用户名: 密码: 验证码:
金属富勒烯与顺铂联合使用的抑瘤作用及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型纳米材料水溶性金属富勒烯[Gd@C_(82)(OH)_(22)]_n以其独特的生物学特性在抗癌研究中发挥着重要作用,它以低毒和高效抑瘤的特点引起各国学者的关注。对其抗癌机制和毒副作用的深入研究将为临床癌症治疗提供信息。本研究以接种肝癌H22肿瘤细胞的小鼠为动物模型,应用纳米颗粒的表征技术、电镜技术、激光动态光散射仪、流式细胞仪、质谱、组织化学技术、分子技术等手段在动物水平、细胞水平、分子水平研究了[Gd@C_(82)(OH)_(22)]_n和传统化疗药物顺铂对正常小鼠、腹水瘤小鼠和实体瘤小鼠进行了抑瘤机制和毒副作用、逆转肿瘤抗药性方面做了探讨,取得了以下研究结果:
     1、[Gd@C_(82)(OH)_(22)]_n在生物体系中良好的稳定性,提供了研究其抑瘤作用的可行性。
     [Gd@C_(82)(OH)_(22)]_n在水溶液中呈聚集状态,大小为50 nm左右,分散性和水溶性较好。在水溶液中质地较软,具备完好的笼型结构。表面电荷为-8.52±1.65 mV,呈弱负电形式,具备稳定的微晶结构。此颗粒在生理盐水或1640培养基中同样具备很好的稳定性和分散性,这为研究它在抑瘤方面的作用提供了前提条件。
     2、[Gd@C_(82)(OH)_(22)]_n与顺铂的联合作用有效提高对小鼠肝癌实体瘤的抑制效率。
     [Gd@C_(82)(OH)_(22)]_n不能抑制小鼠肝癌腹水瘤,但可有效抑制实体瘤生长(抑制率50%),肿瘤细胞在不同的生长环境中营养方式供给的差异造成细胞增殖速度不同可能是造成这种现象的原因。细胞实验证实[Gd@C_(82)(OH)_(22)]_n对小鼠肝癌细胞不具备直接杀伤作用。另外,[Gd@C_(82)(OH)_(22)]_n对正常鼠肝癌实体瘤的抑制效果好于裸鼠肝癌实体瘤的抑制效果,说明[Gd@C_(82)(OH)_(22)]_n的抑瘤作用有可能是通过激活细胞免疫激活机制达到抑瘤作用的。有趣的是,在细胞和动物水平上证实了[Gd@C_(82)(OH)_(22)]_n与顺铂的联合作用可有效提高实体瘤的抑制效率,与单独使用顺铂相比其抑制率提高了17%。
     3、首次将铁代谢与顺铂造成的脾损伤联系起来研究其相互关系。顺铂对小鼠脾脏的特异性损伤可能与铁在脾脏的巨噬细胞中的沉积相关。
     利用组织化学技术分析[Gd@C_(82)(OH)_(22)]_n处理小鼠后的脏器结构表明,[Gd@C_(82)(OH)_(22)]_n对机体无毒副作用。低剂量顺铂可造成小鼠脾脏的特异性损伤,而对其它器官没有伤害,通过低剂量顺铂连续注射小鼠会使其脾脏中的含铁血黄素沉积显著升高。进一步研究其机制发现,顺铂处理使动物体红细胞受损,受损红细胞被脾脏中的巨噬细胞吞噬,铁从红细胞内释放铁后增加了巨噬细胞内铁的含量。高铁诱导了FPN1、Ferritin和Hepcidin的表达,Ferritin与FPN1在结合铁上存在竞争,限制了铁的外排,另外,Hepcidin会与FPN1结合使其内化,减弱了FPN1外排铁的能力,两种因素最终导致铁在脾脏的巨噬细胞中沉积,使脾脏组织受损。本研究可为动物体铁代谢研究提供快速建立小鼠脾脏铁沉积的模型。另外低剂量顺铂对除脾脏之外的器官无损伤的结果可为顺铂临床治疗提供参考。
     4、对[Gd@C_(82)(OH)_(22)]_n与化疗药物顺铂的联合使用可作为免疫增强剂,尝试在临床中的应用提供了有力的实验证据。
     流式细胞仪和Elisa测定的数据表明,[Gd@C_(82)(OH)_(22)]_n能显著提高CD4+型T细胞的比例,在正常鼠和荷瘤鼠两组处理中,与对照组相比CD4+型T细胞的比例显著升高(P<0.01),分别提高了21.9%和62.6%。细胞因子分析表明,[Gd@C_(82)(OH)_(22)]_n是通过增加CD4+型T细胞的Th1亚型细胞来实现对实体瘤的免疫抑制作用的,它可刺激IL-2和IFN-α细胞因子的分泌增多。细胞因子IL-2可促进CD8+ T细胞的增殖,进而增加CD8+型T细胞的比例,使具有细胞毒功能的细胞数量增加,增强对肿瘤的细胞免疫功能。同时[Gd@C_(82)(OH)_(22)]_n通过刺激机体的巨噬细胞增殖,使TNF-α因子的分泌增加,进而杀死肿瘤细胞。顺铂单独使用不能产生以上的免疫增强反应,反而有较大的抑制作用,但与[Gd@C_(82)(OH)_(22)]_n联合使用会大大增强对机体的免疫刺激能力,提示[Gd@C_(82)(OH)_(22)]_n可做为与化疗药物配合使用的免疫增强剂在临床中使用。
     5、[Gd@C_(82)(OH)_(22)]_n与顺铂的联合作用可逆转肿瘤细胞的抗药性是与其增强对细胞内吞作用的激活有关。
     [Gd@C_(82)(OH)_(22)]_n与顺铂联合作用可有效杀伤具顺铂抗性的肿瘤细胞,通过内吞抑制剂阻断细胞内吞的实验证明,[Gd@C_(82)(OH)_(22)]_n是通过增强抗药性细胞的内吞作用,使进入细胞内的顺铂增多,从而增强了对抗性细胞的毒性,达到逆转肿瘤细胞抗药性的目的。
     小结:[Gd@C_(82)(OH)_(22)]_n能显著抑制小鼠肝癌实体瘤,但对肝癌腹水瘤没有治疗效果,细胞实验证实该纳米颗粒对H22细胞没有直接毒性。进一步研究其机制发现[Gd@C_(82)(OH)_(22)]_n能激活体内的免疫系统,通过增加Th1型CD4+型T细胞及其释放的细胞因子IFN-γ、IL-2和TNF-α完成杀伤肿瘤的效果,与顺铂联合应用能显著提高治疗效果,尤其是在免疫激活方面表现出良好的保护效果。针对顺铂抗性肿瘤细胞的体外实验发现,[Gd@C_(82)(OH)_(22)]_n联合顺铂能有效逆转PC-3抗性细胞的顺铂耐药性,其机制有可能是通过促进抗性细胞内吞作用来增加细胞对顺铂的摄入量,从而增强顺铂对癌细胞的毒性。低剂量顺铂的应用虽然对大多器官不造成显著损伤,但它会引起脾脏的严重损伤,主要表现为严重的脾脏缩小、含铁血黄素在脾脏中聚集增加、脾铁含量增加、FPN1和Ferritin表达显著升高,初步认为顺铂干扰脾脏铁代谢的机制是造成脾损伤的一个重要因素。
Water-soluble metallofullerene [Gd@C_(82)(OH)_(22)]_n is a novel nanomaterial, It has attracted considerable attention globally for its low toxicity and high performance for inhibiting tumor. Now it plays an important role in anti-cancer research due to its unique biological properties. Studies focused on anti-cancer mechanisms and toxicity would provide crucial information both theoretically and practically, thus it will be benefit for the further clinical cancer treatment. In our study we characterized the physical properties of the metallofullerene [Gd@C_(82)(OH)_(22)]_n , discussed its anti-cancer activity, toxicity, and ability to circumvent multidrug resistance when combined with cisplatin on the normal mice , H22 ascites tumor bearing mice and H22 solid tumor bearing mice models. Electron microscopy, Dynamic light scattering, Flow cytometry, Mass spectrometry, Histochemistry and Molecular technology were used in this study. Our results demonstrated that:
     1. [Gd@C_(82)(OH)_(22)]_n have an stable structure in biological systems,providing the feasibility to study the effect of inhibiting tumor.
     The fine cage-structure of Gd@C82(OH)22 is soluble in aqueous solution, and it can form soft aggregates of up to 50nm. The value of Zeta potential was recorded as -8.52±1.65 mV, and the microcrystalline structure was stable. It also was stable and well dispersed in saline solution and 1640 media, These are preconditions for its inhibiting tumor properties.
     2. In combination with cisplatin, [Gd@C_(82)(OH)_(22)]_n can improve the inhibitive rate of hepatoma solid tumor of mice comparing with cisplatin alone.
     These particles can effectively inhibit H22 solid tumor (50% inhibition), but fail to inhibit hepatoma ascites tumor due to highly malignancy of tumor and indirect cytotoxicity to tumor cells via intraperitoneally injection. In addition, the inhibiting effect on H22 solid tumor by [Gd@C_(82)(OH)_(22)]_n in normal mice was better than in the nude mice. It indicates that [Gd@C_(82)(OH)_(22)]_n could inhibit the solid tumor through activating the cellular immunity. In vivo tests show a significant increase in H22 solid tumor inhibition (up to 17%) when cisplatin is combined with [Gd@C_(82)(OH)_(22)]_n, comparing with cisplatin alone.
     3. For the first time to study the relationship between the iron metabolism and spleen injury initiated by cisplatin. The specificity injury initiated by cisplatin in mice spleen can be related with iron deposited in the spleen macrophages.
     [Gd@C_(82)(OH)_(22)]_n were not toxic to organism by histochemistry analysis. Low dose cisplatin has no distinguish injury to organs of mice except spleen and could lead to increased deposition of hemosiderin in spleen. The mechanism was found to be that: Cisplatin treatment can provoke erythrocytes damage, then the damaged erythrocytes damaged are endocyted by macrophages in spleen, which increases the iron concentration in macrophages. High iron concentration induced the expression of FPN1, Ferritin and Hepcidin. Ferritin will compete with FPN1 to bind iron thus limiting the excretion of iron, whereas hepcidin joined to FPN1 initiates FPN1 internalization, also resulting in iron reduced excretion. Finally, these two pathways lead to iron deposition in spleen macrophages, which cause damage to spleen. In this study, we established a model for rapid iron depositon in spleen and this fact supports the study of iron metabolism in animal. In addition, the result in which low doses of cisplatin show no distinguish toxicity in organs of mice except to spleen, can be taked in account as a reference in clinic cancer therapy.
     4. Study the immunostimulation effects of [Gd@C_(82)(OH)_(22)]_n combined with ciaplatin can provide important data for clinical research.
     [Gd@C_(82)(OH)_(22)]_n significantly increased the ratio of CD4+ T cell through the detection of flow cytometry and ELISA. In a parallel treatment with normal mice and tumor-bearing mice, comparing with control, the ratio of CD4+ T cells increased 21.9% and 62.6%, respectively. [Gd@C_(82)(OH)_(22)]_n stimulated an increasing secretion of IL-2 and IFN-α, and they promoted solid tumor immunoinhibition through proliferation increasing of Th1 subtype CD4+ T cells. IL-2 can promote CD8+ T cells proliferation thus enhance the cytoimmunotoxicity to tumor cell. Meanwhile [Gd@C_(82)(OH)_(22)]_n stimulate the proliferation of macrophages, increase TNF-αsecretion, then kill the tumor cells. Cisplatin alone can not enhance immunoresponse and strongly inhibit those effects. But when the cisplatin was combined with [Gd@C_(82)(OH)_(22)]_n , immune system was notably activated, which indicated that [Gd@C_(82)(OH)_(22)]_n could utilize as immunostimulator combined with chemotherapy agents in clinical treatments.
     5. [Gd@C_(82)(OH)_(22)]_n can effectively circumvent multidrug resistance in cancer combined with cisplatin, relating with intracellular cisplatin concentration increase through endocytosis reinforced in resistant tumor cells.
     Cisplatin combined with [Gd@C_(82)(OH)_(22)]_n can effectively kill cisplatin resistant tumor cells. The endocytosis inhibition tests proved that, [Gd@C_(82)(OH)_(22)]_n circumvented multidrug resistant tumor cells through enhancing endocytosis of the tumor cell, increasing intracellular cisplatin concentration, thus promoting cisplatin cytotoxicity in resistant cells. Conclusion: [Gd@C_(82)(OH)_(22)]_n can significantly inhibit hepatoma solid tumor in mice, but fail to treat hepatoma ascites tumor. Cytotoxicity tests confirmed that the nanoparticles have no direct toxicity to H22 tumor cell. The following mechanism study revealed that [Gd@C_(82)(OH)_(22)]_n can stimulate immune system through promoting the Th1 CD4+ T cell proliferation and they can increase the secretion of IFN-γ, IL-2 and TNF-α, leading to tumor inhibition. These nanoparticles in combination with cisplatin can notably enhance the effectiveness of the treament, activating immune system and reducing systematic toxicity. In vitro tests with cisplatin resistant cell lines indicated that combination therapy of cisplatin and [Gd@C_(82)(OH)_(22)]_n can effectively circumvent drug resistance in PC-3 cisplatin resistance cell lines probably through enhancing endocytosis to increase intracellular cisplatin cancentration, which leads to enhanced cytotoxicity. Low dose of cisplatin generate severe spleen damage, although it may not be that toxic to the other organs. The main phenomenons of severe spleen damage were dramatically shrinking, increasing hemociderin deposition and splenic iron accumulation, significant up-regulation of FPN1 and Ferritin. These results indicat that cisplatin interference in spleen iron metabolism may be of great importance to spleen damage.
引文
[1] Gao Y, Cao W L, Wang X Y, et al. Characterization and osteoblast-like cell compatibility of porous scaffolds: bovine hydroxyapatite and novel hydroxyapatite artificial bone[J]. J Mater Sci - Mater Med, 2006,17(9):815-823.
    [2] Sun L, Chow L C. Preparation and properties of nano-sized calcium fluoride for dental applications[J]. Dent Mater, 2008,24(1):111-116.
    [3] Xu F L, Li Y B, Deng Y P, et al. Porous nano-hydroxyapatite/poly(vinyl alcohol) composite hydrogel as artificial cornea fringe:characterization and evaluation in vitro[J]. J Biomater Sci, Polym Ed, 2008,19(4):431-439.
    [4] Beniash E, Hartgerink J D, Storrie H, et al. Self-assembling peptide amphiphile nanofiber matrices for cell entrapment[J]. Acta Biomater, 2005,1(4):387-397.
    [5] Hartgerink J D. New material stops bleeding in a hurry[J]. Nat Nanotechnol, 2006(1): 166-167.
    [6] Fozdar D Y, Wu X, Patrick C W J, et al. Micro-well texture printed into PEG hydrogels using the FILM nanomanufacturing process affects the behavior of preadipocytes[J]. Biomed Microdevices, 2008(16):923-927.
    [7] Gao L Z, Zhuang J, Nie L,et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat Nanotechnol, 2007,2(9):577-583.
    [8] Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection[J]. Anal Chem, 2008,80(6):2250-2254.
    [9] Liu Y, Wang H. Nanotechnology tackles tumours[J]. Nat. Nanotechnol., 2007,2(1): 20-21.
    [10] Villa C H, McDevitt M R, Escorcia F E, et al. Synthesis and Biodistribution of Oligonucleotide-Functionalized,Tumor-Targetable Carbon Nanotubes[J]. Nano Lett, 2008,8(12):4221-4228.
    [11] Li X, Ding L, Xu Y, et al. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin[J]. Int J Pharm, 2009(1-2):116-123.
    [12] Pan B, Cui D, Xu P, et al. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems[J]. Nanotechnology, 2009,20(12):125101.
    [13] Tang N, Du G J, Wang N, et al. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin[J]. J Natl Cancer Inst, 2007,99(13):1004-1015.
    [14] Amirfazli A. Magnetic nanoparticles hit the target[J]. Nat Nanotechnol, 2007,2(8): 467-468.
    [15] Chen Y, Shen Y, Guo X,et al. Transdermal protein delivery by a coadministered peptide identified via phage display[J]. Nature Biotech, 2006,24(4):455-460.
    [16] Lanza G M, Abendschein D R, Hall C S. In vivo molecular imaging of stretch-induced tissue factor in carotid arteries with igand-targeted nanoparticles[J]. Am Soc Echocardiogr, 2000,13(6):608-614.
    [17] Oeffinger B E, Wheatley M A. Development and characterization of a nano-scale contrast agent[J]. Ultrasonics, 2004,42(1-9):343-347.
    [18] Takeshita K, Nagashima I, Frui S. Effect of superparamagnetic iron oxide-enhanced MRI of the liver with hepatocellular carcinoma and hyperplastic nodule[J]. J Comput Assist Tomogr, 2002,26(3):451-455.
    [19] Bruchez M Jr, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998,281(5385):2013-2016.
    [20] Chan W C, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998,281(5385):2016-2018.
    [21] Alivisatos A P. Semiconductor clusters,nanocrystals,and quantum dots[J]. Science, 1996,271(5251):933-937.
    [22] Alivisatos A P. Perspective on the Physical Chemistry of Semiconductor Nanocrystal[J]. J Phys Chem, 1996,100(31):13226-13239.
    [23] Remacle F, Levine R D. Quantum dots as chemical building blocks:Elementary theoretical considerations[J]. Chemphyschem, 2001,2(1):20-36.
    [24] Chen L D, Li Y, Yuan H Y. Quantum dots and their applications in cancer research[J]. Cancer Res, 2006,25(5):651-656.
    [25] Rosenthal S J. Bar-coding biomolecules with fluorescent nanocrystals[J]. Nat Biotechnol, 2001,19(7):621-622.
    [26] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots[J]. Nat Biotechnol, 2004,22(8):969-976.
    [27] Hasegawa U, Nomura S M, Kaul S C, et al. Nanogel-quantum dot hybrid nanoparticles for live cell imaging[J]. Biochem Biophys Res Commun, 2005,331(4):917-921.
    [28] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping[J]. Nat Biotechnol, 2004,22(1):93-97.
    [29] Yezhelyev M V, Qi L, O'Regan R M, et al. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging[J]. J Am Chem Soc, 2008,130(28):9006-9012.
    [30] Walther C, Meyer K, Rennert R, et al. Quantum dot-carrier peptide conjugates suitable for imaging and delivery applications[J]. Bioconjug Chem, 2008,19(12):2346-2356.
    [31] Csaki A, Moller R, Fritzsche W. Gold nanoparticles as novel label for DNA diagnostics[J]. Expert Rev Mol Diagn, 2002,2(2):187-193.
    [32] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science, 1997,277(5329):1078-1081.
    [33] Suresh S. Elastic clues in cancer detection[J]. Nat Nanotechnol, 2007,2(12):748-749.
    [34] Prato M, Kostarelos K, Bianco A. Functionalized Carbon Nanotubes in Drug Design and Discovery[J]. Acc Chem Res, 2008,41(1):60-68.
    [35] Zerda A dl, Gambhir S S. Keeping tabs on nanocarriers[J]. Nat Nanotechnol, 2007,2(12):745-746.
    [36] Wagner V, Dullaart A, Bock A K, et al. The emerging nanomedicine landscape[J]. Nat Biotechnol, 2006,24(10):1211-1217.
    [37] Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity:comparison with se-methylselenocysteine in mice[J]. Toxicol Sci, 2008,101(1):22-31.
    [38] Couvreur P, Stella B, Reddy L H, et al. Squalenoyl nanomedicines as potential therapeutics[J]. Nano Lett, 2006,6(11):2544-2548.
    [39] Gabriel A, Silva. Seeing the benefi ts of ceria[J]. Nat Nanotechnol, 2006,1(2):92-94.
    [40] Rutledge G, Ellis B, Liang y, et al. Nano neuro knitting:Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision[J]. Proc Natl Acad Sci U S A, 2006,103(13):5054–5059.
    [41] Chen C, Xing G, Wang J, et al. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity[J]. Nano Lett, 2005,5(10): 2050-2057.
    [42] Liu Y, Jiao F, Qiu Y, et al. The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity[J]. Biomaterials, 2009,30(23-24):3934-3945.
    [43] Prokop A. Bioartificial organs in the twenty-first century: nanobiological devices[J]. Ann N Y Acad Sci, 2001,944:472-490.
    [44] Chen X, Kis A, Zettl A, et al. A cell nanoinjector based on carbon nanotubes[J]. Proc Natl Acad Sci U S A, 2007,104(20):8218-8222.
    [45] Alexion C, Amold W, Klein R J. Local regional cancer treatment with magnetic drug targeting[J]. Cancer Res, 2000,60(23):6641-6648.
    [46] Shephard M J, Todd D, Adair B M. Immunogenicity of bovine parainfluenza type 3 virus proteins encapsulated in nanoparticle vaccines, following intranasal administration to mice[J]. Res Vet Sci, 2003,74:187-190.
    [47] Castignolles N, Morgeaux S, Gontier J C. A new family of carriers(biovectors) enhancestheimmunogenicityofrabiesantigens[J]. Vaccine, 1996,14:1353-1360.
    [48] Kroto H M, Heath J R, O'Brien S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985 (318):162-163.
    [49] Zhao Y L, Xing G M, Chai Z F. Nanotoxicology: Are carbon nanotubes safe?[J]. Nat Nanotechnol, 2008,3(4):191-192.
    [50] Bensasson R V, Brettreich M, Frederiksen J, et al. Reactions of e(-)(aq), CO(2)(*)(-), HO(*), O(2)(*)(-) and O(2)((1)delta(g)) with a dendro[60]fullerene and C(60)[C(COOH)(2)](n) (n = 2-6)[J]. Free Radic Biol Med, 2000,29(1):26-33.
    [51] Akiyama M, Ikeda A, Shintani T, et al. Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities[J]. Org Biomol Chem, 2008,6(6):1015-1019.
    [52] Chen C Y, Xing G M, Wang J X, et al. Multi hydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity[J]. Nano Lett, 2005,5(10):2050-2057.
    [53] Sayes C M, Marchione A A, Reed K L, et al. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles[J]. Nano Lett, 2007,7(8):2399-2406.
    [54] Wickline S A, Neubauer A M, Winter P M, et al. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles[J]. J Magn Reson Imaging, 2007,25(4):667-680.
    [55] Heath J R, Phelps M E, Hood L. NanoSystems biology[J]. Mol Imaging Biol, 2003,5(5):312-325.
    [56] Lauffer R B, Vincent A C, Padmanabhan S, et al. Hepatobiliary MR contrast agents: 5-substituted iron-EHPG derivatives[J]. Magn Reson Med, 1987,4(6):582-590.
    [57] Cagle D W, Kennel S J, Mirzadeh S, et al. In vivo studies of fullerene-based materials using endohedral metallofullerene radiotracers[J]. Proc Natl Acad Sci U S A, 1999,96(9):5182-5187.
    [58] Mikawa M, Kato H, Okumura M, et al. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents[J]. Bioconjug Chem, 2001,12(4):510-514.
    [59] Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging[J]. Radiology, 1990,175(2):494-498.
    [60] Xing G M, Yuan H, He R, et al. The strong MRI relaxivity of paramagnetic nanoparticles[J]. J Phys Chem B, 2008,112(20):6288-6291.
    [61] Wang J X, Chen C Y, Li B, et al. Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice[J]. Biochem Pharmacol, 2006,71(6):872-881.
    [62] Yin J J, Lao F, Meng J, et al. Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger[J]. Mol Pharmacol, 2008,74(4):1132-1140.
    [63] Yin J J, Lao F, Fu P P, et al. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials[J]. Biomaterials, 2009,30(4):611-621.
    [64] Yamashita K, Sakai M, Takemoto N, et al. Attenuation of delayed-type hypersensitivity by fullerene treatment[J]. Toxicology, 2009,261(1-2):19-24.
    [65] Liu Y, Jiao F, Qiu Y, et al. Immunostimulatory properties and enhanced TNF-alpha mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles[J]. Nanotechnology, 2009,20(41):415102.
    [66] Liang X J, Aszalos A. Multidrug transporters as drug targets[J]. Curr Drug Targets, 2006,7(8):911-921.
    [67] Allikmets R, Schriml L M, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance[J]. Cancer Res, 1998,58(23):5337-5339.
    [68] Merino G, van Herwaarden A E, Wagenaar E, et al. Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver[J]. Mol Pharmacol, 2005,67(5):1765-1771.
    [69] Yoshikawa M, Ikegami Y, Hayasaka S, et al. Novel camptothecin analogues that circumvent ABCG2-associated drug resistance in human tumor cells[J]. Int J Cancer,2004,110(6):921-927.
    [70] Robey R W, Honjo Y, Morisaki K, et al. Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity[J]. Br J Cancer, 2003,89(10):1971-1978.
    [71] Shi Z, Parmar S, Peng X X, et al. The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance[J]. Oncol Rep, 2009,21(2):483-489.
    [72] Shukla S, Zaher H, Hartz A, et al. Curcumin Inhibits the Activity of ABCG2/BCRP1, a Multidrug Resistance-Linked ABC Drug Transporter in Mice[J]. Pharm Res, 2009,26(2):480-487.
    [73] Gottesman M M. Mechanisms of cancer drug resistance[J]. Annu Rev Med, 2002,53:615-627.
    [74] McNeil S E. Nanotechnology for the biologist[J]. J Leukoc Biol, 2005,78(3):585-594.
    [75] Grodzinski P, Silver M, Molnar L K. Nanotechnology for cancer diagnostics: promises and challenges[J]. Expert Rev Mol Diagn, 2006,6(3):307-318.
    [76] Stella B, Arpicco S, Peracchia M T, et al. Design of folic acid-conjugated nanoparticles for drug targeting[J]. J Pharm Sci, 2000,89(11):1452-1464.
    [77] Devalapally H, Duan Z, Seiden M V, et al. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles[J]. Clin Cancer Res, 2008,14(10):3193-3203.
    [78] Van Vlerken L E, Duan Z, Seiden M V, et al. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer[J]. Cancer Res, 2007,67(10):4843-4850.
    [79] Soma C E, Dubernet C, Bentolila D, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles[J]. Biomaterials, 2000,21(1):1-7.
    [80] Brigui I, Djavanbakht-Samani T, Jolles B, et al. Minimally modified phosphodiester antisense oligodeoxyribonucleotide directed against the multidrug resistance gene mdr1[J]. Biochem Pharmacol, 2003,65(5):747-754.
    [81] Kelland L. The resurgence of platinum-based cancer chemotherapy[J]. Nat Rev Cancer, 2007,7(8):573-584.
    [82] Ishida S, Lee J, Thiele D J, et al. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals[J]. Proc Natl Acad Sci U S A, 2002,99(22):14298-14302.
    [83] Katano K, Kondo A, Safaei R, et al. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper[J]. Cancer Res, 2002,62(22):6559-6565.
    [84] Holzer A K, Howell S B. The internalization and degradation of human copper transporter 1 following cisplatin exposure[J]. Cancer Res, 2006,66(22):10944-10952.
    [85] Ishikawa T. The ATP-dependent glutathione S-conjugate export pump[J]. Trends Biochem Sci, 1992,17(11):463-468.
    [86] Lin X, Okuda T, Holzer A, et al. The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae[J]. Mol Pharmacol, 2002,62(5):1154-1159.
    [87] Burger K N, Staffhorst R W, de Vijlder H C, et al. Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity[J]. Nat Med, 2002,8(1):81-84.
    [88] Aryal S, Hu C M, Zhang L. Polymer--cisplatin conjugate nanoparticles for acid-responsive drug delivery[J]. ACS Nano, 2010,4(1):251-258.
    [89] Dufour P, Bergerat J P, Eber M, et al. Cisplatin-induced anemia: a potential interference with iron metabolism at erythroid progenitors level[J]. Anticancer Drugs, 1990,1(1):49-54.
    [90] Wood P A, Hrushesky W J. Cisplatin-associated anemia: an erythropoietin deficiency syndrome[J]. J Clin Invest, 1995,95(4):1650-1659.
    [91] Baliga R, Zhang Z, Baliga M, et al. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity[J]. Kidney Int, 1998,53(2):394-401.
    [92] Von Hoff D D, Schilsky R, Reichert C M, et al. Toxic effects of cis-dichlorodiammineplatinum(II) in man[J]. Cancer Treat Rep, 1979,63(9-10):1527-1531.
    [93] Milicevic Z, Slepcevic V, Nikolic D, et al. Effects of cis-diamminedichloroplatinum II (cisplatin) on the splenic tissue of rats: a histoquantitative study[J]. Exp Mol Pathol, 1994,61(2):77-81.
    [94] Tarladacalisir Y T, Kanter M, Uygun M. Protective effects of vitamin C on cisplatin-induced renal damage: a light and electron microscopic study[J]. Ren Fail, 2008,30(1):1-8.
    [95] Rodrigues M A C, Rodrigues J L, Martins N M, et al. Carvedilol protects against the renal mitochondrial toxicity induced by cisplatin in rats[J]. Mitochondrion, 2010,10(1):46-53.
    [96] Adamson J W, Eschbach J, Finch C A. The kidney and erythropoiesis[J]. Am J Med, 1968,44(5):725-733.
    [97] Sung M J, Kim D H, Jung Y J, et al. Genistein protects the kidney from cisplatin-induced injury[J]. Kidney Int, 2008,74(12):1538-1547.
    [98] Chirino Y I, Sanchez-Gonzalez D J, Martinez-Martinez C M, et al. Protective effects of apocynin against cisplatin-induced oxidative stress and nephrotoxicity[J]. Toxicology, 2008,245(1-2):18-23.
    [99] Mahmud H, Foller M, Lang F. Suicidal erythrocyte death triggered by cisplatin[J]. Toxicology, 2008,249(1):40-44.
    [100] Nemeth E, Tuttle M S, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004,306(5704):2090-2093.
    [101] Soe-Lin S, Apte S S, Andriopoulos B, et al. Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo[J]. Proc Natl Acad Sci U S A, 2009,106(14):5960-5965.
    [102] Balogh P, Horvath G, Szakal A K. Immunoarchitecture of distinct reticular fibroblastic domains in the white pulp of mouse spleen[J]. J Histochem Cytochem, 2004,52(10):1287-1298.
    [103] Blum J W, Zuber U. Iron stores of liver, spleen and bone marrow, and serum iron concentrations in female dairy cattle in relationship to age[J]. Res Vet Sci, 1975,18(3):294-298.
    [104] Masuda T, Satodate R, Tsuruga K, et al. Quantitative assessment of a change of hemosiderin deposition with age in splenic compartments of rats[J]. Tohoku J Exp Med, 1993,170(3):169-179.
    [105] Matsuno T, Mori M, Awai M. Distribution of ferritin and hemosiderin in the liver, spleen and bone marrow of normal, phlebotomized and iron overloaded rats[J]. Acta Med Okayama, 1985,39(5):347-360.
    [106] Barlas N, Aydogan M. Histopathologic effects of maternal 4-tert-octylphenol exposure on liver, kidney and spleen of rats at adulthood[J]. Arch Toxicol, 2009,83(4):341-349.
    [107] Drozdowska S, Marcinkowski K, Olech W. Deposition of hemosiderin in eye tissue of patients treated with blood transfusion and following vitreous hemorrhages[J]. Klin Oczna, 1972,42(4):1005-1009.
    [108] Grebski E, Hess T, Hold G, et al. Diagnostic value of hemosiderin-containing macrophages in bronchoalveolar lavage[J]. Chest, 1992,102(6):1794-1799.
    [109] Epstein C E, Elidemir O, Colasurdo G N, et al. Time course of hemosiderin production by alveolar macrophages in a murine model[J]. Chest, 2001,120(6):2013-2020.
    [110] Imaizumi T, Chiba M, Honma T, et al. Detection of hemosiderin deposition by T2*-weighted MRI after subarachnoid hemorrhage[J]. Stroke, 2003,34(7):1693-1698.
    [111] Zamboni P, Izzo M, Fogato L, et al. Urine hemosiderin: a novel marker to assess the severity of chronic venous disease[J]. J Vasc Surg, 2003,37(1):132-136.
    [112] Gaunt S O, Baker D C. Hemosiderin in leukocytes of dogs with immune-mediated hemolytic anemia[J]. Vet Clin Pathol, 1986,15(3):8-10.
    [113] Chang C S, Li C Y, Liang Y H, et al. Clinical features and splenic pathologic changes in patients with autoimmune hemolytic anemia and congenital hemolytic anemia[J]. Mayo Clin Proc, 1993,68(8):757-762.
    [114] Zuyderhoudt F M, Sindram J W, Marx J J, et al. The amount of ferritin and hemosiderin in the livers of patients with iron-loading diseases[J]. Hepatology, 1983,3(2):232-235.
    [115] Li L, Zhang S, Lu F. Research on characteristics of mortality spectrum and type composition of malignant tumors in China[J]. Zhonghua Zhong Liu Za Zhi, 1997,19(5):323-328.
    [116] Hall M D, Okabe M, Shen D W, et al. The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy[J]. Annu Rev Pharmacol Toxicol,2008,48:495-535.
    [117] Shen D, Pastan I, Gottesman M M. Cross-resistance to methotrexate and metals in human cisplatin-resistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins[J]. Cancer Res, 1998,58(2):268-275.
    [118] Mavligit G M, Zukwiski A A, Ellis L M, et al. Gastrointestinal leiomyosarcoma metastatic to the liver. Durable tumor regression by hepatic chemoembolization infusion with cisplatin and vinblastine[J]. Cancer, 1995,75(8):2083-2088.
    [119] Nogueira March J L, Ojea A, Jamardo D, et al. [Evaluation of the effectiveness of cisplatin in the treatment of disseminated cancer of the prostate][J]. Arch Esp Urol, 1985,38(1):28-34.
    [120] Chirino Y I, Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity[J]. Exp Toxicol Pathol, 2009,61(3):223-242.
    [121] Tang J, Xing G M, Zhao F, et al. Modulation of structural and electronic properties of fullerene and metallofullerenes by surface chemical modifications[J]. J Nanosci Nanotechnol, 2007,7(4-5):1085-1101.
    [122] Tang J, Xing G M, Zhao Y L, et al. Switchable semiconductive property of the polyhydroxylated metallofullerene[J]. J Phys Chem B, 2007,111(41):11929-11934.
    [123] Ali S S, Hardt J I, Quick K L, et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties[J]. Free Radic Biol Med, 2004,37(8):1191-1202.
    [124] Isakovic A, Markovic Z, Todorovic-Markovic B, et al. Distinct cytotoxic mechanisms of pristine versus hydroxylated fullerene[J]. Toxicol Sci, 2006,91(1):173-183.
    [125] Freireich E J, Gehan E A, Rall D P, et al. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man[J]. Cancer Chemother Rep, 1966,50(4):219-244.
    [126] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 2005,307(5706):58-62.
    [127] Liang X J, Shen D W, Garfield S, et al. Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines[J]. Cancer Res, 2003,63(18):5909-5916.
    [128] Liang X J, Yin J J, Taylor B, et al. Disruption of microfilaments by cytochalasin B decreases accumulation of cisplatin in human epidermal carcinoma and liver carcinoma cell lines[J]. Cancer Chemother Pharmacol, 2008,62(6):977-984.
    [129] Woo H Y, Bae S H, Park J Y, et al. A randomized comparative study of high-dose and low-dose hepatic arterial infusion chemotherapy for intractable, advanced hepatocellular carcinoma[J]. Cancer Chemother Pharmacol, 2010,65(2):373-382.
    [130] Yu Y N, Chen H, Li Y. Effect of Bicyclol on Cisplatin-Induced Hepatotoxicity in the Hepatocarcinoma 22 Tumour-Bearing Mice[J]. Basic Clin Pharmacol Toxicol, 2009,104(4):300-305.
    [131] Liu L, Yang C, Herzog C, et al. Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity[J]. Biochem Pharmacol, 2010,79(2):137-146.
    [132] Zhang J, Peng D, Lu H, et al. Attenuating the toxicity of cisplatin by using selenosulfate with reduced risk of selenium toxicity as compared with selenite[J]. Toxicol Appl Pharmacol, 2008,226(3):251-259.
    [133] Havelka A M, Berndtsson M, Olofsson M H, et al. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an "off-target" effect?[J]. Mini Rev Med Chem, 2007,7(10):1035-1039.
    [134] Scott R H, Woods A J, Lacey M J, et al. An electrophysiological investigation of the effects of cisplatin and the protective actions of dexamethasone on cultured dorsal root ganglion neurones from neonatal rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 1995,352(3):247-255.
    [135] Li X L, Lie R T, Qian X P, et al. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate[J]. Eur J Pharm Biopharm, 2008,70(3):726-734.
    [136] Fujita K, Morimoto Y, Ogami A, et al. Gene expression profiles in rat lung after inhalation exposure to C60 fullerene particles[J]. Toxicology, 2009,258(1):47-55.
    [137] Zeuner A, Signore M, Martinetti D, et al. Chemotherapy-induced thrombocytopenia derives from the selective death of megakaryocyte progenitors and can be rescued by stem cell factor[J]. Cancer Res, 2007,67(10):4767-4773.
    [138] Knutson M D, Vafa M R, Haile D J, et al. Iron loading and erythrophagocytosis increase ferroportin1 (FPN1) expression in J774 macrophages[J]. Blood, 2003,102(12):4191-4197.
    [139] Ward R J, Legssyer R, Henry C, et al. Does the haemosiderin iron core determine its potential for chelation and the development of iron-induced tissue damage?[J]. J Inorg Biochem, 2000,79(1-4):311-317.
    [140] Bovell E, Buckley C E, Chua-Anusorn W, et al. Dietary iron-loaded rat liver haemosiderin and ferritin: in situ measurement of iron core nanoparticle size and cluster structure using anomalous small-angle x-ray scattering[J]. Phys Med Biol, 2009,54(5):1209-1221.
    [141] Abboud S, Haile D J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism[J]. J Biol Chem, 2000,275(26):19906-19912.
    [142] Gruenheid S, Pinner E, Desjardins M, et al. Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome[J]. J Exp Med, 1997,185(4):717-730.
    [143] Yang F, Liu X B, Quinones M, et al. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflammation[J]. J Biol Chem, 2002,277(42):39786-39791.
    [144] Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation[J]. Blood, 2003,102(3):783-788.
    [145] Liu X B, Nguyen N B, Marquess K D, et al. Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages[J]. Blood Cells Mol Dis, 2005,35(1):47-56.
    [146] Chen H H, Yu C, Ueng T H, et al. Acute and subacute toxicity study of water-solublepolyalkylsulfonated C60 in rats[J]. Toxicol Pathol, 1998,26(1):143-151.
    [147] Friedman S H, Ganapathi P S, Rubin Y, et al. Optimizing the binding of fullerene inhibitors of the HIV-1 protease through predicted increases in hydrophobic desolvation[J]. J Med Chem, 1998,41(13):2424-2429.
    [148] Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene:14C labeling, absorption, distribution, excretion and acute toxicity[J]. Chem Biol, 1995,2(6):385-389.
    [149] Bolskar R D, Benedetto A F, Husebo L O, et al. First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent[J]. J Am Chem Soc, 2003,125(18):5471-5478.
    [150] Lao F, Li W, Han D, et al. Fullerene derivatives protect endothelial cells against NO-induced damage[J]. Nanotechnology, 2009,20(22):225103.
    [151] Locksley R M, Killeen N, Lenardo M J. The TNF and TNF receptor superfamilies: integrating mammalian biology[J]. Cell, 2001,104(4):487-501.
    [152] Rosenberg S A. Cancer vaccines based on the identification of genes encoding cancer regression antigens[J]. Immunol Today, 1997,18(4):175-182.
    [153] Dudley M E, Rosenberg S A. Adoptive-cell-transfer therapy for the treatment of patients with cancer[J]. Nat Rev Cancer, 2003,3(9):666-675.
    [154] Wang R F. The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity[J]. Trends Immunol, 2001,22(5):269-276.
    [155] Yu J, Ren X, Cao S, et al. Beneficial effects of fetal-maternal microchimerism on the activated haplo-identical peripheral blood stem cell treatment for cancer[J]. Cytotherapy, 2008,10(4):331-339.
    [156] Chang H L, Gillett N, Figari I, et al. Increased transforming growth factor beta expression inhibits cell proliferation in vitro, yet increases tumorigenicity and tumor growth of Meth A sarcoma cells[J]. Cancer Res, 1993,53(18):4391-4398.
    [157] Knutson K L, Disis M L. Tumor antigen-specific T helper cells in cancer immunity andimmunotherapy[J]. Cancer Immunol Immunother, 2005,54(8):721-728.
    [158] Reome J B, Hylind J C, Dutton R W, et al. Type 1 and type 2 tumor infiltrating effector cell subpopulations in progressive breast cancer[J]. Clin Immunol, 2004,111(1):69-81.
    [159] Cui G, Florholmen J. Polarization of cytokine profile from Th1 into Th2 along colorectal adenoma-carcinoma sequence: implications for the biotherapeutic target?[J]. Inflamm Allergy Drug Targets, 2008,7(2):94-97.
    [160] Katsikis P D, Wunderlich E S, Smith C A, et al. Fas antigen stimulation induces marked apoptosis of T lymphocytes in human immunodeficiency virus-infected individuals[J]. J Exp Med, 1995,181(6):2029-2036.
    [161] Annunziato F, Galli G, Cosmi L, et al. Molecules associated with human Th1 or Th2 cells[J]. Eur Cytokine Netw, 1998,9(3 Suppl):12-16.
    [162] Chen C L, Wang Y M, Liu C F, et al. The effect of water-soluble chitosan on macrophage activation and the attenuation of mite allergen-induced airway inflammation[J]. Biomaterials, 2008,29(14):2173-2182.
    [163] Gottlieb J A, Drewinko B. Review of the current clinical status of platinum coordination complexes in cancer chemotherapy[J]. Cancer Chemother Rep, 1975,59(3):621-628.
    [164] Wang D, Lippard S J. Cellular processing of platinum anticancer drugs[J]. Nat Rev Drug Discov, 2005,4(4):307-320.
    [165] Borst P, Rottenberg S, Jonkers J. How do real tumors become resistant to cisplatin?[J]. Cell Cycle, 2008,7(10):1353-1359.
    [166] Siddik Z H. Cisplatin: mode of cytotoxic action and molecular basis of resistance[J]. Oncogene, 2003,22(47):7265-7279.
    [167] Kartner N, Riordan J R, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines[J]. Science, 1983,221(4617):1285-1288.
    [168] Liang X J, Shen D W, Gottesman M M. A pleiotropic defect reducing drug accumulation in cisplatin-resistant cells[J]. J Inorg Biochem, 2004,98(10):1599-1606.
    [169] Ozols R F, O'Dwyer P J, Hamilton T C, et al. The role of glutathione in drug resistance[J]. Cancer Treat Rev, 1990,17 Suppl A:45-50.
    [170] Townsend D M, Tew K D. The role of glutathione-S-transferase in anti-cancer drug resistance[J]. Oncogene, 2003,22(47):7369-7375.
    [171] McNeill D R, Wilson D M, 3rd. A dominant-negative form of the major human abasic endonuclease enhances cellular sensitivity to laboratory and clinical DNA-damaging agents[J]. Mol Cancer Res, 2007,5(1):61-70.
    [172] Hamelers I H, Staffhorst R W, Voortman J, et al. High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis[J]. Clin Cancer Res, 2009,15(4):1259-1268.
    [173] Dhar S, Gu F X, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles[J]. Proc Natl Acad Sci U S A, 2008,105(45):17356-17361.
    [174] Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor[J]. Jpn J Cancer Res, 1997,88(11):1108-1116.
    [175] Yanovich S, Hall R E, Gewirtz D A. Characterization of a K562 multidrug-resistant cell line[J]. Cancer Res, 1989,49(16):4499-4503.
    [176] Nakagawa M, Nomura Y, Kohno K, et al. Reduction of drug accumulation in cisplatin-resistant variants of human prostatic cancer PC-3 cell line[J]. J Urol, 1993,150(6):1970-1973.
    [177] Shen D W, Su A, Liang X J, et al. Reduced expression of small GTPases and hypermethylation of the folate binding protein gene in cisplatin-resistant cells[J]. Br J Cancer, 2004,91(2):270-276.
    [178] Liang X J, Shen D W, Gottesman M M. Down-regulation and altered localization of gamma-catenin in cisplatin-resistant adenocarcinoma cells[J]. Mol Pharmacol, 2004,65(5):1217-1224.
    [179] Shen D W, Liang X J, Gawinowicz M A, et al. Identification of cytoskeletal C-14 carboplatin-binding proteins reveals reduced expression and disorganization of actin andfilamin in cisplatin-resistant cell lines[J]. Mol Pharmacol, 2004,66(4):789-793.
    [180] Liang X J, Taylor B, Cardarelli C, et al. Different roles for K+ channels in cisplatin-resistant cell lines argue against a critical role for these channels in cisplatin resistance[J]. Anticancer Res, 2005,25(6B):4113-4122.
    [181] Liang X J, Chen C Y, Zhao Y L, et al. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials[J]. Curr Drug Metab, 2008,9(8):697-709.
    [182] Bakry R, Vallant R M, Najam-ul-Haq M, et al. Medicinal applications of fullerenes[J]. Int J Nanomedicine, 2007,2(4):639-649.
    [183] Liang X J, Mukherjee S, Shen D W, et al. Endocytic recycling compartments altered in cisplatin-resistant cancer cells[J]. Cancer Res, 2006,66(4):2346-2353.
    [184] Kawai K, Kamatani N, Georges E, et al. Identification of a membrane glycoprotein overexpressed in murine lymphoma sublines resistant to cis-diamminedichloroplatinum(II)[J]. J Biol Chem, 1990,265(22):13137-13142.
    [185] Shen D W, Akiyama S, Schoenlein P, et al. Characterisation of high-level cisplatin-resistant cell lines established from a human hepatoma cell line and human KB adenocarcinoma cells: cross-resistance and protein changes[J]. Br J Cancer, 1995,71(4):676-683.
    [186] Gately D P, Howell S B. Cellular accumulation of the anticancer agent cisplatin: a review[J]. Br J Cancer, 1993,67(6):1171-1176.
    [187] Kalayda G V, Jaehde U. Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy [M]. Humana Press, 2009:101-107.
    [188] Larson C A, Blair B G, Safaei R, et al. The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs[J]. Mol Pharmacol, 2009,75(2):324-330.
    [189] Kelland L R. Preclinical perspectives on platinum resistance[J]. Drugs, 2000,59(Suppl 4):1-8.
    [190] Andrews P A, Howell S B. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance[J]. Cancer Cells, 1990,2(2):35-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700