用户名: 密码: 验证码:
用mRNA差异显示方法初步分离小鼠乳癌MA891细胞转移相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Identification by mRNA Differential Display of Genes Possibly Associated with Metastasis of a Mouse Mammary Cancer MA891
  • 作者:张权庚
  • 论文级别:博士
  • 学科专业名称:免疫学
  • 学位年度:1996
  • 导师:张友会
  • 学科代码:100102
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:1996-11-01
摘要
肿瘤转移是导致肿瘤病人死亡的最重要的原因,因而一直是肿瘤研究的热点。在过去的研究中人们已经发现许多因素与肿瘤转移相关,如粘附分子转移相关基因,侵袭酶及其拮抗剂及肿瘤血管生成等。这么多因子与肿瘤转移相关,说明人们还未发现影响肿瘤的关键因子或者对不同的肿瘤细胞有不同转移相关分子起作用。目前仍有许多实验室从事肿瘤转移相关因子的分离工作。
     本实验室在过去的研究中发现IFNγ可增强MA891肿瘤细胞系(一种来源于TA2小鼠自发性乳腺癌,具有高度肺转移性的细胞系)肺转移,而IFNα则抑制其转移。这说明IFNγ与IFNα处理的MA891细胞存在着与肿瘤转移相关基因的改变。因此我们用mRNA差异显示技术(mRNAdifferential display)对两种不同处理的MA891细胞的mRNA进行比较,以期分离与肿瘤转移相关系基因。
     我们分别用200u/ml重组人IFNα及IFNγ处理MA891细胞48小时后,提取总RNA,用所有T12MA/C/G/T与20种AP引物(arbitrary primer)配对,每个RNA样本进行4×20次逆转录PCR反应,理论上可覆盖95%以上的mRNA。为排除一些假阳性,每个逆转录PCR反应都重复一次。我们共分离12个差异带,依据引物对及RNA来源命名为T2α、T2γ、C4α、T5α1、T5α2、T6α、T11γ、G15γ、T15α、T15γ、T16γ、T17α。其中T15α、T15γ未能再扩增,我们对其余的10个片段进行了克隆及
Tumor metastasis is the major cause of death in cancer patients. It has been a "hot spot" in the field of cancer research. Many factors have been found to be associated with tumor metastasis, such as adhesive molecules, metastasis-related genes, invasive enzymes and their antagonists, and tumor angiogenesis. That so many factors are related to tumor metastasis implicates that the tumor metastasis is a very sophisticated process. Many laboratories are engaged in identification of rumor metastasis associated factors.
    We have previously reported that in vitro treatment with interferons of MA891, a spontaneous mouse mammary tumor capable of metastasizing to the lungs upon subcutaneous inoculation, could modulate its metastatic potential. EFN-γ increases while IFN-α decreases lung metastasis, implying that metastasis related gene(s) are differentially expressed when the cells are treated with these two EFNs. To identify the metastasis related genes, mRNA differential display technique was adopted.
    Total RNA was extracted from MA891 cells that had been treated with 200u/ml human rIFN-α or rIFN-γ for 48 h. All the primer pairs (T12MA/C/G/T × 20 arbitrary primers) were used in the differential display, which would cover theoretically over 95% of mRNA. All the RT-PCR were done twice to minimize false positive differentially expressed bands. Twelve bands were separated from the gel and their cDNA fragments were extracted which were referred to as T2α, T2γ, C4α, T5α1, T5α2, T6α, T11γ, G15γ, T15α, T15γ, T16γ, and T17α according to their primers and RNA sources. Except for T15α and T15γ that failed to reamplicate, the other 10 cDNA fragments were reamplicated, cloned, and analyzed by Northern blot. T2γ, C4α, T11γ, and G15γ were further shown to be differentially expressed
引文
1. Liang P and pardee AB: Differential display of messenger RNA by meens of the polymerase chain reaction. Science, 1992, 257:967-971.
    2. Sun Y, Hagamyer G, and Colburn NH. Molecular cloning of five messenger RNAs Differentially expressed in preneoplastic or neoplastic JB6 mouse epidermal cells: one is homologous to human tissue inhibitor of metalloproteinases-3. 1994, Cancer Res., 54:1139-1144.
    3. Sompayrac L, Jane S, Burn TC, et al.Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res. 1995 23(22):??473-4739.
    4. Didier C, Bernard L and Laurent M. A method for the elimination of false positives generated by the mRNA differential display technique. 1994, BioTechniques, 16(6): 1096-1103.
    5. Li FS, Elliot S.B. and Katalin K. Rapid method for screening and cloning cDNA generated in differential mRNA display: application of Northern blot for affinity capturing of cDNAs. 1994 Nucleic Acids Res. 22(9): 1764-1765.
    6. Hadmam M, Adam BL., Geoge L. et al. Modification to the differential display technique reduce background and increase sensetivity.1995, Analytical biochemistry, 226: 383-386.
    7. Sompayrac L,Jane S,Burn set al. Overcoming limitations of the mRNA display technique. 1995 ,Nucleic Acids Res, 23(22):4738-4739.
    8. Ayala M., Balint R.F., Femandez-de-cossio M.E. et al. New primer strategy improves presision of differential display. BioTechnigues, 18(5):842-850.
    9. Prashar y and Weissman SM. Analysis of differential gene expression by display of 3 end restriction fragments of cDNAs. 1996, Proc. Natl. Acad. Sci. USA, 93:659-663.
    10. Jan Lohmatm, Hanspeter schichle and Thomas C.G. REN display, a rapid and efficient method for nonradioactive differential display and mRNA isolation. 1995 BioTechnigues. 18(2)200-202.
    11. Xinkang Wang and Giora Z. Direct sequencing of DNA isolated from mRNA differential display. 1995, BioTecimiques, 18(3):448-452.
    12. Steven A.R. Mari-paz R. and David N.L. General method for PCR amplification and direct sequencing of mRNA differential display products. 1995, BioTechniques, 18(1): 18-20.
    13. Jan J.M.G., Henri P.S.B. and Guido W.M.S. Idendification of melanoma inhibitory activity and other differentially expressed messwenger RNAs in human melanoma lcell lines with different metastatic capacity by messenger RNA differential display. 1995, Cancer Res. 55:6237-6243.
    14. Salesiotis A.N., Wang C.K., Wang C.D. et al. Identification of novel genes from stomach cancer cell lines by differential display. 1995, Cancer Letters ,9:47-54.15. Timothy J. Yeatman and Weiguang Mao. Identification of a differentially-expressed message associated with colon cancer liver metastasis using an improved of differential display. 1995, Nucleic Acids Res., 23:4007-4008.
    16. Sager R. et al. 1993 Faser J. 7:965-970
    17. Zhang L. et al. 1993 Mol. Carcinogen 8:123-126
    18. Marian C.L, Angela F, Natalie R, et al. Decreased expression and function of α-2 macroglobulin receptor/low density lipoprotein receptor-receptor-related protein in photodynamic therapy-resistant mouse tumor cells. 1995, Cancer Res., 55:1820-1823.
    19. Utans U, Liang P, Wyner LR, et al. Chronic cardiac rejection: identification of five upregulated genes in transplanted hearts by differential mRNA display. 1994, Nucleic Acids Res., 21:6463-6467.
    20. Russell M.E., Utans U., Wallace A.F. et al. Identification and upregulation of galactose/N-acetylgalactosamine macrophage lectin in rat cardiac allografts with arteriosclerosis. 1994, J.Clin. Ivest., 94:722-730.
    21. Nishio Y., Arello L.P. and King L.G. Giucose induced genes in bovine aortic smooth muscle cells identified by mRNA differential display. 1994, FASEB, 8: 103-106.
    22. Aiello L.P., Robison G.S., Lin Y.W. et al. Identification of multiple genes in bovine retinal pericytes altered by exposure to elevated levels of glucose by using mRNA differential display. 1994, Proc. Natl. Acad. Sci. USA, 91:6231-6235.1. Liotta LA. Cancer cell invasion and metastasis. Scientific American february 1982.
    2. Liotta LA, Steeg P.S. and Sletles-Stevenson W.G. Cancer metastasis and angiogenesis:An imbalance of positive and negative regulation. Cell, 1991, 64:327-336.
    3. Weiss L, Orr FW and Honn KV. Interactions between cancer and the nurovasculature: a rate-regulator for metastasis. Clin Exp Metastasis, 1989, 7:127-167.
    4. Auerbach R, Pattern of tumor metastasis:organ selectivity in the spread of cancer cells. Lab Invest, 1988, 58:361-364.
    5. Zetter B.R. The cellular basis of site-specific tumor metastasis. N Eng J Med, 1990, 322:605-612.
    6. Pauli B.U. Augustin-voss H.G. El-sabban M.E. et al. Organ preference of metastasis:the role of endothelial cell adhesion molecules. Cancer metastasis Key, 1990, 9:175-189.
    7. Schipper J.H., Frixen U.H., Behrens J. et al. E-cadherin expression in squamous cell carcinoma of head and neck: inverse correlation with tumor dedifferentiation and lymph node metastasis. Cancer Res.??51:6328-6337, 1991
    8. Feldman L.E., Shin K.C., Natale R.B. et al. β1 integrin expression on human small cell lung cancers. Cancer Res. 5:1065-1070, 1991
    9. Brich M., Mitchell S. and Hart I.R. Isolation and characterization of human melanoma cell veriants expressing high and low levels of CD44. Cancer Res. 51:6660-6667, 1991
    10. Castronovo V., Taraboletti G., Liotta L.A. et al. Modulation of laminin receptor expression by estrogen and progestins in human breast cancer cell lines. J Natl Caner Inst, 81:781-788, 1989
    11. Honn K.V. and Tang D.G. Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev. 11:353-375, 1992.
    12. Hynes R.O., Integrins:Versatility, modulation and signaling in cell adhesion. Cell 1992, 69:11-25.
    13. Giancotti F.G. and Mainier F. Integrin-mediated adhesion and signalling in tumorigenesis. Biochem Biophys Acta, 1994, 11989:47-64.
    14. Yamada K.M. Adhesive recognition sequences. J Biol Chem, 1991, 266:12809-12812.
    15. Burridge K. and Fath K. Focal contacts:transmembrane linked between the extracellular matrix and cytaskeleton. Bioessays, 1989, 10:104-108.
    16. zutter M.M., Mazoujian G., Sautoro S.A. et al.Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol, 137:863-870, 1990
    17. Dedhar S. and Saulnier R. Atlerations in integrin receptor expression on chemically transformed human cells: specific enhancement oflaminin and collagen receptor complexes. J Cell Biol, 110:481-489, 1990
    18. Gehlsen K R., Davis G F, Sriramarao P, et al. Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis, 10:111-120, 1992
    19. Perrotti D, Cimino L, Falcioni R, et al. Metastatic phenotype: growth factor dependence and integrin expression. Anticancer Res, 1990,??10:587-598.
    20. Schrreiner C, Bauer J, Margolis M, et al. Expression and role of integrins in adhesion of human colonic acrcinoma cells to extra cellualr matrix components. Clin Exp metastasis, 1991, 2:163-178.
    21. Chen F A, Repasky E A and Bankert R B. Human lung tumor-associated antigen identified as an extracellular matrix adhesion molecule. J Exp Med, 1991, 173:1111-1119.
    22. Albelda S M, Mette S A, elder D E, et al. Integrin distribution in malignant melanoma:association of the β3 subunit with tumor progression. Cancer Res, 1990, 50:6757-6764.
    23. Chan B M C, Matsuura N, Takada Y, et al. In vitro and in vivo consequences of VLA-2 expression on rhabdomyosarcoma cells. Science, 1991, 251:1600-1602.
    24. Benchmol S, Fuks A, Jothy S, et al. Carcinoembryonic antigen , a human tumor marker, function s as an intercellular adhesion molecule. Cell, 1989, 57:327-334..
    25. Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorected cancer. Science,247:49-56.
    26. Johnson J P. Cell adhesion molecules of the immunoglobulin supergene family and their role in malignant transformation and progression to metastatic disease. Cancer Metastasis Rev, 1991, 10:11-22.
    27. Takeichi M. Cadherins: a molecular family important in selective cell-cell adhesion. Ann Rev Biochem, 1990, 59:237-252.
    28. Schipper J H, Frixen U H, Behrens J, et al. E-cadherin expression in squamous cell carcinoma of head and neck: inverse correlation with tumor dedifferentiation and lymph mode metastasis. Cancer Res, 1991, 51:6328-6337.
    29. frixen U H, Behrens J, Sachs M, et al. E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol, 1991,113:173-185.
    30. Haynes BF, Telen MJ, Hale LP, et al. CD44 — A molecule involved in??leukocyte adherence and T-cell activation. Immunol Today, 1989, 10:423-428.
    31. Rudy W, Hofmann M, Schwartz-Albiez R, et al. The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res, 1993, 53:1262-1268.
    32. Wirth K, Arch R, Somasundaram C, et al. Expression of CD44 isoforms carrying metastasis-associated sequences in newborn and adult rats. Eur J Cancer, 1993, 29A: 1172.
    33. Seiter S, Arch R, Reber S, et al. Prevention of tumor metastasis formation by anti-variant CD44. J Exp Med, 1993, 177:443-455.
    34. Gunthert U, Hofmann M, Rudy W, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 1991, 65:13-24.
    35. Hermann M, Rudy W, Zoller M, et al. CD44 splice variants confer metastatic behavior in rats: homologous sequences are expressed in human tumor cell lines. Cancer Res, 1991, 51:5292-5297.
    36. Matsumra Y and Tarin D. Significance of CD44 gene products for cancer diagonosis and disease evaluation. The Lancet, 1992, 340:1053-1058.
    37. Koopman G, Heider KH, Horst E, et al. Activated human lymphocytes and aggressive non-Hodgkin's lymphomas express a homologue of the rat metastasis-associated variant of CD44. J Exp Med, 1993, 177:897.
    38. Tanabe KK. Lancet, 1993, 341:725.
    39. Loitta L A and Stetles-Stevenson W G. Tumor invasion and metastasis: an imbalance of postive and negative regulation. Cancer Res. 1991, 51:5054-5059.
    40. Chambers A F. Biochem Cell Biol, 1992, 70:817-821.
    41. Ebralidze A, et al. Genes Dev, 1989, 3:1086.
    42. Lakshmi M S, Parker C, Sherbet G V, et al. Metastasis associated??MTS-1 and nm-23 genes affect tubulin polymerisation in B16 melanomas: a possible mechanism of their ragulation of metastatic behaviour of tumors. Anticancer Res. 1993, 13:299-304.
    43. Grigorian M S, Tulchinsky EM, Zain S, et al. The mts-1 gene and control of tumor metastasis. Gene. 1993, 135:229-238.
    44. Steeg P S, et al. JNCI, 1988, 80:200.
    45. Stahl J A, Leone A, Rosengard AM, et al. Identification of a second human nm23 gene, nm23-H2. Cancer Res. 1991, 51:445-449.
    46. Rosengard A M, Krutzsch HC, Shearn A, et al. Reduced nm23/Awd protein in tumor metastasis and aberrant Drosophila development. Nature. 1989,342:177.
    47. Biggs J, Hersperger E, Steeg P-S, et al. Drosophila gene that is homologous to a mammalian gene associated with tumor metastasis codes for a nucleoside diphosphate kinase. Cell, 1991, 63:933.
    48. Hennessy C, Henry J A, May F E B, et al. Expression of the anti-metastatic gene nm23 in human breast cancer association with a good prognosis. J Natl Cancr Inst, 1991, 83:281.
    49. Bevilacqua G, et al. Caner Res, 1988, 48:6550.
    50. Norio I, Masaaki O, Takafumi N, et al. Nm23-Hl and nm23-H2 messenger RNA abundance in human hepatocellular carcinoma. Cancer Res, 1995, 55:652-657.
    51. Leone A, Flatow U, King C R, et al. Reduced tumor incidence, metastasis potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell, 1991, 65:25-35.
    52. Steeg P S, Bevilacqua G, Pozzatti R, et al. Altered expression of nm23, a gene associated with low tumor metastasis potential, during adenovirus 2 Ela inhibition of experimental metastasis. Cancer Res, 1988, 48:6550-6554.
    53. Hennessy C, Henry JA, May FEB, et al. Expression of the antimetastatic gene nm23 in human breast cancer: an associateion with good prognosis. J Natl Cancr Inst, 1991, 83:281-285.54. Myeraff L L and Markowitz S D. Increased nm23-H1 and nm23-H2 messenger RNA expression and absence of mutations in colon carcinomas of low metastatic potential. J Natl Cancr Inst, 1993, 85:147-151.
    55. Radinsky R, et al.Expression level of the nm23 gene in clonal population of metastatic murine and human neoplasms. Cancer Res, 1992, 52:5808.
    56. MacDougall JR and Matrisian LM. Contribution of tumor and stromal matrix metalloproteinases to tumor propression, invasion and metastasis. Cancer and Metastasos Reviews, 1995, 14:351-362
    57. Azzam HS, Araud GA, Lippman ME, et al. MMP-2 activation potential associates with metastatic progression in human breast cancer cell lines, and is independent of MMP-2 production. J Natl Cancer Inst, 1993, 85:1758-1764.
    58. Vria JA, Ferrando AA, Velasco G, et al. Structure and expression in breast tumor of human TIMP3, a new member of metalloproteinase inhibitor family. Cancer Res, 1994, 141:293-297.
    59. Silbiger SM, Jacobsen VL, Cupples RL, et al. Cloning of cDNAs encoding human TIMP3, a nevel member of the tissue inhibitor of metalloproteinase family. Gene, 1994, 141:293-297.
    60. Declerck YA, Perez N, Shimada H, et al. Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinase. Cancer Kes, 1992, 52:701-708.
    61. Khokha K, Zimmer MT, Graham CH, et al. Suppression of invasion by inducible expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in B16-F10 melanoma cells. JNCI, 1992, 84:1017-1022.
    62. Khokha R, Zimmer MT, Vilson SS, et al. Up-regulation of TIMP-1 expression in B16-F10 melanoma cells suppresses their metastatic ability in chick embryo. Clin Exp Metastasis, 1992, 10:365-370.
    63. Khokha K, Waterhouse P, Yagel S, et al. Anti-sense RNA-induced reduction in murine TIMP level confers oncogenicity on Swiss 3T3 cells. Science, 1989, 243:947-950.64. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Am Surg. 1972, 175:409-416.
    65. Kim KT, Li B, Winer J, etal. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature. 1993, 362: 841-844.
    66. Millauer B, Shawver LK, Risau W, etal. Gliolastoma growth inhibited in vivo by a dominant--negative Flk-1 mutant. Nature. 1994, 367: 576-579.
    67. Waren KS, Yuan H, Matli MR, etal. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest, 1995, 95:1789-1797.
    68. Leung DW, Cachianes G, Kung WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989, 246:1306-1309.
    69. Connolly DT, Olander JV, Ueuvelman D, et al. Human vascular permeability factor. Isolation from U937 cells. J Biol Chem, 1989, 264:20017-20024.
    70. Neufeld G, Cohen T, Gitay-Goren H, et al. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer and Metastasis Reviews, 1996, 15:153-158.
    71. Houck KA, Leung DW, Rowland AM, et al. Dual regulation and vascular endothelial growth factor bioavailabitity by genetic and proteolytic mechanisms. J Biol Chem, 1992, 267:26031-26037.
    72. Gengrinovitch S, Greenberg SM, Cohen T, et al. Platelet factor-4 iuhibits the mitogenic activity of VEGF_(121) and VEGF_(105) using several concurrent mechanisms. J Biol Chem, 1995, 270:15059-15065.
    73. Terman BI, Carrion ME, Kovacc E, et al. Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene, 1991, 6:1677-1683.
    74. Mattews W, Jordan CT, Gavin M, et al. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci USA, 1991, 88:9026-9030.75. Shibuya M, Yamaguchi S, Yamane A, et al. Nucleotide sequence and expression of a novel receptor-type tyrosine kinase gene (flt) closely related to the fins family. Oncogene, 1990. 5:519-524.
    76. Terman BI and Dougher-Vermazen M. Biological properties of VEGF/VPF receptors. Cancer and Metastasis Rev, 1996, 15:159-163.
    77. Shweiki D, Itin A, Soffer D, et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 1992, 359:843-845.
    78. D'Amore PA and Shima DT. Tummor angiogenesis: A physiological process or genetically determined? Cancer and Metastasis Rev, 1996, 15:205-212.
    79. Risau W. What, if anything, is an angiogenic factor? Cancer and Metastasis Rev, 1996, 15:149-151.
    80. Nguyen M, Strubel NA and Bischoff J. A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature, 1993, 365:267-269.
    81. Koch AE, Halloran MM, Haskell CJ, et al. Angiogenesis mediated by solube forms of E-selection and vascular cell adhesion molecule-1. Nature, 1995,375:517-519.
    82. Bauer J, Margolis M, Schreiner C, et al. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: Contributions of induced gene expression, G-Proteins, and integrins. J Cell Physiol, 1992, 153:437-449.
    83. Yang JT, Ruburn H, and Hynes RO. Embryonic mesodermal defects in a5 integrin-deficient mice. Development, 1993, 119:1092-1105.
    84. Drake CJ, Davis LA, and Lillte CD. Antibodies to β_1-integrins cause alterations of aortic vasculogenesis in vivo. Dev Dynamics, 1991, 193:83-91.
    85. Brooks PC, Clark RAF, and Cheresh DA. Requirement of vascular integrin α_vβ_3 for angiogenesis. Science, 1994, 264:569-571.
    86. Brooks PC, Montgomery AMP, Rosenfeld M, et al. Integrin α_vβ_3 antagonists promote tumor regression by inducing apoptosis of??angiogenic blood vessels. Cell, 1994, 79:1157-1164.
    87. Fidler IJ and Ellis LM. The implication of angiogenesis for the biology and therapy of cancer metastasis. Cell, 1994, 79:185-188.1. Chomczynski P, Sacchi N. Single-step method of RNA isolation by Acid Guanidinium Thiocyanate-phenol-chloroform extration. Anal Biochem, 1987, 162:156.
    2. Kelly JM, Gilbert CS,Stark GR, et al. Differentual regulation of interferon-induced mRNA and mRNA by α and γ interferon. Europ. J.Bioch.,1985,367-371
    3.罗利群,张友会.γ-干扰素促进小鼠乳腺癌转移.中华肿瘤学杂志,1994,16:251
    4. Liang P and Pardee AB. Differential display of eukaryotic messenger RNA by means of the PCR. Science, 1992, 257:967-971.
    5. Loveland B, Wang C-K, Yonekawa H, et al. Maternally transmitted histocompatibility antigen of mice: A hydrophobic peptide of a mitochondrially encoded protein. Cell, 1990, 60:971-980.
    6. Edward R, Bruce K, Eileen GH, et al. Specific molecular activities of recombination and hybrid leukocyte interferon. J. Biol. Chem., 1982, 257:11497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700