider distribution in the GPC profile. The similar results for kudzu starch were gained compared to
    
    
    maize starch, but had a narrow amylopectin molecular weight distribution in the GPC profile. The amylose weight average molecular weights for lotus and kudzu were 4.54 × 106Da and 1.89 × 106Da,separately, while for amylopectins were 130 × 106Da and 60 × 106Da.
    The effect of water on kudzu and lotus starches retrogradation at 5℃ was studied using *H NMR relaxometry. Gels were made from starches at 25%, 33%, and 40%. Changes in the transverse relaxation time constant (T2) were related to water mobility. Mono-exponential studies showed that, in general, more water retarded starch retrogradation. Distributed exponential studies showed that two distinct regions of T2 were observed in all samples. During aging, the peak values of both regions shifted to lower values for all the gels. Kudzu starch samples showed the most significant shift, and lotus showed the less. For all the samples, the signal intensity of the less mobile region decreased more dramatically than that of the more mobile region during storage.
    A direct method to quantify the change of resistant starch and an in vitro method to estimate the changes of hydrolysis rate (H), hydrolysis index (HI), and reckoned glycemic index were used in the experiment. The results shown the contents of digestible starches went up apparently, and the resistant starches reduced significantly after heat treatments. The hydrolysis rate for all the starches including lotus starch, kudzu starch, potato starch, tapioca starch, and maize starch, increased under three kinds of heat treatments, that is cooking, microwaving, and heat-pressuring, especially for the microwave. The glycemic index for the heat-treated starches were bigger than 100, and these starch foods were in the range of high glycemic index.
    Some innovations in the dissertation were as follow: In order to fully utilize the wild starches in food and other industries, that is, lotus starch and kudzu starch from Chongqing, China which were studied firstly, the modern analytical techniques exclusively in starch were
    
    
    used to investigate the physicochemical and functional properties systematically. CPMG was used domestically to estimate the retrogradation property of starch, and to explore the slow glucose-releas
引文
1. Anonymous,2003.http://www.cn-mds/org/shiwucaoan.htm.Accessed March 20,2003
    2.食品行业主要产品.2000年中国食品工业年鉴.北京.中国食品工业协会.2001
    3. Anonymous,2003.http://www.gb18,com/china.news/food.Accessed March 20,2003
    4. Meyer,K.H.,Brentano,W.,Bernfeld,P.Helv.Chim.Acta.1940,23:845
    5. Greenwood,C.T.and Thomson,J.J.Chem.Soc.1962,222
    6. Whilstler,R.L.In "Starch: Chemistry and Technology". Whilstler and Paschall,E.F.eds.New York:Academic Press.1965,I.332
    7. Lee,E.Y.C.,Mercier,C.,Whelan,W.J.Arch.Biochem.Biophys.1968,125:1028
    8.佘纲哲主编.粮食生物化学.中国商业出版社.1987
    9. Young,A.H.and Griffin,P.G.Unpublished work.1969
    10. Dintzis,F.R.and Tobin,R.J.Chromatogr.1974,88:77
    11. Raeker,M.D.,Gaines,C.S.,Finney,P.L.,Donelson,T.Granules size distribution and chemical composition of starches from 12 soft wheat cultivars.Cereal Chem.1998,5:721-728
    12. French,D.Denpun Kagaku.1972,19:8
    13. Hall,D.M.and Sayer,J.G.Textile Res.J.1970,42:147
    14. Hall,D.M.and Sayre,J.G.Textile.Res.J.1969,39:1044
    15. Sugimoto,Y.,Ohnishi,K.,Takaya,T.,Fuwa,H.Denpun Kagaku.1979,26:182
    16. Fuwa,H.Proc.Symposium Amylase.1974,9:23
    17. Endo, K.,Sugimoto,Y.,Takaya,M.,Glover,D.V.Denpun Kagaku.1978,25:24
    18. Fuwa,H.,Sugimoto,Y.,Tanaka,M.,Glover,D.V.Starch.1977,30:186
    19. Fuwa,H.,Glover,D.V.,Sugimoto,Y.Denpun Kagaku.1977,24:99
    20. Fuwa,H.,Sugimoto,Y.,Takaya,T.Denpun Kagaku.1979,26:105
    21. Fuwa,H.Denpun Kagaku.1977,24:128
    22. Fuwa,H.,Golver,D.V.,Sugimoto,Y.J.Nutr.Sci. Vitamimol.1979,25:103
    23. Evers,A.D.and McDermott.Starch.1970,22:23
    
    
    24. Melo,A.E.,Krieger,N.,Stamford,T.L.Physicochemical properties of Jacatupe (P.erosus) starch.Starch.1994,46:245-247
    25. Zobel,H.F.,Young,S.N.,Rocca,L.A.Starch gelatinization.An X-ray diffraction study.Cereal Chem.1988,6:443-446
    26. Hizukuri,S.,Kaneko,T.,Takeda,Y.Measurement of the chain length of amylopectin and its relevance to the origin of crystalline polymorphism of starch granules.Biochimica et Biophysica Acta.1983,760:188-191
    27. Buleon,A.,Colonna,P.,lanchot,V.,Ball,S.Starch granules.Structure and biosythesis.International Journal of Biological Macro-molecules.1998,23:85-112
    28. Hizukuri,S.,Fuji,M.,Nikuni,Z.The effect of inorganic ions on the crystallization of amylodextrin.Biochimica et Biophysica Acta.1960,40:346-349
    29. Zobel,H.F.X-ray analysis of starch granules.Methods in Carbohydrate Chemistry (Ⅳ).Whilstler,R.L.eds.1964.New York:Academic Press
    30. Watson,S.A.Determination of starch gelatinization temperature.Methods in Carbohydrate Chemistry (Ⅳ).Whilstler,R.L.eds.1964.New York:Academic Press
    31. Sediemann,J.Starch.1963,15:291
    32. Miller,B.S.,Derby,R.I.,Trimbo,H.B.Cereal Chem.1973,50:271
    33. Morgan,W.L.Ind.Eng.Chem.1940,12:313
    34. Beckford,O.C.and Sandstedt,R.M.cereal Chem.1947,24:250
    35. Sandstedt,R. M.and Abbott,R.C.Cereal Sci.Today.1964,9:13
    36. David,A.,Ancona,B.,Guerrero,L..A.C.,Rosa,I.et al.Physicochemical and functional characterization of baby lima bean (Phaseolus lunatus) starch.Starch.2001,53:219-226
    37. Woodruf,S.and MacMasters,M.M.University of Illinois Agrictural Experiment Station.Bulletin.1938,445
    38. Leach,H.W.,Mccowen,L.D.,Schoch,T.J.Cereal Chem.1959,36:534
    39. Taska,E.Cereal Chem.1971,48:457
    40. Hizukuri,S.and Takeda,C.Starch.1978,30:228
    
    
    41. Borch, J.,Sarko,A.,Marchessault,R.H.J.Colloid interfac.Sci.1972,41:574
    42. 刘凤岐,汤心颐.北京.高等教育出版社.1995
    43. Zemansky,M.W.and Dittman,R.H.Heat and Thermodynamics.McGraw-Hill International Book Company,1981
    44. Ahmad,F.B.,Williams,P.A.,Doublier,J.L.,Durand,S.et al.Physico-chemical characterization of sago starch.Carbohydrate Polymers.1999,38:361-370
    45. Tina,S.J.,Rickard,J.E.,Blanskard,J.M.W.Physicochemical properties of sweet potato starch.J:Sci.Food Agri.1991,57:459-491
    46. Veletudie,J.C.,Guadeloupe,L.,Colonna,P.,Bouchet,B.et al.Gelatinization of sweet potato,tania and yam tuber starches.Starch.1995,47:289-306
    47. Cowburn,P.The role and function of starches in micro waveable formulation.In: G.O.Phillips,D.J.Wedlock,P.A.Williams (eds).Gums and stabilizer for food industries 5.Oxford:IRL Press
    48. Silverio,J.,Fredriksson,H.,Anderson,R.,Eliasson,A.C.et al.The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit chain length distribution.Carbohydrate Polymers.2000,42:175-184
    49. Mita,T.Structure of potato starch pastes on the ageing process by the measurement of their dynamic moduli.Carbohydrate polymers.1992,12:269-276
    50. VanSoest,J.J.G.,DeWit,D.,Tournois,H.Retrogradation of potato starch as studied by fourier transform infrared spectroscopy.Starch.1994,46:453-457
    51. Bulkin,B.J.,Kwak,Y.,Dca,I.C.M.Raman spectroscopic study of starch retrogradation.Carbohydrate polymers.1987,160:95-112
    52. Inaba,H.,Hatanaka,Y.,Adachi,T.,Matsumura,Y.et al. Changes with retrogradation of mechanical and textural properties of gels from various starches.Carbohydrate polymers.1994,24:31-40
    53. Chio,S.G.and err,W.L.Water mobility and textural properties of native and hydroxy propylated wheat starch gels.Carboydate polymers.2003,51:1-8
    54. Gadian,D.G.Nuclear magnetic resonance and its application to living systems.Oxford Science Publication,1982
    
    
    55. Hizukuri,S.,Takeda,Y.,Yasuda,M.,Suzui,A.Carbohydrate Res.1981,94:205
    56. Orford,P.D.,Ring,S.G.,Carrot,V.,Miles,M.J.et al.The effect of concentration and botanical source on the gelation and retrogradation of starch.J.of Agric.Food Chem.1987,39:169-177
    57. Szepesi,B.Carbohydrates.In Broen,M.L.(ed).Present knowledge in nutrition.International life science institute.Washington,D.C.1990,47-55
    58. Life sciences research office.The evaluation of the energy of certain sugar alcohols used as food ingredients.Federation of american societies for experimental biology.1994,Bethesda,MD
    59. Semanza,G.S.,Auricchio,S.Small intestinal disaccharidases.In Scriver CR,Beauset AL,Sly WS,Valle D (eds).The metabolic basis of inherited disease,6th ed.McGraw-Hill.New York.1975,2975-2997
    60. Conklin,K.A.,Vamashiro,K.M.,Gray,G.M.Human intestinal sucrase-isomaltase:Identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits.J.Biol.Chem.1975,250:5735-5741
    61. Riby,J.E.,Kretchmer,N.Participation of pancreatic enzymes in the degradation of intestinal sucrase-isomaltase.J.Pediatr.Gastroenterol Nutr.1985,4:971-979
    62. Hauri,H.P.,Quaaroni,A.,Isselbacher,K.J.Biogenesis of intestinal plasma membrane:post-translational route and cleavage of sucrose-isomaltase.Proc.Natl.Acad.Sci.USA.1979,76:5183-5186
    63. Naim,H.Y.,Sterchi,E.E.,Lentze,M..J.Structure,biosynthesis,and glycosylation of human small intestinal maltase-glucoamylase.J.Biol.Chem.1988,263:19709-19717
    64. Burks,T.F.,Galligan,J.J.,Porreca,F.,Barber,M.D.Regulation of gastric emptying.Fed.Proc.1985,44:2897-2901
    65. Goda,T.,Bustamente,S.,Koldovsky,O.Dietary regulation of intestinal lactase and sucrase in adult rats:quantitative comparison of effect of lactose and sucrose.J.Pediatr.Gastroenterol Nutr.1985,4:998-1008
    66. Morrill,J.S.,Kwong,L.K.,Sunshine,P.et al.Dietary CHO and stimulation of carbohydrates along villus column of fasted rat jejunoileum.Am.J.Physiol.1989,256:G158-G165
    
    
    67. Yamada,K.,Coda,T.,Bustamente,S.,Koldovsky,O.Different effect of staravation on activity of sucrase and lactase in rat jejunoileum.Am.J.Physiol.1983,245:6449-G455
    68. Coda,T.,Yamada,K.,Bustamente,S.,Koldovsky,O.Dietary-induced rapid increase in microvillar carbohydrase activity in rat jejunoileum.Am.J.Physiol.1983,245;G418-G423
    69. Riby,J.E.,Kretchmer,N.Effect of dietary sucrose on synthesis and degradation of intestinal sucrase:Am.J.Physiol.1984,G757-G763
    70. Danielson,E.M.Post-translational suppression of expression of intestinal brush border enzymes by fructose.J.Biol.Chem.1989,264:13726-13729
    71. Nakabou,Y.,Ishikawa,Y.,Misake,A.,Hagihira,H.Effect of food intake on intestinal absorption and mucosal hydrolases in alloxan diabetic rats.Metabolism.1980,29:181-185
    72. Schedl,H.P.,AI-Jurf,A.S.,Wilson,H.D.Elevated intestinal disaccharidase activity in the streptozotoein-diabetic rat is independent of enteral feeding.Diabetes.1980,32:265-270
    73. Courley,G.R.,Korsmo,H.A.,Olsen,W.A,Intestinal mucosa in diabetic rats:studies of microvillus membrane composition and microviscosity.Metabolism.1983,30:1053-1058
    74. Wen,D.,Henning,S.J.,Hazelwood,R.L.Effect of diabetes on development of small intestinal enzymes of infant rats.Proc.Soc.Exp.Biol.Med.1988,187:51-57
    75. Morton,A.P.,Hanson,P.J.Monosaccharide transport by the intestine of lean and genetically obese (ob/ob) mice.Q.J.Exp.Physiol.1984,69:117-126
    76. Thomson,A.B.R.Experimental diabetes and intestinal barriers to absorption.Am.J.Physiol.1983,244:G151-G159
    77. Debnam,E.S.,Karasov,W.H.,Thompson,C.S.utrient uptake by rat enterocytes during diabetes mellitus:evidence for an increased sodium electrochemical gradient.J.Physiol.1988,397:503-512
    78. Baly,D.L.,Horuk,R.The biology and chemistry of the glucose transporter.Biochim.giophys.Acta.1988,947:571-590
    79. Crane,R.K.Intestinal absorption of sugars.Physiol.Rev.1960,40:789-825
    
    
    80. Crane,R.K.Hypothesis for mechanism of intestinal active transport of sugars.Fed.Proc.1962,21:891-895
    81. Crane,R.K.Absorption of sugars.In code CF,Heidel W (eds).Handbook of physiology,section 6.Vol 3.Waverly presws.Baltimore.1968:1323-1351
    82. Gray,G.M.Carbohydrate digestion and absorption:role of the small intestine.Physiol Med.1975,292:1225-1230
    83. Gray,G.M.Carbohydrate digestion and malabsorption.In Johnson,L.R.(ed).Physiology of the gastroinestinal tract.Raven Press.New York.1981:1063-1072
    84. Brot-Laroche,E.,Alvarado,F.Mechanism of sugar transport across the intestinal brush border membrane.In Gilles-Baillien M.Gills.R(eds).Intestinal transport.Springer-Verlag,Berlin.1983:147-169
    85. Walmsley,A.R.The dynemics of the glucose transporter.Trends Biochem.Sci.1988,13:226-231
    86. Fedorak,R.N.,Chang,E.B,,Madara,J.L.,Field,M.intestinal streptozotocin-treated chronical.ly diabetic rats.J.Clin.Invest.1987,79:1571-1578
    87. Hediger,M.A.,Coady,M.J.,Ikeda,T.S.,Wright,E.M.Expression cloning and cDNA sequencing of Na~+/glucose cotransporter.Nature.1987,330:379-381
    88. Thorens,B.,Sarker,H.K.,Kaback,H.R.,Lodish,H.F.cloning and functional expression in bacteria of a novel glucose transporter present in liver,intestine,kidney and B-pancreatic islet cells.Cell.1988,55:281-290
    89. Fukumoto,H.,Kayano,T.,Buse,J.et al.Cloning and characterizatonof the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissue.J.Biol.Chem.1989,264:7776-7779
    90. McIntyre, N.,Holdworth,C.D.,Turner,D.S.Intestinal factors in the control of insulin secretion.J.Clin.Edocrinol.1965,25:1317-1324
    91. Szepesi,B.,Michaelis,O.E.Ⅳ. "Disaccharide effect" :comparison of metabolic effects of the intake of disaccharides and of their monosaccharide equivalents.In Macdonald I.Vrana A (eds).
    
    Metabolic effects of dietary carbohydrates.S Karger.Basel.Switzerland.1986:192-219
    92. Michaelis,O.E.Ⅳ.,Nace,C.S.,Szepesi,B.Demonstration of a specific metabolic effects of dietary disaccharides in the rat.J.Nutr.1975,I05:1186-1191
    93. Michaelis,O.E.Ⅳ.,Szepesi,B.Specificity of the disaccharide effect in the rat.Nutr.Metab.1977,21:329-340
    94. Park,J.H.Y.,Berdanier,C.D.,Dearer,O.E.Jr.,Szepesi,B.Effects of dietary carbohydrate on hepatic gluconegenesis in HE rats.J.Nutr.1986,116:193-1203
    95. Sciafani,A.,Mann,S.Carbohydrate taste preferences in rats:glucose,sucrose,maltose,fructose and polyose compared.Physiol Behav.1987,40:563-568
    96. Kunz,C.,Rudloff,S.Biological functions of oligosaccharides in human milk.Acta.Paediatr.1993, 82:903-912
    97. Jenkins,D.A.J.,Wolever,T.M.S.,Taylor,R.H,et al.Glycemic index of foods: A physiological basis for carbohydrate exchange.Am.J.Clin.Nutr.1981,34:362
    98. Hollenbeck,C.B.,Coulston,A.M.,Reaven,G.M.Comparison of plasma glucose and insulin responses to mixed meals of high-,intermediate-,and low-glycemic potential.Diabetes Care.1988,11:323-329
    99.钟学礼.我国糖尿病研究的进展.中华医学杂志.1987.67:584-586
    100. Diabetes Mellitus:Report of a WHO study group.Technical report series 727.Geneva,WHO,1985
    101.向丁红,吴纬,刘灿群等.全国糖尿病流行病学特点基线调查报告.中国糖尿病杂志.1998,6191-233
    102.邓尚平主编.临床糖尿病学.四川科技技术出版社.2000,9
    103. Haffner,S.M.,Hazuda,H.P.,Mitchell,B.D.et al.Increased incidence of type Ⅱ diabetes mellitus in Mexican Americans.Diabetes Care.1991,14:102-108
    104. AOA (Position Statement). Nutrition recommendation and principles for people with diabetes mellitus.Diabetes Care.1999,22 (suppl.):S42-S45
    105. FAO/WHO.Joint FAO/WHO expert consultation,carbohydrates in human nutrition.FAO Food and Nutrition Division.1999
    
    
    106. David,J.A.,Alexandra,L.et al.Comparison of regular and parboiled rices:Explanation of discrepancies between reported glycemic response to rice.Nutr.Res.1986,6:349
    107. http://www.glycemicindex.com/gi-tstng.htm.Accesed Feb.25,2003.
    108. O'Dea,K.,Snow,P.,Nestel,P.Rate of starch hydrolysisi in vitro as a predictor of metabolic responses to complex carbohydrates in vivo.Am.J.Clin.Nutr.1981,34:191-1993
    109. Snow,P.,'Dea,K.Factors affecting the rate of hydrolysis of starch in foods.Am.J.Clin.Nutr.1981,34:2721-2727
    110. Englyst,H.N.,Veenstra,J.,Hudson,G.J.Measurement of rapidly available glucose (RAG) in plant foods:a potential in vitro predictor of the glycemic response.Br.J.Nutr.1996,75:327-337
    111. Granfeld,Y.,Bjorck,I.,Drews,A.,Tovar,T.An in vitro procedure based on chewing to predict metabolic response to starch in Cereal and legume products.Eur.J.Clin.Nutr.1992,46:649-660
    112. O'Dea,K.,Wong,S.The rate of starch hydrolysis does not predict metabolic responses to legumes in vivo.Am.J.Clin.Nutr.1983,38:382-387
    1l3. Brand-Miller,J.,Pang,E.,Bramall,I.Rice: A high or low glycemic index food.Am.J.Clin.Nutr.1992,56:1034
    114.王竹,杨月欣,韩军花,门建华等.抗性淀粉对饮食诱发葡萄糖耐量异常的预防.营养学报.2002,24:48-51
    115. Wolever,T.M.S.,Jenkins,D.J.A.et al.Comparison of regular-and parboiled rices: explanation of discrepancies between reported glycemic response to rice.Nutr.Res.1986,6:349
    116. David,S.L.Dietary glycemic index and obesity.J.Nutr.2000,21:2805
    117. Englst,H.N.,Kingman,S.M.,Cummings,J.H.Classification and measurement of nutritionally important starch fractions.Eur.J.Clin.Nutr.1992,46(suppl.2):S33-S50
    118.中国医学大词典.人民卫生出版社.1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700