用户名: 密码: 验证码:
荧光磁性纳米材料的制备及其在磁共振方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十几年来,纳米科技得到了迅猛发展,并且广泛渗透于各个学科领域,形成了一系列既相对独立又互相联系的分支学科,其中由纳米科学、生物学和医学交叉结合形成的纳米生物医学,是最引人注目、最有生命力的发展方向之一。生物医用功能纳米材料的制备与应用是其主要研究内容之一。其中,荧光二氧化硅由于具有优越的荧光纳米效应,已经被应用于荧光标记探针、荧光传感器的制备等研究中。磁性纳米材料由于具有粒径小和强的可操纵性而被成功地应用于疾病的诊断与治疗以及生物物质的分离等方面,尤其是其作为造影剂在磁共振成像方面具有非常好的应用前景。本文主要研究了荧光二氧化硅和磁性纳米材料的制备,并对磁性纳米材料作为造影剂在磁共振方面的应用进行了初步探讨。
     (1)在没有加入任何无机和有机荧光团的情况下,采用一步法合成有荧光的二氧化硅纳米粒子,用透射电子显微镜和扫描电子显微镜表征了粒子的形貌,用红外光谱证明合成了二氧化硅纳米粒子,用荧光分光光度计测定了荧光强度,并且进一步研究了煅烧温度对粒子荧光强度的影响。结果表明:所得二氧化硅纳米粒子为球形,粒径均匀,直径在160nm左右;在二氧化硅的制备过程中添加无荧光基团的有机硅烷,经煅烧可以产生荧光,荧光发射波长在380 nm左右,荧光强度随煅烧温度先增后减,在500℃煅烧后粒子的荧光强度最强。
     (2)通过化学共沉淀法合成磁性纳米粒子,在其表面包裹高分子,形成高分子包裹的磁性纳米粒子。再通过化学反应将细胞特异性抗体连接在包裹后的磁性纳米粒子表面。将这样的纳米粒子生物分子复合物用于识别胰腺癌细胞。结果表明,所制得的纳米粒子生物分子复合物能够有效地识别相应的胰腺癌细胞,将胰腺癌细胞切片后在透射电子显微镜下观察,可以清楚的看到纳米粒子生物分子复合物分散在细胞内部,从而为肿瘤在细胞水平上的诊断提供了一种新的技术手段。
     (3)基于纳米粒子生物分子复合物在细胞水平上识别胰腺癌细胞的成功,制备了磁性纳米粒子造影剂,并建立了人胰腺癌细胞株BXPC-3裸鼠皮下移植瘤模型用于胰腺癌的磁共振成像研究。结果表明,磁性纳米粒子造影剂能够有效的识别裸鼠体内的胰腺癌肿瘤,提高肿瘤和正常组织在磁共振成像上的对比度,从而为胰腺癌的早期磁共振诊断提供有用的参考。
The rapid progress of nanoscience and nanotechnology in past decade has made itself being widely applied into many other subjects, and caused the formation of a series of independent but close related interdisciplinaries. Bionanomedicine, which is composed by nanoscience, biology, medicine, is one of the most shining and active research field. One major content of it is the preparation and application of functional biomedical materials. The luminescent silica dioxide , which has a superior fluorescence nanometer effect, was widely applied in research and preparation of fluorescence mark probe and fluorescence sensors. Magnetic nanomaterials, which have advantages of the small size and the strong controllability, are applied successfully in disease's diagnosis and treatment as well as biological materials' separation, particularly it has the very good application prospect as the contrast agent in the magnetic resonance image. This article is focused on the preparation of the luminescent silica dioxide and the magnetic nanomaterials, and has carried on the preliminary discussion on magnetic nanomaterials as the contrast agent used in the magnetic resonance imaging..
     (1) This article provides a 'one-pot' process for growing luminescent silica dioxide spheres under basic conditions without the subsequent addition of inorganic or organic fluorophores. This article also provides the configuration of silica dioxide spheres by TEM and SEM. It also illustrates fluorescence intension by fluorescence spectrometer, and it also researches the effect of calcinations temperature to fluorescence intensity of silica dioxide spheres. The result indicates that: the silica dioxide nanoparticles is spherical and uniform in size , about 160nm in diameter; In addition of organic silane in processes and calcinations often make the silica dioxide spheres exhibit luminescence, the fluorescence emission wavelength is about 380nm at all times. As the calcinations temperature changes, the fluorescence intensity cuts after increasing first, and the fluorescent intensity maximum appears in the calcinations temperature of 500℃.
     (2) The magnetic nanoparticles were synthesized by the chemical coprecipitation. And the magnetic nanoparticles were coated with macromolecules in the microemulsion. The surface of the nanoparticles was conjugated with a cancer-targeting antibody. Then the functional magnetic nanoparticles were used to detect pancreatic tumor cells. The results showed that the functional magnetic nanoparticles may effectively target to pancreas cancer cells, which offered a new tool for original diagnose of pancreas caner in cell lever.
     (3) Based on the success of the functional magnetic nanoparticles used in diagnose of pancreas cells in cell lever, we fabricated the biofunctional magnetic nanoparticles contrast agents and established the pancreas cell line BXPC-3 bare mouse hypodermic transplant lump model for magnetic resonance image research. MRI experiments results in vivo indicated the synthesized conjugated nanoparticles can successfully target to the pancreas cancer and enhance contrast of the tumor and the normal tissue in the magnetic resonance image. Therefore, these target-specific magnetic nanoparticles have potential as contrast agents use in MR imaging of pancreas cancer in vivo.
引文
[1]施利毅,纳米科技基础,华东理工大学出版社,2005
    [2]张阳德,纳米生物分析化学与分子生物学,化学工业出版社,2005
    [3]Knobbe E T,Dunn B,Fuqua P D,et al.Laser behavior and photostability characteristics of organic dye diped silicate gel materials[J].Applied Optics,1990,29:2729
    [4]Dubois A,Callva M,Brun A,et al.Photostability of dye molecules trapped in solid materials [J].Applied Optics.1996,35:3139
    [5]王婷婷,一种新型的树莓形状荧光二氧化硅颗粒及其颗粒膜的制备[A],2008,5
    [6]Santra S,Wang K M,Tapec R,et al.Development of novel dye-doped silica nanoparticles for biomarker application[J].Biomed Opt.,2001,6:160
    [7]Zhang P,Guo J H,Wang Y,et al.Incorporation of luminescent tris(bipyridine)ruthenium(Ⅱ)complex in mesoporous silica spheres and their spectroscopic and oxygen-sensing properties[J].Mater.Lett.,2002,53:400
    [8]Kim T H,Li G,Park W H,et al.Sensor application of submicro-sized silica particle functionalized with hydroxyphenylbenzoxazole[J].Mol.Cryst.Liq.Cryst.,2006,445:185
    [9]Zhang X Z,Yue Y H,Gao Z.Recent progress in the preparation and application research of mesoporous molecular sieve materials[J].Chem.Chinese Universities,2003,24:121
    [10]Kirkland J J,Truszkowski F A,Dilks Jr C H,Engel G S.Peer reviewed:heating or cooling LC columns[J].Chromatogr A,2000,890:3
    [11]Asiaie R,Huang X,Farnan D,Horvdth C.Sintered octadecylsilica as monolithic column packing in capillary electrochromatography and micro high-performance liquid chromatography[J].Chromatogr A,1998,806:251
    [12]Bele M,Siiman O,Matijevid E.Preparation and flow cytometry of uniform silica-fluorescent dye microspheres[J].Colloid and Interface Science,2002,254:274
    [13]Bae E,Chah S,Yi H.Preparation and characterization of ceramic hollow microspheres for heavy metal ion removal in wastewater[J].Colloid and Interface Science,2000,230:367
    [14]Tartaj P,Serna C J.Bifunctional nanostructure of magnetic core luminescent shell and its application as solid-state electrochemiluminescence sensor material[J].Am.Chem.Soc.,2003,125:15754
    [15]Zhao X J,Tapee D R,Tan W H.Ultrasensitive DNA detection using highly fluorescent bioconjugated nanopartides[J].Am.Chem.Soc.,2003,125:11474
    [16]杨文胜,高明远,白玉白,纳米材料与生物技术,化学工业出版社,2005
    [17]Safarik I,Safarikova M.Magnetic nanoparticles and biosciences[J].Monatshefte fur Chemic.,2002,133:737
    [18]Schuler D.Formation of magnetosomes in magnetotactic bacteria[J].Mol Microbiol Biotechnol.,1999,1:79.
    [19]Suglnmoto T,Matijevic E.Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels[J].Colloid and Interface Science,1980,74:227.
    [20]Schwertmann U,Cornel R M.Iron Oxides in the laboratory:Preparation and characterization.,New York:WILEY-VCH.2000,11
    [21]Rockenberger J,Scher E C,Alivisatos A P.A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides[J].Am.Chem.Soc.,1999,121:11595
    [22]Puntes V F,Krishnan K M,Alivisatos A P.Colloidal nanocrystal shape and size control:The case of cobalt[J].Science,2001,291:2115
    [23]Park S J,Kim S,Lee S,et al.Synthesis and magnetic studies of uniform iron nanorods and nanospheres[J].Am.Chem.Soc.,2000,122:8581
    [24]Hyeon T,Lee S S,Park J,et al.Synthesis of highly crystalline and monodisperse maghemite nanoerystallites without a size-selection process[J].Am.Chem.Soc.,2001,123:12798
    [25]Cheon J,Kang N J,Lee S M,et al.Shape evolution of single-crystalline iron oxide nanocrystals [J].Am.Chem.Soc.,2004,126:1950.
    [26]Butter K,Bomans P H,Frederik P M,et al.Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy[J].Nature Materials,2003,2:88
    [27]Teng X,Yang H.Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticles[J].Mater.Chem..2004,14:774
    [28] Tannebaum R, Reich S. Flenniken C L, Goldberg E P. Shape control of iron oxide nanoclusters in polymeric media [J].Adv Mater., 2002, 14: 1402
    [29] Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. Am.Chem.Soc., 2002, 124: 8204
    [30] Sun S H, Zeng H, Li G Monodisperse MFe_2O_4 (M = Fe, Co, Mn) Nanoparticles [J]. Am.Chem.Soc, 2004, 126: 273
    [31] Hou Y L, Yu J F, Gao S. Solvothermal reduction synthesis and characterization of superparamagnetic magnetite nanoparticles [J]. Mater.Chem., 2003, 13: 1983
    [32] Pileni M P. The role of soft colloidal templates in the control of size and shape of inorganic nanocrystals [J]. Nature Materials, 2003, 2: 145
    [33] Suslick K S. Interparticle Collisions Driven by Ultrasound [J]. Science, 1990, 247: 1067
    [34] Suslick K S, Fang M, Hyeon T. Sonochemical synthesis of iron colloids [J]. Am.Chem.Soc 1996, 118: 11960
    [35] Tang J,Myers M, Bosnick K A, Brus L E. Magnetite Fe_3O_4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics [J]. Phys.Chem. B., 2003, 107: 7501
    [36] Carpenter E E. Iron nanoparticles as potential magnetic carriers [J]. Magnetic and Magnetic Materials, 2001, 225: 17
    [37] Safarik I. In scientific and clinical applications of magnetic carriers. New York and London: Plenum Press, 1997, 323
    [38] Sestier C, Roger J, Pons J N. Surface modification of superparamagnetic nanoparticles (Ferrofluid) studied with particle electrophoresis: Application to the specific targeting of cells [J]. Electrophoresis, 1998, 19: 1220
    [39] Gupta A K, Curits A S. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors [J]. Biomaterials, 2004, 25: 3029
    [40] 王镜岩, 朱圣庚,徐长法. 生物化学(上册), 第3版, 北京:高等教育出版社, 2002
    [41] Josephson L, Perez J M, Weissieder R. Magnetic Nanosensors for the Detection of Oligonucleotide Sequences [J].Angew.Chem.Int.Ed., 2001, 40: 17
    [42] Wang J, Xu D, Polsky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization [J]. Am.Chem.Soc., 2002, 124: 4208
    [43] Bucak S, Jones D A, Laibinis P E, Hatton T A. protein separations using colloidal magnetic nanoparticles [J]. Biotechnol Prog., 2003, 19: 477
    [44] Okino H , Maeyama R, Manabe T, et al. Sustained release of gemeitabine from photoeured gelatin gel inhibits the growth of heterotopic human pancreatic tumor in nude mice [J]. Clinical Cancer Research, 2003, 9: 5786
    [45] Cardillo T M , Karacay H , Goldenberg D M , et al. Improved targeting of pancreatic cancer: experimental studies of a new bispecific antibody, pretargeting enhancement system for immunoscintigraphy [J]. Clinical Cancer Research, 2004, 10: 3552
    [46] Fukasawa M , Kore M. Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancrestic cancer cell lines [J]. Clinical Cancer Research, 2004, 10: 3327
    [47] Hwang R F, Yokoi K , Bucana C D, et al. Inhibition of platelet—derived growth factor receptor phosphorylation by ST1571 (Gleevec) reduces growth and metastasis oihuman pancreatic carcinoma in an orthotopic nude mouse model [J]. Clinical Cancer Research, 2003, 9: 6534
    [48] Katz M H, Bouvet M, Takimoto S, et al. Survival eficacy of adjuvantcytosine—analogue CS-682 in a fluorescent orthotopic model of human pancreatic cancer [J]. Clinical Cancer Research, 2004, 64: 1828
    [49] Bruchez M, Moronne M, Gin P, et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013
    [50] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281: 2016
    [51] Taylor J R, Fang M M, Nie S M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles [J]. Anal.Chem., 2000, 72: 1979.
    [52] Mitchel G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalized quantum dots [J]. J. Am.Chem.Soc, 1999, 121: 8122
    [53] Santra S. Zhang P, Wang K M, et al. Conjugation of biomolcules with luminophore-doped silica nanoparticles for photestable biomarkers [J]. Anal.Chem., 2001, 73: 4988
    [54]Santra S. Wang K M, Tapec R, et al. Development of novel dye-doped silica nanoparticles for biomarker application [J]. Biomed.Opt., 2001, 6 : 160
    [55] Zhang P, Guo J H, Wang Y, et al. Incorporation of luminescent tris(bipyridine)ruthenium(II) complex in mesoporous silica spheres and their spectroscopic and oxygen-sensing properties[J]. Mater.Lett., 2002, 53: 400
    [56] Kim T H, Li G, Park W H, et al. Sensor application of submicro-sized silica particle functionalized with hydroxyphenylbenzoxazole [J]. Mol.Cryst.Liq.Cryst., 2006, 445: 185
    [57] Rossi L M, Shi L, Quina F H, et al. Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays [J]. Langmuir, 2005, 21: 4277
    [58] Van Blaaderen A, Vril A J. Synthesis and characterization of monodisperse colloidal organo-silica spheres [J]. Colloid Interface Sci., 1993, 156: 1
    [59] Jakob A M, Schmedake T A. A novel approach to monodisperse, luminescent silica [J]. Colloid Interface Sci., 2006, 156 : 1
    [60] KIabunde,K.J. Nanoscale Materials in Chemistry, Wiley-Interscience: New York.2001.
    [61] Yang H H, Zhang S Q, Chen X L, Zhuang Z X, Xu J G. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations [J]. Anal. Chem., 2004, 76: 1316
    [62] Zhang Y, Nathan K, Zhang M Q. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials, 2002, 23: 1553
    [63] Liu X Q, Xing J M., Guan Y P, Shan G B, Liu H Z. Synthesis of amino-silane modified superparamagnetic silica supports and their use for protein immobilization [J]. Colloids and Surface A, 2004, 238: 127
    [64] Liu X Q, Ma Z Y, Xing J M, Liu H Z. Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres [J]. Magnetism and Magnetic materials, 2004, 270: 1
    [65] Stefan N, Andreas G, Selim K, Frank B, Dietrich N, Rupert H. Isolation and phenotypic characterization of CD117-positive cells Leukemia Research [J]. Leukemia Research, 1996, 20: 963
    [66]Ivo Safarlk,Mirka Safarlkova.Use of magnetic techniques for the isolation of cells [J].Chromatography B,1999,722:33
    [67]Katharine M,Partington E.Jenkinson G A.A novel method of cell separation based on dual parameter immunomagnetic cell selection[J].Immunological methods,1999,223:195
    [68]Kondo A.,Fukuda H.J.Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization[J].Fermentation and Bioengineering,1997,84:337
    [69]Sonti S V,Bose A.Cell Separation using protein:a coated magnetic nanoclusters[J].Colloid Intefface Sci.,1995,170:575
    [70]Khng H P,Cunliffe D,Davies S,Turner N A.The synthesis of sub-micron magnetic particles and their use for preparative purification of proteins[J].Biotechnol Bioeng.,1998,60:419
    [71]Shen H B,Hu M,Wang Y B,Zhou H Q.Polymerase chain reaction of nanoparticle-bound primers[J].Biophysical Chemistry,2005,115:63
    [72]李玉宝,纳米生物医药材料,北京:化学工业出版社,2004,141
    [73]黄可龙,陈洁,刘素琴等,磁性Fea04/壳聚糖的化学修饰及包覆机理研究,无机化学学报,2007,23:1491
    [74]夏金兰,廖鹏飞,聂珍嫒等,羧甲基壳聚糖磁性纳米复合物的制备与表征,中南大学学报(自然科学版),2006,37:1075
    [75]Li X Z,Lin W,Zhou C,Guan T T,Li J,Zhang Y H.Preliminary studies of application of CdTe nanocrystals and dextran-Fe_3O_4 magnetic nanoparticles in sandwich immunoassay[J].Clinica Chimica Acta.,2007,378:168
    [76]Lu Y,Yin Y D,Brain T,et al.Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach[J].Nano Lett.,2002,2:183
    [77]Cheng F Y,Su C H,Yang Y S,et al.Characterization of aqueous dispersions of Fe_3O_4nanoparticles and their biomedical applications[J].Biomaterials,2005,26:729
    [78]Ko A H,Dito E,Schillinger B,Venook A P,Bergsland E K,Tempero M A.Phase Ⅱ study of fixed dose rate gemcitabine with cisplatin for metastatic adenocarcinoma of the pancreas[J].Clinical Oncology,2006,24:379
    [79]Abrams R A,Yeo C J.Combined modality adjuvant therapy for resected periampullary pancreatic and nonpancreatic adenocarcinoma:a review of studies and experience at The Johns Hopkins Hospital. Clinical Oncology, 2004, 13: 621
    [80] Laheru D, Biedrzycki B, Thomas A M, Jaffee E M. Development of a cytokine-modified allogeneic whole cell pancreatic cancer vaccine. Methods Mol Med., 2005, 103: 299
    [81] Brown K E, Mathahs M M, Broadhurst K A, et al. Chronic ilon overload stimulates hepatocyte proliferation an dcyclin Dl expression in rodent liver [J]. Transl Res., 2006, 148: 55
    [82] Nuajahja T E, Fu D, Phang J M, et al. Iron chelation regulates cyclin Dl expression via the proteasome: a link to iron deficiencymediated growth suppression [J]. Blod., 2007, 109: 4045

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700